Spaces:
Sleeping
Sleeping
jschwaller
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import numpy as np
|
|
5 |
import scipy as sp
|
6 |
import torch
|
7 |
import transformers
|
8 |
-
from transformers import pipeline
|
9 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
10 |
|
11 |
import matplotlib.pyplot as plt
|
@@ -19,45 +18,33 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024")
|
20 |
model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024")
|
21 |
|
22 |
-
|
23 |
-
pred = transformers.pipeline("text-classification", model=model,
|
24 |
-
tokenizer=tokenizer, return_all_scores=True)
|
25 |
|
26 |
explainer = shap.Explainer(pred)
|
27 |
|
28 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
29 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
30 |
|
31 |
-
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
|
32 |
-
|
33 |
-
# fixing the colors
|
34 |
-
# Create a custom color map
|
35 |
-
cmap = {'0': '#457B9D', # Non-severe reactions in blue
|
36 |
-
'1': '#E63946'} # Severe reactions in red
|
37 |
-
|
38 |
|
39 |
def adr_predict(x):
|
40 |
encoded_input = tokenizer(x, return_tensors='pt')
|
41 |
output = model(**encoded_input)
|
42 |
scores = output[0][0].detach()
|
43 |
scores = torch.nn.functional.softmax(scores)
|
44 |
-
|
45 |
-
# Generate SHAP values and use the custom color map
|
46 |
shap_values = explainer([str(x).lower()])
|
47 |
-
|
48 |
-
# Ensure the color depends on the output class; customize as needed
|
49 |
-
base_colors = {label: cmap[str(label)] for label in range(len(scores))}
|
50 |
-
shap.plots.text(shap_values[0], color=base_colors, display=False)
|
51 |
|
52 |
res = ner_pipe(x)
|
53 |
entity_colors = {
|
54 |
-
'Severity': '#E63946',
|
55 |
-
'Sign_symptom': '#2A9D8F',
|
56 |
-
'Medication': '#457B9D',
|
57 |
-
'Age': '#F4A261',
|
58 |
-
'Sex': '#F4A261',
|
59 |
-
'Diagnostic_procedure': '#9C6644',
|
60 |
-
'Biological_structure': '#BDB2FF',
|
61 |
}
|
62 |
|
63 |
htext = ""
|
@@ -84,7 +71,7 @@ description1 = "This app takes text (up to a few sentences) and predicts to what
|
|
84 |
|
85 |
css = """
|
86 |
body { font-family: 'Roboto', sans-serif; background-color: #333; color: #87CEEB; }
|
87 |
-
h1, h2, h3, h4, h5, h6, p, label, .markdown { color: #87CEEB; }
|
88 |
.textbox { width: 100%; border-radius: 10px; border: 1px solid #ccc; background-color: white; color: black; }
|
89 |
.button { background-color: #FF6347; color: white; border: none; border-radius: 10px; padding: 10px 20px; cursor: pointer; }
|
90 |
"""
|
@@ -102,7 +89,14 @@ with gr.Blocks(css=css) as demo:
|
|
102 |
with gr.Column(visible=True):
|
103 |
local_plot = gr.HTML(label='Shap:')
|
104 |
htext = gr.HTML(label="NER")
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
submit_btn.click(
|
107 |
main,
|
108 |
[prob1],
|
@@ -110,6 +104,8 @@ with gr.Blocks(css=css) as demo:
|
|
110 |
api_name="adr"
|
111 |
)
|
112 |
|
|
|
|
|
113 |
with gr.Row():
|
114 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
115 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
|
|
5 |
import scipy as sp
|
6 |
import torch
|
7 |
import transformers
|
|
|
8 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
9 |
|
10 |
import matplotlib.pyplot as plt
|
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024")
|
19 |
model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024")
|
20 |
|
21 |
+
pred = transformers.pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True)
|
|
|
|
|
22 |
|
23 |
explainer = shap.Explainer(pred)
|
24 |
|
25 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
26 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
27 |
|
28 |
+
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def adr_predict(x):
|
31 |
encoded_input = tokenizer(x, return_tensors='pt')
|
32 |
output = model(**encoded_input)
|
33 |
scores = output[0][0].detach()
|
34 |
scores = torch.nn.functional.softmax(scores)
|
35 |
+
|
|
|
36 |
shap_values = explainer([str(x).lower()])
|
37 |
+
local_plot = shap.plots.text(shap_values[0], display=False)
|
|
|
|
|
|
|
38 |
|
39 |
res = ner_pipe(x)
|
40 |
entity_colors = {
|
41 |
+
'Severity': '#E63946',
|
42 |
+
'Sign_symptom': '#2A9D8F',
|
43 |
+
'Medication': '#457B9D',
|
44 |
+
'Age': '#F4A261',
|
45 |
+
'Sex': '#F4A261',
|
46 |
+
'Diagnostic_procedure': '#9C6644',
|
47 |
+
'Biological_structure': '#BDB2FF',
|
48 |
}
|
49 |
|
50 |
htext = ""
|
|
|
71 |
|
72 |
css = """
|
73 |
body { font-family: 'Roboto', sans-serif; background-color: #333; color: #87CEEB; }
|
74 |
+
h1, h2, h3, h4, h5, h6, p, label, .markdown { color: #87CEEB; }
|
75 |
.textbox { width: 100%; border-radius: 10px; border: 1px solid #ccc; background-color: white; color: black; }
|
76 |
.button { background-color: #FF6347; color: white; border: none; border-radius: 10px; padding: 10px 20px; cursor: pointer; }
|
77 |
"""
|
|
|
89 |
with gr.Column(visible=True):
|
90 |
local_plot = gr.HTML(label='Shap:')
|
91 |
htext = gr.HTML(label="NER")
|
92 |
+
|
93 |
+
legend = gr.HTML(value="<div style='margin-top: 20px;'><strong>Legend:</strong><br>" +
|
94 |
+
"<mark style='background-color:#E63946;'>Severity</mark> " +
|
95 |
+
"<mark style='background-color:#2A9D8F;'>Sign/Symptom</mark> " +
|
96 |
+
"<mark style='background-color:#457B9D;'>Medication</mark> " +
|
97 |
+
"<mark style='background-color:#F4A261;'>Age/Sex</mark> " +
|
98 |
+
"<mark style='background-color:#9C6644;'>Diagnostic Procedure</mark> " +
|
99 |
+
"<mark style='background-color:#BDB2FF;'>Biological Structure</mark></div>")
|
100 |
submit_btn.click(
|
101 |
main,
|
102 |
[prob1],
|
|
|
104 |
api_name="adr"
|
105 |
)
|
106 |
|
107 |
+
gr.Row([legend])
|
108 |
+
|
109 |
with gr.Row():
|
110 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
111 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|