File size: 25,136 Bytes
777f300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3560698
- loss:ModifiedMatryoshkaLoss
base_model: google-bert/bert-base-multilingual-cased
widget:
- source_sentence: And then finally, turn it back to the real world.
  sentences:
  - Y luego, finalmente, devolver eso al mundo real.
  - Parece que el único rasgo que sobrevive a la decapitación es la vanidad.
  - y yo digo que no estoy seguro. Voy a pensarlo a groso modo.
- source_sentence: Figure out some of the other options that are much better.
  sentences:
  - Piensen en otras de las opciones que son mucho mejores.
  - Éste solía ser un tema bipartidista, y  que en este grupo realmente lo es.
  - El acuerdo general de paz para Sudán firmado en 2005 resultó ser menos amplio
    que lo previsto, y sus disposiciones aún podrían engendrar un retorno a gran escala
    de la guerra entre el norte y el sur.
- source_sentence: 'The call to action I offer today -- my TED wish -- is this: Honor
    the treaties.'
  sentences:
  - Esta es la intersección más directa, obvia, de las dos cosas.
  - 'El llamado a la acción que propongo hoy, mi TED Wish, es el siguiente: Honrar
    los tratados.'
  - Los restaurantes del condado se pueden contar con los dedos de una mano... Barbacoa
    Bunn es mi favorito.
- source_sentence: So for us, this was a graphic public campaign called Connect Bertie.
  sentences:
  - Para nosotros esto era una campaña gráfica llamada Conecta a Bertie.
  - En cambio, los líderes locales se comprometieron a revisarlos más adelante.
  - Con el tiempo, la gente hace lo que se le paga por hacer.
- source_sentence: And in the audio world that's when the microphone gets too close
    to its sound source, and then it gets in this self-destructive loop that creates
    a very unpleasant sound.
  sentences:
  - Esta es una mina de Zimbabwe en este momento.
  - Estábamos en la I-40.
  - Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente
    de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
  results:
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en es
      type: MSE-val-en-es
    metrics:
    - type: negative_mse
      value: -29.5114666223526
      name: Negative Mse
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en pt
      type: MSE-val-en-pt
    metrics:
    - type: negative_mse
      value: -29.913604259490967
      name: Negative Mse
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en pt br
      type: MSE-val-en-pt-br
    metrics:
    - type: negative_mse
      value: -27.732226252555847
      name: Negative Mse
---

# SentenceTransformer based on google-bert/bert-base-multilingual-cased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/TriLingual-BERT-Distil")
# Run inference
sentences = [
    "And in the audio world that's when the microphone gets too close to its sound source, and then it gets in this self-destructive loop that creates a very unpleasant sound.",
    'Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.',
    'Esta es una mina de Zimbabwe en este momento.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Knowledge Distillation

* Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
|:-----------------|:--------------|:--------------|:-----------------|
| **negative_mse** | **-29.5115**  | **-29.9136**  | **-27.7322**     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,560,698 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                | non_english                                                                                                                              | label                                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
  | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.04180986061692238, 0.12620249390602112, -0.14501447975635529, 0.09695684909820557, -0.10850819200277328, ...]</code>    |
  | <code>One thing I often ask about is ancient Greek and how this relates.</code>                                                                        | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code>                                                  | <code>[0.0034368489868938923, -0.02741478756070137, -0.09426739811897278, 0.04873204976320267, -0.008266829885542393, ...]</code> |
  | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code>                                                        | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code>                                            | <code>[-0.05048828944563866, 0.2713043689727783, 0.024581076577305794, -0.07316197454929352, -0.044288791716098785, ...]</code>   |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 6,974 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                                       | label                                                                                                                             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>Muchas gracias Chris.</code>                                                                                                                                | <code>[-0.1432434469461441, -0.10335833579301834, -0.07549277693033218, -0.1542435735464096, 0.009247343055903912, ...]</code>    |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code>                        | <code>[0.02740730345249176, -0.0601208470761776, -0.023767368867993355, 0.02245006151497364, 0.007412586361169815, ...]</code>    |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.09117366373538971, 0.08627621084451675, -0.05912208557128906, -0.007647979073226452, 0.0008422975661233068, ...]</code> |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 200
- `per_device_eval_batch_size`: 200
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `label_names`: ['label']

