Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from PIL import Image, ImageOps
|
5 |
import random
|
6 |
-
#from diffusers import DiffusionPipeline
|
7 |
-
#from diffusers import StableDiffusionXLPipeline
|
8 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
9 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
10 |
-
from controlnet_aux import PidiNetDetector, HEDdetector
|
11 |
-
from diffusers.utils import load_image
|
12 |
import cv2
|
13 |
import torch
|
14 |
import spaces
|
@@ -30,126 +25,63 @@ def nms(x, t, s):
|
|
30 |
z[y > t] = 255
|
31 |
return z
|
32 |
|
33 |
-
def HWC3(x):
|
34 |
-
assert x.dtype == np.uint8
|
35 |
-
if x.ndim == 2:
|
36 |
-
x = x[:, :, None]
|
37 |
-
assert x.ndim == 3
|
38 |
-
H, W, C = x.shape
|
39 |
-
assert C == 1 or C == 3 or C == 4
|
40 |
-
if C == 3:
|
41 |
-
return x
|
42 |
-
if C == 1:
|
43 |
-
return np.concatenate([x, x, x], axis=2)
|
44 |
-
if C == 4:
|
45 |
-
color = x[:, :, 0:3].astype(np.float32)
|
46 |
-
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
47 |
-
y = color * alpha + 255.0 * (1.0 - alpha)
|
48 |
-
y = y.clip(0, 255).astype(np.uint8)
|
49 |
-
return y
|
50 |
-
|
51 |
-
|
52 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
|
54 |
-
# eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
55 |
-
|
56 |
-
|
57 |
controlnet = ControlNetModel.from_pretrained(
|
58 |
"xinsir/controlnet-scribble-sdxl-1.0",
|
59 |
-
#"2vXpSwA7/test_controlnet2/CN-anytest_v4-marged_am_dim256.safetensors"
|
60 |
-
|
61 |
torch_dtype=torch.float16
|
62 |
)
|
63 |
|
64 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
65 |
|
66 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
67 |
-
|
68 |
-
#"yodayo-ai/kivotos-xl-2.0",
|
69 |
-
"yodayo-ai/holodayo-xl-2.1",
|
70 |
controlnet=controlnet,
|
71 |
vae=vae,
|
72 |
torch_dtype=torch.float16,
|
73 |
-
# scheduler=eulera_scheduler,
|
74 |
)
|
75 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
76 |
|
|
|
77 |
pipe.to(device)
|
78 |
|
79 |
-
|
80 |
MAX_SEED = np.iinfo(np.int32).max
|
81 |
MAX_IMAGE_SIZE = 1216
|
82 |
|
83 |
-
#pipe = StableDiffusionXLPipeline.from_pretrained(
|
84 |
-
# #"yodayo-ai/kivotos-xl-2.0",
|
85 |
-
# "yodayo-ai/holodayo-xl-2.1",
|
86 |
-
# torch_dtype=torch.float16,
|
87 |
-
# use_safetensors=True,
|
88 |
-
# custom_pipeline="lpw_stable_diffusion_xl",
|
89 |
-
# add_watermarker=False,
|
90 |
-
# variant="fp16"
|
91 |
-
#)
|
92 |
-
#pipe.to('cuda')
|
93 |
-
|
94 |
-
prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
|
95 |
-
negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
96 |
-
|
97 |
-
def nms(x, t, s):
|
98 |
-
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
99 |
-
|
100 |
-
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
101 |
-
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
102 |
-
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
103 |
-
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
104 |
-
|
105 |
-
y = np.zeros_like(x)
|
106 |
-
|
107 |
-
for f in [f1, f2, f3, f4]:
|
108 |
-
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
109 |
-
|
110 |
-
z = np.zeros_like(y, dtype=np.uint8)
|
111 |
-
z[y > t] = 255
|
112 |
-
return z
|
113 |
-
|
114 |
@spaces.GPU
|
115 |
-
def infer(image:
|
116 |
|
117 |
-
width, height
|
118 |
ratio = np.sqrt(1024. * 1024. / (width * height))
|
119 |
new_width, new_height = int(width * ratio), int(height * ratio)
|
120 |
-
image = image
|
121 |
|
122 |
-
|
123 |
if randomize_seed:
|
124 |
seed = random.randint(0, MAX_SEED)
|
125 |
|
126 |
-
controlnet_img = image
|
127 |
-
# following is some processing to simulate human sketch draw, different threshold can generate different width of lines
|
