SentenceTransformer based on google-bert/bert-base-multilingual-cased

This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-multilingual-cased
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/TriLingual-BERT-Distil")
# Run inference
sentences = [
    "And in the audio world that's when the microphone gets too close to its sound source, and then it gets in this self-destructive loop that creates a very unpleasant sound.",
    'Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.',
    'Esta es una mina de Zimbabwe en este momento.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

  • Datasets: MSE-val-en-es, MSE-val-en-pt and MSE-val-en-pt-br
  • Evaluated with MSEEvaluator
Metric MSE-val-en-es MSE-val-en-pt MSE-val-en-pt-br
negative_mse -29.5115 -29.9136 -27.7322

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,560,698 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 25.46 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 26.67 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number. Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos. [-0.04180986061692238, 0.12620249390602112, -0.14501447975635529, 0.09695684909820557, -0.10850819200277328, ...]
    One thing I often ask about is ancient Greek and how this relates. Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona. [0.0034368489868938923, -0.02741478756070137, -0.09426739811897278, 0.04873204976320267, -0.008266829885542393, ...]
    See, the thing we're doing right now is we're forcing people to learn mathematics. Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas. [-0.05048828944563866, 0.2713043689727783, 0.024581076577305794, -0.07316197454929352, -0.044288791716098785, ...]
  • Loss: main.ModifiedMatryoshkaLoss with these parameters:
    {
        "loss": "MSELoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 6,974 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 25.68 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 27.31 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    Thank you so much, Chris. Muchas gracias Chris. [-0.1432434469461441, -0.10335833579301834, -0.07549277693033218, -0.1542435735464096, 0.009247343055903912, ...]
    And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful. Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido. [0.02740730345249176, -0.0601208470761776, -0.023767368867993355, 0.02245006151497364, 0.007412586361169815, ...]
    I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night. He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche. [-0.09117366373538971, 0.08627621084451675, -0.05912208557128906, -0.007647979073226452, 0.0008422975661233068, ...]
  • Loss: main.ModifiedMatryoshkaLoss with these parameters:
    {
        "loss": "MSELoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 200
  • per_device_eval_batch_size: 200
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True
  • label_names: ['label']

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 200
  • per_device_eval_batch_size: 200
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: ['label']
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss MSE-val-en-es_negative_mse MSE-val-en-pt_negative_mse MSE-val-en-pt-br_negative_mse
0.0562 1000 0.0626 0.0513 -21.2968 -20.7534 -24.2460
0.1123 2000 0.0478 0.0432 -22.1192 -21.8663 -23.2775
0.1685 3000 0.0423 0.0391 -21.6697 -21.5869 -21.6856
0.0562 1000 0.0396 0.0376 -21.7666 -21.7181 -21.6779
0.1123 2000 0.0381 0.0358 -23.4969 -23.5022 -22.9817
0.1685 3000 0.0362 0.0339 -24.7639 -24.8878 -23.8888
0.2247 4000 0.0347 0.0323 -26.5721 -26.7422 -25.4072
0.2808 5000 0.0332 0.0310 -27.6024 -27.8268 -26.4132
0.3370 6000 0.0321 0.0299 -27.7974 -28.0294 -26.6213
0.3932 7000 0.0312 0.0292 -28.2719 -28.4834 -27.0468
0.4493 8000 0.0305 0.0285 -28.2561 -28.5574 -26.8752
0.5055 9000 0.0299 0.0280 -28.6342 -28.9112 -27.2933
0.5617 10000 0.0294 0.0275 -28.5512 -28.8469 -27.1072
0.6178 11000 0.029 0.0271 -28.6788 -28.9608 -27.2056
0.6740 12000 0.0286 0.0267 -29.0159 -29.3281 -27.4770
0.7302 13000 0.0283 0.0264 -28.9224 -29.2461 -27.3500
0.7863 14000 0.028 0.0261 -29.1044 -29.4303 -27.4377
0.8425 15000 0.0277 0.0259 -29.2340 -29.5758 -27.6223
0.8987 16000 0.0275 0.0257 -29.1356 -29.4699 -27.4667
0.9548 17000 0.0273 0.0255 -29.3281 -29.6671 -27.7174
1.0110 18000 0.0271 0.0253 -29.2991 -29.6635 -27.6675
1.0672 19000 0.0268 0.0251 -29.3581 -29.7326 -27.6587
1.1233 20000 0.0266 0.0250 -29.4233 -29.7941 -27.7913
1.1795 21000 0.0265 0.0248 -29.3941 -29.7583 -27.6951
1.2357 22000 0.0264 0.0247 -29.5963 -29.9737 -27.9191
1.2918 23000 0.0262 0.0245 -29.4587 -29.8472 -27.7702
1.3480 24000 0.0262 0.0244 -29.4977 -29.8868 -27.8142
1.4042 25000 0.026 0.0244 -29.5356 -29.9184 -27.8426
1.4603 26000 0.0259 0.0243 -29.5614 -29.9388 -27.8360
1.5165 27000 0.0259 0.0242 -29.5362 -29.9353 -27.8223
1.5727 28000 0.0258 0.0241 -29.5088 -29.9043 -27.7884
1.6288 29000 0.0258 0.0241 -29.4550 -29.8543 -27.6788
1.6850 30000 0.0257 0.0240 -29.5373 -29.9282 -27.7855
1.7412 31000 0.0256 0.0239 -29.5195 -29.9096 -27.7866
1.7973 32000 0.0256 0.0239 -29.5292 -29.9266 -27.7579
1.8535 33000 0.0256 0.0239 -29.5202 -29.9196 -27.7408
1.9097 34000 0.0255 0.0239 -29.5090 -29.9126 -27.7311
1.9659 35000 0.0255 0.0238 -29.5115 -29.9136 -27.7322

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
7
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for luanafelbarros/TriLingual-BERT-Distil

Finetuned
(551)
this model

Evaluation results