jschwaller commited on
Commit
d18aa6e
·
verified ·
1 Parent(s): b932aaf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -67
app.py CHANGED
@@ -6,10 +6,7 @@ import scipy as sp
6
  import torch
7
  import transformers
8
  from transformers import pipeline
9
- from transformers import RobertaTokenizer, RobertaModel
10
- from transformers import AutoModelForSequenceClassification
11
- from transformers import TFAutoModelForSequenceClassification
12
- from transformers import AutoTokenizer, AutoModelForTokenClassification
13
 
14
  import matplotlib.pyplot as plt
15
  import sys
@@ -22,30 +19,15 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
22
  tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024")
23
  model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024")
24
 
25
- # build a pipeline object to do predictions
26
  pred = transformers.pipeline("text-classification", model=model,
27
  tokenizer=tokenizer, return_all_scores=True)
28
 
29
  explainer = shap.Explainer(pred)
30
 
31
- ##
32
- # classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
33
-
34
- # def med_score(x):
35
- # label = x['label']
36
- # score_1 = x['score']
37
- # return round(score_1,3)
38
-
39
- # def sym_score(x):
40
- # label2sym= x['label']
41
- # score_1sym = x['score']
42
- # return round(score_1sym,3)
43
-
44
  ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
45
  ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
46
-
47
- ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
48
- #
49
 
50
  def adr_predict(x):
51
  encoded_input = tokenizer(x, return_tensors='pt')
@@ -54,31 +36,21 @@ def adr_predict(x):
54
  scores = torch.nn.functional.softmax(scores)
55
 
56
  shap_values = explainer([str(x).lower()])
57
- # # Find the index of the class you want as the default reference (e.g., 'label_1')
58
- # label_1_index = np.where(np.array(explainer.output_names) == 'label_1')[0][0]
59
-
60
- # # Plot the SHAP values for a specific instance in your dataset (e.g., instance 0)
61
- # shap.plots.text(shap_values[label_1_index][0])
62
-
63
  local_plot = shap.plots.text(shap_values[0], display=False)
64
 
65
- # med = med_score(classifier(x+str(", There is a medication."))[0])
66
- # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
67
-
68
  res = ner_pipe(x)
69
-
70
  entity_colors = {
71
- 'Severity': 'red',
72
- 'Sign_symptom': 'green',
73
- 'Medication': 'lightblue',
74
- 'Age': 'yellow',
75
- 'Sex':'yellow',
76
- 'Diagnostic_procedure':'gray',
77
- 'Biological_structure':'silver'}
 
78
 
79
  htext = ""
80
  prev_end = 0
81
-
82
  for entity in res:
83
  start = entity['start']
84
  end = entity['end']
@@ -87,55 +59,50 @@ def adr_predict(x):
87
 
88
  htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
89
  prev_end = end
90
-
91
  htext += x[prev_end:]
92
 
93
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
94
- # ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
95
-
96
 
97
  def main(prob1):
98
  text = str(prob1).lower()
99
  obj = adr_predict(text)
100
- return obj[0],obj[1],obj[2]
101
 
102
  title = "Welcome to **ADR Detector** 🪐"
103
- description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
104
 
105
- with gr.Blocks(title=title) as demo:
 
 
 
 
 
 
 
106
  gr.Markdown(f"## {title}")
107
  gr.Markdown(description1)
108
- gr.Markdown("""---""")
109
- prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
110
  submit_btn = gr.Button("Analyze")
111
 
112
  with gr.Row():
113
-
114
- with gr.Column(visible=True) as output_col:
115
- label = gr.Label(label = "Predicted Label")
116
-
117
-
118
- with gr.Column(visible=True) as output_col:
119
- local_plot = gr.HTML(label = 'Shap:')
120
  htext = gr.HTML(label="NER")
121
- # med = gr.Label(label = "Contains Medication")
122
- # sym = gr.Label(label = "Contains Symptoms")
123
-
124
  submit_btn.click(
125
  main,
126
  [prob1],
127
- [label
128
- ,local_plot, htext
129
- # , med, sym
130
- ], api_name="adr"
131
  )
132
 