128 |
-
controlnet_img = np.array(controlnet_img)
|
129 |
controlnet_img = nms(controlnet_img, 127, 3)
|
130 |
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
131 |
|
132 |
-
# higher threshold, thiner line
|
133 |
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
134 |
controlnet_img[controlnet_img > random_val] = 255
|
135 |
controlnet_img[controlnet_img < 255] = 0
|
136 |
image = Image.fromarray(controlnet_img)
|
137 |
-
|
138 |
generator = torch.Generator().manual_seed(seed)
|
139 |
-
|
140 |
output_image = pipe(
|
141 |
-
prompt
|
142 |
-
negative_prompt
|
143 |
-
guidance_scale
|
144 |
-
num_inference_steps
|
145 |
-
width
|
146 |
-
height
|
147 |
-
generator
|
148 |
-
).images[0]
|
149 |
-
|
150 |
return output_image
|
151 |
|
152 |
-
css="""
|
153 |
#col-container {
|
154 |
margin: 0 auto;
|
155 |
max-width: 520px;
|
@@ -157,15 +89,14 @@ css="""
|
|
157 |
"""
|
158 |
|
159 |
with gr.Blocks(css=css) as demo:
|
160 |
-
|
161 |
with gr.Column(elem_id="col-container"):
|
162 |
-
gr.Markdown(
|
163 |
# Text-to-Image Demo
|
164 |
using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
|
165 |
""")
|
166 |
-
|
167 |
with gr.Row():
|
168 |
-
|
169 |
prompt = gr.Text(
|
170 |
label="Prompt",
|
171 |
show_label=False,
|
@@ -173,22 +104,21 @@ with gr.Blocks(css=css) as demo:
|
|
173 |
placeholder="Enter your prompt",
|
174 |
container=False,
|
175 |
)
|
176 |
-
|
177 |
run_button = gr.Button("Run", scale=0)
|
178 |
-
|
179 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
180 |
result = gr.Image(label="Result", show_label=False)
|
181 |
|
182 |
with gr.Accordion("Advanced Settings", open=False):
|
183 |
-
|
184 |
negative_prompt = gr.Text(
|
185 |
label="Negative prompt",
|
186 |
max_lines=1,
|
187 |
placeholder="Enter a negative prompt",
|
188 |
-
#visible=False,
|
189 |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
190 |
)
|
191 |
-
|
192 |
seed = gr.Slider(
|
193 |
label="Seed",
|
194 |
minimum=0,
|
@@ -196,11 +126,10 @@ with gr.Blocks(css=css) as demo:
|
|
196 |
step=1,
|
197 |
value=0,
|
198 |
)
|
199 |
-
|
200 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
201 |
-
|
202 |
with gr.Row():
|
203 |
-
|
204 |
width = gr.Slider(
|
205 |
label="Width",
|
206 |
minimum=256,
|
@@ -208,7 +137,7 @@ with gr.Blocks(css=css) as demo:
|
|
208 |
step=32,
|
209 |
value=832,
|
210 |
)
|
211 |
-
|
212 |
height = gr.Slider(
|
213 |
label="Height",
|
214 |
minimum=256,
|
@@ -216,9 +145,8 @@ with gr.Blocks(css=css) as demo:
|
|
216 |
step=32,
|
217 |
value=1216,
|
218 |
)
|
219 |
-
|
220 |
with gr.Row():
|
221 |
-
|
222 |
guidance_scale = gr.Slider(
|
223 |
label="Guidance scale",
|
224 |
minimum=0.0,
|
@@ -226,7 +154,7 @@ with gr.Blocks(css=css) as demo:
|
|
226 |
step=0.1,
|
227 |
value=7,
|
228 |
)
|
229 |
-
|
230 |
num_inference_steps = gr.Slider(
|
231 |
label="Number of inference steps",
|
232 |
minimum=1,
|
@@ -236,9 +164,9 @@ with gr.Blocks(css=css) as demo:
|
|
236 |
)
|
237 |
|
238 |
run_button.click(
|
239 |
-
fn
|
240 |
-
inputs
|
241 |
-
outputs
|
242 |
)
|
243 |
|
244 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from PIL import Image
|
|
|
4 |
import random
|
|
|
|
|
5 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
6 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
|
|
|
|
7 |
import cv2
|
8 |
import torch
|
9 |
import spaces
|
|
|
25 |
z[y > t] = 255
|
26 |
return z
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
|
|
|
|
|
|
|
30 |
controlnet = ControlNetModel.from_pretrained(
|
31 |
"xinsir/controlnet-scribble-sdxl-1.0",
|
|
|
|
|
32 |
torch_dtype=torch.float16
|
33 |
)
|
34 |
|
35 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
