File size: 5,836 Bytes
9e32a30 8a4876a 191ea97 9e32a30 9f5c507 83901f1 2ae2578 8a4876a 83901f1 9e32a30 e95f622 9e32a30 83901f1 0ebbdd8 83901f1 55f1281 83901f1 9f5c507 191ea97 83901f1 0ebbdd8 83901f1 191ea97 83901f1 2ae2578 e95f622 738703f eadb51f 738703f 0d6069a 738703f 9f5c507 9e32a30 83901f1 9e32a30 191ea97 eadb51f 9f5c507 eadb51f 191ea97 83901f1 9e32a30 eadb51f 191ea97 9e32a30 191ea97 9e32a30 191ea97 111ab69 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 738703f 9e32a30 0d6069a 7c0e7d7 9e32a30 191ea97 9e32a30 83901f1 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 9e32a30 8a4876a 9e32a30 191ea97 9e32a30 8a4876a 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 0d6069a 191ea97 738703f 191ea97 9e32a30 b657258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
#from diffusers.utils import load_image
import cv2
import torch
import spaces
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
controlnet = ControlNetModel.from_pretrained(
#"2vXpSwA7/test_controlnet2/CN-anytest_v4-marged_am_dim256.safetensors",
"xinsir/controlnet-scribble-sdxl-1.0",
torch_dtype=torch.float16
#from_tf=False,
#variant="safetensors"
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
#pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
# "yodayo-ai/holodayo-xl-2.1",
# controlnet=controlnet,
# vae=vae,
# torch_dtype=torch.float16,
#)
pipe = StableDiffusionXLPipeline.from_pretrained(
"yodayo-ai/holodayo-xl-2.1",
vae=vae,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
#def infer(use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, image: PIL.Image.Image = None) -> PIL.Image.Image:
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# Check if the input image is a valid PIL Image and is not empty
use_image = False
#image = None
#if use_image :# and image is not None :
# width, height = image['composite'].size
# ratio = np.sqrt(1024. * 1024. / (width * height))
# new_width, new_height = int(width * ratio), int(height * ratio)
# image = image['composite'].resize((new_width, new_height))
# print(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if use_image:
#output_image = pipe(
# prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
# negative_prompt=negative_prompt,
# image=image,
# controlnet_conditioning_scale=1.0,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=new_width,
# height=new_height,
# generator=generator
#).images[0]
else:
# If no valid image is provided, generate an image based only on the text prompt
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Text-to-Image Demo
using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
#image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
result = gr.Image(label="Result", show_label=False)
#use_image = gr.Checkbox(label="Use image", value=True)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,#832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,#1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(#lambda x: None, inputs=None, outputs=result).then(
fn=infer,
#inputs=[use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,image],
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch(show_error=True)
|