metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3560698
- loss:ModifiedMatryoshkaLoss
base_model: google-bert/bert-base-multilingual-cased
widget:
- source_sentence: And then finally, turn it back to the real world.
sentences:
- Y luego, finalmente, devolver eso al mundo real.
- Parece que el único rasgo que sobrevive a la decapitación es la vanidad.
- y yo digo que no estoy seguro. Voy a pensarlo a groso modo.
- source_sentence: Figure out some of the other options that are much better.
sentences:
- Piensen en otras de las opciones que son mucho mejores.
- >-
Éste solía ser un tema bipartidista, y sé que en este grupo realmente lo
es.
- >-
El acuerdo general de paz para Sudán firmado en 2005 resultó ser menos
amplio que lo previsto, y sus disposiciones aún podrían engendrar un
retorno a gran escala de la guerra entre el norte y el sur.
- source_sentence: >-
The call to action I offer today -- my TED wish -- is this: Honor the
treaties.
sentences:
- Esta es la intersección más directa, obvia, de las dos cosas.
- >-
El llamado a la acción que propongo hoy, mi TED Wish, es el siguiente:
Honrar los tratados.
- >-
Los restaurantes del condado se pueden contar con los dedos de una
mano... Barbacoa Bunn es mi favorito.
- source_sentence: So for us, this was a graphic public campaign called Connect Bertie.
sentences:
- Para nosotros esto era una campaña gráfica llamada Conecta a Bertie.
- >-
En cambio, los líderes locales se comprometieron a revisarlos más
adelante.
- Con el tiempo, la gente hace lo que se le paga por hacer.
- source_sentence: >-
And in the audio world that's when the microphone gets too close to its
sound source, and then it gets in this self-destructive loop that creates
a very unpleasant sound.
sentences:
- Esta es una mina de Zimbabwe en este momento.
- Estábamos en la I-40.
- >-
Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a
su fuente de sonido, y entra en este bucle autodestructivo que crea un
sonido muy desagradable.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en es
type: MSE-val-en-es
metrics:
- type: negative_mse
value: -29.5114666223526
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en pt
type: MSE-val-en-pt
metrics:
- type: negative_mse
value: -29.913604259490967
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en pt br
type: MSE-val-en-pt-br
metrics:
- type: negative_mse
value: -27.732226252555847
name: Negative Mse
SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/TriLingual-BERT-Distil")
# Run inference
sentences = [
"And in the audio world that's when the microphone gets too close to its sound source, and then it gets in this self-destructive loop that creates a very unpleasant sound.",
'Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.',
'Esta es una mina de Zimbabwe en este momento.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-es
,MSE-val-en-pt
andMSE-val-en-pt-br
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
---|---|---|---|
negative_mse | -29.5115 | -29.9136 | -27.7322 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,560,698 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.46 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 26.67 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.
Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.
[-0.04180986061692238, 0.12620249390602112, -0.14501447975635529, 0.09695684909820557, -0.10850819200277328, ...]
One thing I often ask about is ancient Greek and how this relates.
Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.
[0.0034368489868938923, -0.02741478756070137, -0.09426739811897278, 0.04873204976320267, -0.008266829885542393, ...]
See, the thing we're doing right now is we're forcing people to learn mathematics.
Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.
[-0.05048828944563866, 0.2713043689727783, 0.024581076577305794, -0.07316197454929352, -0.044288791716098785, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 6,974 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.68 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 27.31 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label Thank you so much, Chris.
Muchas gracias Chris.
[-0.1432434469461441, -0.10335833579301834, -0.07549277693033218, -0.1542435735464096, 0.009247343055903912, ...]
And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.
Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.
[0.02740730345249176, -0.0601208470761776, -0.023767368867993355, 0.02245006151497364, 0.007412586361169815, ...]
I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.
He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.