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 200
- `per_device_eval_batch_size`: 200
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: ['label']
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
|:------:|:-----:|:-------------:|:---------------:|:--------------------------:|:--------------------------:|:-----------------------------:|
| 0.0562 | 1000  | 0.0626        | 0.0513          | -21.2968                   | -20.7534                   | -24.2460                      |
| 0.1123 | 2000  | 0.0478        | 0.0432          | -22.1192                   | -21.8663                   | -23.2775                      |
| 0.1685 | 3000  | 0.0423        | 0.0391          | -21.6697                   | -21.5869                   | -21.6856                      |
| 0.0562 | 1000  | 0.0396        | 0.0376          | -21.7666                   | -21.7181                   | -21.6779                      |
| 0.1123 | 2000  | 0.0381        | 0.0358          | -23.4969                   | -23.5022                   | -22.9817                      |
| 0.1685 | 3000  | 0.0362        | 0.0339          | -24.7639                   | -24.8878                   | -23.8888                      |
| 0.2247 | 4000  | 0.0347        | 0.0323          | -26.5721                   | -26.7422                   | -25.4072                      |
| 0.2808 | 5000  | 0.0332        | 0.0310          | -27.6024                   | -27.8268                   | -26.4132                      |
| 0.3370 | 6000  | 0.0321        | 0.0299          | -27.7974                   | -28.0294                   | -26.6213                      |
| 0.3932 | 7000  | 0.0312        | 0.0292          | -28.2719                   | -28.4834                   | -27.0468                      |
| 0.4493 | 8000  | 0.0305        | 0.0285          | -28.2561                   | -28.5574                   | -26.8752                      |
| 0.5055 | 9000  | 0.0299        | 0.0280          | -28.6342                   | -28.9112                   | -27.2933                      |
| 0.5617 | 10000 | 0.0294        | 0.0275          | -28.5512                   | -28.8469                   | -27.1072                      |
| 0.6178 | 11000 | 0.029         | 0.0271          | -28.6788                   | -28.9608                   | -27.2056                      |
| 0.6740 | 12000 | 0.0286        | 0.0267          | -29.0159                   | -29.3281                   | -27.4770                      |
| 0.7302 | 13000 | 0.0283        | 0.0264          | -28.9224                   | -29.2461                   | -27.3500                      |
| 0.7863 | 14000 | 0.028         | 0.0261          | -29.1044                   | -29.4303                   | -27.4377                      |
| 0.8425 | 15000 | 0.0277        | 0.0259          | -29.2340                   | -29.5758                   | -27.6223                      |
| 0.8987 | 16000 | 0.0275        | 0.0257          | -29.1356                   | -29.4699                   | -27.4667                      |
| 0.9548 | 17000 | 0.0273        | 0.0255          | -29.3281                   | -29.6671                   | -27.7174                      |
| 1.0110 | 18000 | 0.0271        | 0.0253          | -29.2991                   | -29.6635                   | -27.6675                      |
| 1.0672 | 19000 | 0.0268        | 0.0251          | -29.3581                   | -29.7326                   | -27.6587                      |
| 1.1233 | 20000 | 0.0266        | 0.0250          | -29.4233                   | -29.7941                   | -27.7913                      |
| 1.1795 | 21000 | 0.0265        | 0.0248          | -29.3941                   | -29.7583                   | -27.6951                      |
| 1.2357 | 22000 | 0.0264        | 0.0247          | -29.5963                   | -29.9737                   | -27.9191                      |
| 1.2918 | 23000 | 0.0262        | 0.0245          | -29.4587                   | -29.8472                   | -27.7702                      |
| 1.3480 | 24000 | 0.0262        | 0.0244          | -29.4977                   | -29.8868                   | -27.8142                      |
| 1.4042 | 25000 | 0.026         | 0.0244          | -29.5356                   | -29.9184                   | -27.8426                      |
| 1.4603 | 26000 | 0.0259        | 0.0243          | -29.5614                   | -29.9388                   | -27.8360                      |
| 1.5165 | 27000 | 0.0259        | 0.0242          | -29.5362                   | -29.9353                   | -27.8223                      |
| 1.5727 | 28000 | 0.0258        | 0.0241          | -29.5088                   | -29.9043                   | -27.7884                      |
| 1.6288 | 29000 | 0.0258        | 0.0241          | -29.4550                   | -29.8543                   | -27.6788                      |
| 1.6850 | 30000 | 0.0257        | 0.0240          | -29.5373                   | -29.9282                   | -27.7855                      |
| 1.7412 | 31000 | 0.0256        | 0.0239          | -29.5195                   | -29.9096                   | -27.7866                      |
| 1.7973 | 32000 | 0.0256        | 0.0239          | -29.5292                   | -29.9266                   | -27.7579                      |
| 1.8535 | 33000 | 0.0256        | 0.0239          | -29.5202                   | -29.9196                   | -27.7408                      |
| 1.9097 | 34000 | 0.0255        | 0.0239          | -29.5090                   | -29.9126                   | -27.7311                      |
| 1.9659 | 35000 | 0.0255        | 0.0238          | -29.5115                   | -29.9136                   | -27.7322                      |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->