jschwaller commited on
Commit
9c9bf1a
·
verified ·
1 Parent(s): 3ab73a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -25,10 +25,11 @@ pred = transformers.pipeline("text-classification", model=model,
25
 
26
  explainer = shap.Explainer(pred)
27
 
28
- ner_tokenizer = AutoTokenizer.from_pretrained("Clinical-AI-Apollo/Medical-NER")
29
- ner_model = AutoModelForTokenClassification.from_pretrained("Clinical-AI-Apollo/Medical-NER")
30
 
31
  ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
 
32
 
33
  def adr_predict(x):
34
  encoded_input = tokenizer(x, return_tensors='pt')
@@ -41,14 +42,14 @@ def adr_predict(x):
41
 
42
  res = ner_pipe(x)
43
  entity_colors = {
44
- 'Severity': 'red',
45
- 'Sign_symptom': 'green',
46
- 'Medication': 'lightblue',
47
- 'Age': 'yellow',
48
- 'Sex': 'yellow',
49
- 'Diagnostic_procedure': 'gray',
50
- 'Biological_structure': 'silver'
51
- }
52
 
53
  htext = ""
54
  prev_end = 0
 
25
 
26
  explainer = shap.Explainer(pred)
27
 
28
+ ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
29
+ ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
30
 
31
  ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
32
+ #
33
 
34
  def adr_predict(x):
35
  encoded_input = tokenizer(x, return_tensors='pt')
 
42
 
43
  res = ner_pipe(x)
44
  entity_colors = {
45
+ 'Severity': '#E63946', # a vivid red
46
+ 'Sign_symptom': '#2A9D8F', # a deep teal
47
+ 'Medication': '#457B9D', # a dusky blue
48
+ 'Age': '#F4A261', # a sandy orange
49
+ 'Sex': '#F4A261', # same sandy orange for consistency with 'Age'
50
+ 'Diagnostic_procedure': '#9C6644', # a brown
51
+ 'Biological_structure': '#BDB2FF', # a light pastel purple
52
+ }
53
 
54
  htext = ""
55
  prev_end = 0