36 |
|
37 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
38 |
+
"yodayo-ai/holodayo-xl-2.1",
|
|
|
|
|
39 |
controlnet=controlnet,
|
40 |
vae=vae,
|
41 |
torch_dtype=torch.float16,
|
|
|
42 |
)
|
|
|
43 |
|
44 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
45 |
pipe.to(device)
|
46 |
|
|
|
47 |
MAX_SEED = np.iinfo(np.int32).max
|
48 |
MAX_IMAGE_SIZE = 1216
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@spaces.GPU
|
51 |
+
def infer(image: Image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps) -> Image:
|
52 |
|
53 |
+
width, height = image.size
|
54 |
ratio = np.sqrt(1024. * 1024. / (width * height))
|
55 |
new_width, new_height = int(width * ratio), int(height * ratio)
|
56 |
+
image = image.resize((new_width, new_height))
|
57 |
|
|
|
58 |
if randomize_seed:
|
59 |
seed = random.randint(0, MAX_SEED)
|
60 |
|
61 |
+
controlnet_img = np.array(image)
|
|
|
|
|
62 |
controlnet_img = nms(controlnet_img, 127, 3)
|
63 |
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
64 |
|
|
|
65 |
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
66 |
controlnet_img[controlnet_img > random_val] = 255
|
67 |
controlnet_img[controlnet_img < 255] = 0
|
68 |
image = Image.fromarray(controlnet_img)
|
69 |
+
|
70 |
generator = torch.Generator().manual_seed(seed)
|
71 |
+
|
72 |
output_image = pipe(
|
73 |
+
prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
|
74 |
+
negative_prompt=negative_prompt,
|
75 |
+
guidance_scale=guidance_scale,
|
76 |
+
num_inference_steps=num_inference_steps,
|
77 |
+
width=width,
|
78 |
+
height=height,
|
79 |
+
generator=generator
|
80 |
+
).images[0]
|
81 |
+
|
82 |
return output_image
|
83 |
|
84 |
+
css = """
|
85 |
#col-container {
|
86 |
margin: 0 auto;
|
87 |
max-width: 520px;
|
|
|
89 |
"""
|
90 |
|
91 |
with gr.Blocks(css=css) as demo:
|
92 |
+
|
93 |
with gr.Column(elem_id="col-container"):
|
94 |
+
gr.Markdown("""
|
95 |
# Text-to-Image Demo
|
96 |
using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
|
97 |
""")
|
98 |
+
|
99 |
with gr.Row():
|
|
|
100 |
prompt = gr.Text(
|
101 |
label="Prompt",
|
102 |
show_label=False,
|
|
|
104 |
placeholder="Enter your prompt",
|
105 |
container=False,
|
106 |
)
|
107 |
+
|
108 |
run_button = gr.Button("Run", scale=0)
|
109 |
+
|
110 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
111 |
result = gr.Image(label="Result", show_label=False)
|
112 |
|
113 |
with gr.Accordion("Advanced Settings", open=False):
|
114 |
+
|
115 |
negative_prompt = gr.Text(
|
116 |
label="Negative prompt",
|
117 |
max_lines=1,
|
118 |
placeholder="Enter a negative prompt",
|
|
|
119 |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
120 |
)
|
121 |
+
|
122 |
seed = gr.Slider(
|
123 |
label="Seed",
|
124 |
minimum=0,
|
|
|
126 |
step=1,
|
127 |
value=0,
|
128 |
)
|
129 |
+
|
130 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
131 |
+
|
132 |
with gr.Row():
|
|
|
133 |
width = gr.Slider(
|
134 |
label="Width",
|
135 |
minimum=256,
|
|
|
137 |
step=32,
|
138 |
value=832,
|
139 |
)
|
140 |
+
|
141 |
height = gr.Slider(
|
142 |
label="Height",
|
143 |
minimum=256,
|
|
|
145 |
step=32,
|
146 |
value=1216,
|
147 |
)
|
148 |
+
|
149 |
with gr.Row():
|
|
|
150 |
guidance_scale = gr.Slider(
|
151 |
label="Guidance scale",
|
152 |
minimum=0.0,
|
|
|
154 |
step=0.1,
|
155 |
value=7,
|
156 |
)
|
157 |
+
|
158 |
num_inference_steps = gr.Slider(
|
159 |
label="Number of inference steps",
|
160 |
minimum=1,
|
|
|
164 |
)
|
165 |
|
166 |
run_button.click(
|
167 |
+
fn=infer,
|
168 |
+
inputs=[image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
169 |
+
outputs=[result]
|
170 |
)
|
171 |
|
172 |
+
demo.queue().launch()
|