File size: 5,836 Bytes
9e32a30
 
8a4876a
191ea97
9e32a30
9f5c507
83901f1
2ae2578
8a4876a
83901f1
9e32a30
e95f622
9e32a30
83901f1
 
0ebbdd8
83901f1
55f1281
 
 
 
 
83901f1
 
 
 
9f5c507
 
 
 
 
 
 
191ea97
83901f1
 
0ebbdd8
83901f1
191ea97
83901f1
 
 
 
 
2ae2578
e95f622
738703f
 
eadb51f
738703f
0d6069a
738703f
9f5c507
 
 
 
 
 
9e32a30
 
 
83901f1
9e32a30
191ea97
eadb51f
9f5c507
 
 
 
 
 
 
 
 
 
 
eadb51f
 
 
 
 
 
 
 
 
 
 
191ea97
83901f1
9e32a30
eadb51f
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
111ab69
 
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
 
191ea97
9e32a30
191ea97
738703f
9e32a30
 
0d6069a
7c0e7d7
9e32a30
191ea97
9e32a30
 
 
 
83901f1
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
9e32a30
 
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
191ea97
9e32a30
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
 
0d6069a
191ea97
738703f
 
191ea97
9e32a30
 
b657258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
#from diffusers.utils import load_image

import cv2
import torch
import spaces


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

controlnet = ControlNetModel.from_pretrained(
    #"2vXpSwA7/test_controlnet2/CN-anytest_v4-marged_am_dim256.safetensors",
    "xinsir/controlnet-scribble-sdxl-1.0",
    torch_dtype=torch.float16
    #from_tf=False,  
    #variant="safetensors"
)

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

#pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
#    "yodayo-ai/holodayo-xl-2.1",
#    controlnet=controlnet,
#    vae=vae,
#    torch_dtype=torch.float16,
#)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "yodayo-ai/holodayo-xl-2.1",
    vae=vae,
    torch_dtype=torch.float16,
)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

    
@spaces.GPU
#def infer(use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, image: PIL.Image.Image = None) -> PIL.Image.Image:
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    # Check if the input image is a valid PIL Image and is not empty
    use_image = False
    #image = None
    
    #if use_image :# and image is not None :
    #    width, height = image['composite'].size
    #    ratio = np.sqrt(1024. * 1024. / (width * height))
    #    new_width, new_height = int(width * ratio), int(height * ratio)
    #    image = image['composite'].resize((new_width, new_height))
    #    print(image)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if use_image:
        #output_image = pipe(
        #    prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
        #    negative_prompt=negative_prompt,
        #    image=image,
        #    controlnet_conditioning_scale=1.0,
        #    guidance_scale=guidance_scale,
        #    num_inference_steps=num_inference_steps,
        #    width=new_width,
        #    height=new_height,
        #    generator=generator
        #).images[0]
    else:
        # If no valid image is provided, generate an image based only on the text prompt
        output_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator
        ).images[0]

    return output_image


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Text-to-Image Demo
        using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        #image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
        result = gr.Image(label="Result", show_label=False)

        #use_image = gr.Checkbox(label="Use image", value=True)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(#lambda x: None, inputs=None, outputs=result).then(
        fn=infer,
        #inputs=[use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,image],
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch(show_error=True)