Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -29,16 +29,25 @@ ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
|
29 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
30 |
|
31 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def adr_predict(x):
|
35 |
encoded_input = tokenizer(x, return_tensors='pt')
|
36 |
output = model(**encoded_input)
|
37 |
scores = output[0][0].detach()
|
38 |
scores = torch.nn.functional.softmax(scores)
|
39 |
-
|
|
|
40 |
shap_values = explainer([str(x).lower()])
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
res = ner_pipe(x)
|
44 |
entity_colors = {
|
|
|
29 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
30 |
|
31 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
32 |
+
|
33 |
+
# fixing the colors
|
34 |
+
# Create a custom color map
|
35 |
+
cmap = {'0': '#457B9D', # Non-severe reactions in blue
|
36 |
+
'1': '#E63946'} # Severe reactions in red
|
37 |
+
|
38 |
|
39 |
def adr_predict(x):
|
40 |
encoded_input = tokenizer(x, return_tensors='pt')
|
41 |
output = model(**encoded_input)
|
42 |
scores = output[0][0].detach()
|
43 |
scores = torch.nn.functional.softmax(scores)
|
44 |
+
|
45 |
+
# Generate SHAP values and use the custom color map
|
46 |
shap_values = explainer([str(x).lower()])
|
47 |
+
|
48 |
+
# Ensure the color depends on the output class; customize as needed
|
49 |
+
base_colors = {label: cmap[str(label)] for label in range(len(scores))}
|
50 |
+
shap.plots.text(shap_values[0], color=base_colors, display=False)
|
51 |
|
52 |
res = ner_pipe(x)
|
53 |
entity_colors = {
|