Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,136 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import random
|
4 |
#from diffusers import DiffusionPipeline
|
5 |
-
from diffusers import StableDiffusionXLPipeline
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import spaces
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
#"yodayo-ai/kivotos-xl-2.0",
|
16 |
"yodayo-ai/holodayo-xl-2.1",
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
variant="fp16"
|
22 |
)
|
23 |
-
pipe.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
|
26 |
negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
@spaces.GPU
|
29 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
30 |
|
31 |
if randomize_seed:
|
32 |
seed = random.randint(0, MAX_SEED)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
generator = torch.Generator().manual_seed(seed)
|
35 |
|
36 |
-
|
37 |
prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
|
38 |
negative_prompt = negative_prompt,
|
39 |
guidance_scale = guidance_scale,
|
@@ -43,7 +140,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
43 |
generator = generator
|
44 |
).images[0]
|
45 |
|
46 |
-
return
|
47 |
|
48 |
css="""
|
49 |
#col-container {
|
@@ -71,7 +168,8 @@ with gr.Blocks(css=css) as demo:
|
|
71 |
)
|
72 |
|
73 |
run_button = gr.Button("Run", scale=0)
|
74 |
-
|
|
|
75 |
result = gr.Image(label="Result", show_label=False)
|
76 |
|
77 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -80,7 +178,8 @@ with gr.Blocks(css=css) as demo:
|
|
80 |
label="Negative prompt",
|
81 |
max_lines=1,
|
82 |
placeholder="Enter a negative prompt",
|
83 |
-
visible=False,
|
|
|
84 |
)
|
85 |
|
86 |
seed = gr.Slider(
|
@@ -131,7 +230,7 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
|
132 |
run_button.click(
|
133 |
fn = infer,
|
134 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
135 |
outputs = [result]
|
136 |
)
|
137 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import PIL.Image
|
4 |
import random
|
5 |
#from diffusers import DiffusionPipeline
|
6 |
+
#from diffusers import StableDiffusionXLPipeline
|
7 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
8 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
9 |
+
from controlnet_aux import PidiNetDetector, HEDdetector
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
import cv2
|
12 |
import torch
|
13 |
import spaces
|
14 |
|
15 |
+
def nms(x, t, s):
|
16 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
17 |
|
18 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
19 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
20 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
21 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
22 |
+
|
23 |
+
y = np.zeros_like(x)
|
24 |
+
|
25 |
+
for f in [f1, f2, f3, f4]:
|
26 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
27 |
+
|
28 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
29 |
+
z[y > t] = 255
|
30 |
+
return z
|
31 |
+
|
32 |
+
def HWC3(x):
|
33 |
+
assert x.dtype == np.uint8
|
34 |
+
if x.ndim == 2:
|
35 |
+
x = x[:, :, None]
|
36 |
+
assert x.ndim == 3
|
37 |
+
H, W, C = x.shape
|
38 |
+
assert C == 1 or C == 3 or C == 4
|
39 |
+
if C == 3:
|
40 |
+
return x
|
41 |
+
if C == 1:
|
42 |
+
return np.concatenate([x, x, x], axis=2)
|
43 |
+
if C == 4:
|
44 |
+
color = x[:, :, 0:3].astype(np.float32)
|
45 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
46 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
47 |
+
y = y.clip(0, 255).astype(np.uint8)
|
48 |
+
return y
|
49 |
+
|
50 |
+
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
|
53 |
+
# eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
54 |
+
|
55 |
+
|
56 |
+
controlnet = ControlNetModel.from_pretrained(
|
57 |
+
