File size: 5,186 Bytes
9e32a30 191ea97 9e32a30 83901f1 9e32a30 e95f622 9e32a30 83901f1 9e32a30 83901f1 0ebbdd8 83901f1 ced00ea 83901f1 191ea97 83901f1 0ebbdd8 83901f1 191ea97 83901f1 e95f622 191ea97 9e32a30 191ea97 f50d2cc 191ea97 f50d2cc 9e32a30 83901f1 191ea97 83901f1 191ea97 9e32a30 191ea97 83901f1 191ea97 83901f1 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 111ab69 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 83901f1 9e32a30 191ea97 9e32a30 83901f1 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 191ea97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import cv2
import torch
import spaces
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
controlnet = ControlNetModel.from_pretrained(
"xinsir/controlnet-scribble-sdxl-1.0",
torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"yodayo-ai/holodayo-xl-2.1",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(image: Image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps) -> Image:
width, height = image.size
ratio = np.sqrt(1024. * 1024. / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
image = image.resize((new_width, new_height))
if randomize_seed:
seed = random.randint(0, MAX_SEED)
controlnet_img = np.array(image)
controlnet_img = nms(controlnet_img, 127, 3)
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
controlnet_img[controlnet_img > random_val] = 255
controlnet_img[controlnet_img < 255] = 0
image = Image.fromarray(controlnet_img)
generator = torch.Generator().manual_seed(seed)
output_image = pipe(
prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Text-to-Image Demo
using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|