133
  with gr.Row():
134
  gr.Markdown("### Click on any of the examples below to see how it works:")
135
  gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
136
  ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
137
- [prob1], [label,local_plot, htext
138
- # , med, sym
139
- ], main, cache_examples=True)
140
-
141
- demo.launch()
 
6
  import torch
7
  import transformers
8
  from transformers import pipeline
9
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
 
 
 
10
 
11
  import matplotlib.pyplot as plt
12
  import sys
 
19
  tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024")
20
  model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024")
21
 
22
+ # Build a pipeline object for predictions
23
  pred = transformers.pipeline("text-classification", model=model,
24
  tokenizer=tokenizer, return_all_scores=True)
25
 
26
  explainer = shap.Explainer(pred)
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
29
  ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
30
+ ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
 
 
31
 
32
  def adr_predict(x):
33
  encoded_input = tokenizer(x, return_tensors='pt')
 
36
  scores = torch.nn.functional.softmax(scores)
37
 
38
  shap_values = explainer([str(x).lower()])
 
 
 
 
 
 
39
  local_plot = shap.plots.text(shap_values[0], display=False)
40
 
 
 
 
41
  res = ner_pipe(x)
 
42
  entity_colors = {
43
+ 'Severity': 'red',
44
+ 'Sign_symptom': 'green',
45
+ 'Medication': 'lightblue',
46
+ 'Age': 'yellow',
47
+ 'Sex': 'yellow',
48
+ 'Diagnostic_procedure': 'gray',
49
+ 'Biological_structure': 'silver'
50
+ }
51
 
52
  htext = ""
53
  prev_end = 0
 
54
  for entity in res:
55
  start = entity['start']
56
  end = entity['end']
 
59
 
60
  htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
61
  prev_end = end
 
62
  htext += x[prev_end:]
63
 
64
+ return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, htext
 
 
65
 
66
  def main(prob1):
67
  text = str(prob1).lower()
68
  obj = adr_predict(text)
69
+ return obj[0], obj[1], obj[2]
70
 
71
  title = "Welcome to **ADR Detector** 🪐"
72
+ description1 = "This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medications. Please do NOT use for medical diagnosis."
73
 
74
+ css = """
75
+ body { font-family: 'Roboto', sans-serif; background-color: #fafafa; color: #333; }
76
+ h1, h2, h3, h4, h5, h6 { color: #ff6347; }
77
+ .textbox { width: 100%; border-radius: 10px; border: 1px solid #ccc; }
78
+ .button { background-color: #ff6347; color: white; border: none; border-radius: 10px; padding: 10px 20px; cursor: pointer; }
79
+ """
80
+
81
+ with gr.Blocks(css=css) as demo:
82
  gr.Markdown(f"## {title}")
83
  gr.Markdown(description1)
84
+ gr.Markdown("---")
85
+ prob1 = gr.Textbox(label="Enter Your Text Here:", lines=2, placeholder="Type it here...")
86
  submit_btn = gr.Button("Analyze")
87
 
88
  with gr.Row():
89
+ with gr.Column(visible=True):
90
+ label = gr.Label(label="Predicted Label")
91
+ with gr.Column(visible=True):
92
+ local_plot = gr.HTML(label='Shap:')
 
 
 
93
  htext = gr.HTML(label="NER")
94
+
 
 
95
  submit_btn.click(
96
  main,
97
  [prob1],
98
+ [label, local_plot, htext],
99
+ api_name="adr"
 
 
100
  )
101
 
102
  with gr.Row():
103
  gr.Markdown("### Click on any of the examples below to see how it works:")
104
  gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
105
  ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
106
+ [prob1], [label, local_plot, htext], main, cache_examples=True)
107
+
108
+ demo.launch()