#"xinsir/controlnet-scribble-sdxl-1.0",
|
58 |
+
"2vXpSwA7/test_controlnet2/CN-anytest_v4-marged_am_dim256.safetensors"
|
59 |
+
|
60 |
+
torch_dtype=torch.float16
|
61 |
+
)
|
62 |
+
|
63 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
64 |
+
|
65 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
66 |
+
#"sd-community/sdxl-flash",
|
67 |
#"yodayo-ai/kivotos-xl-2.0",
|
68 |
"yodayo-ai/holodayo-xl-2.1",
|
69 |
+
controlnet=controlnet,
|
70 |
+
vae=vae,
|
71 |
+
torch_dtype=torch.float16,
|
72 |
+
# scheduler=eulera_scheduler,
|
|
|
73 |
)
|
74 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
75 |
+
|
76 |
+
pipe.to(device)
|
77 |
+
|
78 |
+
|
79 |
+
MAX_SEED = np.iinfo(np.int32).max
|
80 |
+
MAX_IMAGE_SIZE = 1216
|
81 |
+
|
82 |
+
#pipe = StableDiffusionXLPipeline.from_pretrained(
|
83 |
+
# #"yodayo-ai/kivotos-xl-2.0",
|
84 |
+
# "yodayo-ai/holodayo-xl-2.1",
|
85 |
+
# torch_dtype=torch.float16,
|
86 |
+
# use_safetensors=True,
|
87 |
+
# custom_pipeline="lpw_stable_diffusion_xl",
|
88 |
+
# add_watermarker=False,
|
89 |
+
# variant="fp16"
|
90 |
+
#)
|
91 |
+
#pipe.to('cuda')
|
92 |
|
93 |
prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
|
94 |
negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
95 |
|
96 |
+
def nms(x, t, s):
|
97 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
98 |
+
|
99 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
100 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
101 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
102 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
103 |
+
|
104 |
+
y = np.zeros_like(x)
|
105 |
+
|
106 |
+
for f in [f1, f2, f3, f4]:
|
107 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
108 |
+
|
109 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
110 |
+
z[y > t] = 255
|
111 |
+
return z
|
112 |
+
|
113 |
@spaces.GPU
|
114 |
+
def infer(image: PIL.Image.Image,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)-> PIL.Image.Image:
|
115 |
|
116 |
if randomize_seed:
|
117 |
seed = random.randint(0, MAX_SEED)
|
118 |
+
|
119 |
+
controlnet_img = processor(image, scribble=False)
|
120 |
+
# following is some processing to simulate human sketch draw, different threshold can generate different width of lines
|
121 |
+
controlnet_img = np.array(controlnet_img)
|
122 |
+
controlnet_img = nms(controlnet_img, 127, 3)
|
123 |
+
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
124 |
+
|
125 |
+
# higher threshold, thiner line
|
126 |
+
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
127 |
+
controlnet_img[controlnet_img > random_val] = 255
|
128 |
+
controlnet_img[controlnet_img < 255] = 0
|
129 |
+
image = Image.fromarray(controlnet_img)
|
130 |
+
|
131 |
generator = torch.Generator().manual_seed(seed)
|
132 |
|
133 |
+
output_image = pipe(
|
134 |
prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
|
135 |
negative_prompt = negative_prompt,
|
136 |
guidance_scale = guidance_scale,
|
|
|
140 |
generator = generator
|
141 |
).images[0]
|
142 |
|
143 |
+
return output_image
|
144 |
|
145 |
css="""
|
146 |
#col-container {
|
|
|
168 |
)
|
169 |
|
170 |
run_button = gr.Button("Run", scale=0)
|
171 |
+
|
172 |
+
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
173 |
result = gr.Image(label="Result", show_label=False)
|
174 |
|
175 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
178 |
label="Negative prompt",
|
179 |
max_lines=1,
|
180 |
placeholder="Enter a negative prompt",
|
181 |
+
#visible=False,
|
182 |
+
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
183 |
)
|
184 |
|
185 |
seed = gr.Slider(
|
|
|
230 |
|
231 |
run_button.click(
|
232 |
fn = infer,
|
233 |
+
inputs = [image,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
234 |
outputs = [result]
|
235 |
)
|
236 |
|