Spaces:
Sleeping
Sleeping
File size: 4,879 Bytes
acc1c62 6598a12 d18aa6e acc1c62 9513354 e8136b2 acc1c62 6598a12 acc1c62 9c9bf1a 3ab73a4 6598a12 acc1c62 b932aaf 9f1b256 acc1c62 9f1b256 acc1c62 6598a12 9c9bf1a acc1c62 d18aa6e acc1c62 d18aa6e acc1c62 b0a2f69 d18aa6e acc1c62 d18aa6e b6c1514 6598a12 b6c1514 d18aa6e acc1c62 d18aa6e acc1c62 d18aa6e acc1c62 6598a12 9f1b256 6598a12 9f1b256 acc1c62 d18aa6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import transformers
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import matplotlib.pyplot as plt
import sys
import csv
csv.field_size_limit(sys.maxsize)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024")
model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024")
# Build a pipeline object for predictions
pred = transformers.pipeline("text-classification", model=model,
tokenizer=tokenizer, return_all_scores=True)
explainer = shap.Explainer(pred)
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
#
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach()
scores = torch.nn.functional.softmax(scores)
shap_values = explainer([str(x).lower()])
local_plot = shap.plots.text(shap_values[0], display=False)
res = ner_pipe(x)
entity_colors = {
'Severity': '#E63946', # a vivid red
'Sign_symptom': '#2A9D8F', # a deep teal
'Medication': '#457B9D', # a dusky blue
'Age': '#F4A261', # a sandy orange
'Sex': '#F4A261', # same sandy orange for consistency with 'Age'
'Diagnostic_procedure': '#9C6644', # a brown
'Biological_structure': '#BDB2FF', # a light pastel purple
}
htext = ""
prev_end = 0
for entity in res:
start = entity['start']
end = entity['end']
word = entity['word'].replace("##", "")
color = entity_colors[entity['entity_group']]
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
prev_end = end
htext += x[prev_end:]
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, htext
def main(prob1):
text = str(prob1).lower()
obj = adr_predict(text)
return obj[0], obj[1], obj[2]
title = "Welcome to **ADR Tracker**"
description1 = "This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medications. Please do NOT use for medical diagnosis."
css = """
body { font-family: 'Roboto', sans-serif; background-color: #333; color: #87CEEB; }
h1, h2, h3, h4, h5, h6, p, label, .markdown { color: #87CEEB; } /* Ensuring that all text elements are consistently light blue */
.textbox { width: 100%; border-radius: 10px; border: 1px solid #ccc; background-color: white; color: black; }
.button { background-color: #FF6347; color: white; border: none; border-radius: 10px; padding: 10px 20px; cursor: pointer; }
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("---")
prob1 = gr.Textbox(label="Enter Your Text Here:", lines=2, placeholder="Type it here...")
submit_btn = gr.Button("Analyze")
with gr.Row():
with gr.Column(visible=True):
label = gr.Label(label="Predicted Label")
with gr.Column(visible=True):
local_plot = gr.HTML(label='Shap:')
htext = gr.HTML(label="NER")
submit_btn.click(
main,
[prob1],
[label, local_plot, htext],
api_name="adr"
)
gr.Markdown("### Legend")
legend = gr.HTML(value="<div style='margin-top: 20px;'><strong>Legend:</strong><br>" +
"<mark style='background-color:#E63946;'>Severity</mark> " +
"<mark style='background-color:#2A9D8F;'>Sign/Symptom</mark> " +
"<mark style='background-color:#457B9D;'>Medication</mark> " +
"<mark style='background-color:#F4A261;'>Age/Sex</mark> " +
"<mark style='background-color:#9C6644;'>Diagnostic Procedure</mark> " +
"<mark style='background-color:#BDB2FF;'>Biological Structure</mark></div>")
gr.Row([legend])
with gr.Row():
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
[prob1], [label, local_plot, htext], main, cache_examples=True)
|