File size: 5,113 Bytes
9e32a30
 
8a4876a
191ea97
9e32a30
83901f1
 
8a4876a
 
83901f1
9e32a30
e95f622
9e32a30
83901f1
 
9e32a30
83901f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebbdd8
83901f1
ced00ea
83901f1
 
 
 
 
 
191ea97
83901f1
 
 
0ebbdd8
83901f1
191ea97
83901f1
 
 
 
 
e95f622
8a4876a
9e32a30
8a4876a
f50d2cc
 
8a4876a
f50d2cc
8a4876a
 
9e32a30
 
83901f1
8a4876a
191ea97
9e32a30
191ea97
83901f1
191ea97
 
8a4876a
 
191ea97
 
8a4876a
 
191ea97
 
 
83901f1
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
111ab69
 
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
 
191ea97
9e32a30
191ea97
83901f1
9e32a30
 
 
191ea97
9e32a30
 
 
 
83901f1
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
9e32a30
 
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
191ea97
9e32a30
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
 
de1cca8
191ea97
 
 
9e32a30
 
191ea97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image

import cv2
import torch
import spaces

def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-scribble-sdxl-1.0",
    torch_dtype=torch.float16
)

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "yodayo-ai/holodayo-xl-2.1",
    controlnet=controlnet,
    vae=vae,
    torch_dtype=torch.float16,
)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

@spaces.GPU
def infer(image: PIL.Image.Image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps) -> PIL.Image.Image:

    width, height  = image['composite'].size
    ratio = np.sqrt(1024. * 1024. / (width * height))
    new_width, new_height = int(width * ratio), int(height * ratio)
    image = image['composite'].resize((new_width, new_height))

    print(image)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    controlnet_img = image

    generator = torch.Generator().manual_seed(seed)

    output_image = pipe(
        prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
        negative_prompt=negative_prompt,
        image=image,
        controlnet_conditioning_scale=1.0,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=new_width,
        height=new_height,
        generator=generator
    ).images[0]

    return output_image

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Text-to-Image Demo
        using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(lambda x: None, inputs=None, outputs=result).then(
        fn=infer,
        inputs=[image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()