[-0.09117366373538971, 0.08627621084451675, -0.05912208557128906, -0.007647979073226452, 0.0008422975661233068, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 200per_device_eval_batch_size
: 200learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truelabel_names
: ['label']
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 200per_device_eval_batch_size
: 200per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: ['label']load_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
---|---|---|---|---|---|---|
0.0562 | 1000 | 0.0626 | 0.0513 | -21.2968 | -20.7534 | -24.2460 |
0.1123 | 2000 | 0.0478 | 0.0432 | -22.1192 | -21.8663 | -23.2775 |
0.1685 | 3000 | 0.0423 | 0.0391 | -21.6697 | -21.5869 | -21.6856 |
0.0562 | 1000 | 0.0396 | 0.0376 | -21.7666 | -21.7181 | -21.6779 |
0.1123 | 2000 | 0.0381 | 0.0358 | -23.4969 | -23.5022 | -22.9817 |
0.1685 | 3000 | 0.0362 | 0.0339 | -24.7639 | -24.8878 | -23.8888 |
0.2247 | 4000 | 0.0347 | 0.0323 | -26.5721 | -26.7422 | -25.4072 |
0.2808 | 5000 | 0.0332 | 0.0310 | -27.6024 | -27.8268 | -26.4132 |
0.3370 | 6000 | 0.0321 | 0.0299 | -27.7974 | -28.0294 | -26.6213 |
0.3932 | 7000 | 0.0312 | 0.0292 | -28.2719 | -28.4834 | -27.0468 |
0.4493 | 8000 | 0.0305 | 0.0285 | -28.2561 | -28.5574 | -26.8752 |
0.5055 | 9000 | 0.0299 | 0.0280 | -28.6342 | -28.9112 | -27.2933 |
0.5617 | 10000 | 0.0294 | 0.0275 | -28.5512 | -28.8469 | -27.1072 |
0.6178 | 11000 | 0.029 | 0.0271 | -28.6788 | -28.9608 | -27.2056 |
0.6740 | 12000 | 0.0286 | 0.0267 | -29.0159 | -29.3281 | -27.4770 |
0.7302 | 13000 | 0.0283 | 0.0264 | -28.9224 | -29.2461 | -27.3500 |
0.7863 | 14000 | 0.028 | 0.0261 | -29.1044 | -29.4303 | -27.4377 |
0.8425 | 15000 | 0.0277 | 0.0259 | -29.2340 | -29.5758 | -27.6223 |
0.8987 | 16000 | 0.0275 | 0.0257 | -29.1356 | -29.4699 | -27.4667 |
0.9548 | 17000 | 0.0273 | 0.0255 | -29.3281 | -29.6671 | -27.7174 |
1.0110 | 18000 | 0.0271 | 0.0253 | -29.2991 | -29.6635 | -27.6675 |
1.0672 | 19000 | 0.0268 | 0.0251 | -29.3581 | -29.7326 | -27.6587 |
1.1233 | 20000 | 0.0266 | 0.0250 | -29.4233 | -29.7941 | -27.7913 |
1.1795 | 21000 | 0.0265 | 0.0248 | -29.3941 | -29.7583 | -27.6951 |
1.2357 | 22000 | 0.0264 | 0.0247 | -29.5963 | -29.9737 | -27.9191 |
1.2918 | 23000 | 0.0262 | 0.0245 | -29.4587 | -29.8472 | -27.7702 |
1.3480 | 24000 | 0.0262 | 0.0244 | -29.4977 | -29.8868 | -27.8142 |
1.4042 | 25000 | 0.026 | 0.0244 | -29.5356 | -29.9184 | -27.8426 |
1.4603 | 26000 | 0.0259 | 0.0243 | -29.5614 | -29.9388 | -27.8360 |
1.5165 | 27000 | 0.0259 | 0.0242 | -29.5362 | -29.9353 | -27.8223 |
1.5727 | 28000 | 0.0258 | 0.0241 | -29.5088 | -29.9043 | -27.7884 |
1.6288 | 29000 | 0.0258 | 0.0241 | -29.4550 | -29.8543 | -27.6788 |
1.6850 | 30000 | 0.0257 | 0.0240 | -29.5373 | -29.9282 | -27.7855 |
1.7412 | 31000 | 0.0256 | 0.0239 | -29.5195 | -29.9096 | -27.7866 |
1.7973 | 32000 | 0.0256 | 0.0239 | -29.5292 | -29.9266 | -27.7579 |
1.8535 | 33000 | 0.0256 | 0.0239 | -29.5202 | -29.9196 | -27.7408 |
1.9097 | 34000 | 0.0255 | 0.0239 | -29.5090 | -29.9126 | -27.7311 |
1.9659 | 35000 | 0.0255 | 0.0238 | -29.5115 | -29.9136 | -27.7322 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}