luanafelbarros commited on
Commit
777f300
1 Parent(s): 6099a3d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,495 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3560698
8
+ - loss:ModifiedMatryoshkaLoss
9
+ base_model: google-bert/bert-base-multilingual-cased
10
+ widget:
11
+ - source_sentence: And then finally, turn it back to the real world.
12
+ sentences:
13
+ - Y luego, finalmente, devolver eso al mundo real.
14
+ - Parece que el único rasgo que sobrevive a la decapitación es la vanidad.
15
+ - y yo digo que no estoy seguro. Voy a pensarlo a groso modo.
16
+ - source_sentence: Figure out some of the other options that are much better.
17
+ sentences:
18
+ - Piensen en otras de las opciones que son mucho mejores.
19
+ - Éste solía ser un tema bipartidista, y sé que en este grupo realmente lo es.
20
+ - El acuerdo general de paz para Sudán firmado en 2005 resultó ser menos amplio
21
+ que lo previsto, y sus disposiciones aún podrían engendrar un retorno a gran escala
22
+ de la guerra entre el norte y el sur.
23
+ - source_sentence: 'The call to action I offer today -- my TED wish -- is this: Honor
24
+ the treaties.'
25
+ sentences:
26
+ - Esta es la intersección más directa, obvia, de las dos cosas.
27
+ - 'El llamado a la acción que propongo hoy, mi TED Wish, es el siguiente: Honrar
28
+ los tratados.'
29
+ - Los restaurantes del condado se pueden contar con los dedos de una mano... Barbacoa
30
+ Bunn es mi favorito.
31
+ - source_sentence: So for us, this was a graphic public campaign called Connect Bertie.
32
+ sentences:
33
+ - Para nosotros esto era una campaña gráfica llamada Conecta a Bertie.
34
+ - En cambio, los líderes locales se comprometieron a revisarlos más adelante.
35
+ - Con el tiempo, la gente hace lo que se le paga por hacer.
36
+ - source_sentence: And in the audio world that's when the microphone gets too close
37
+ to its sound source, and then it gets in this self-destructive loop that creates
38
+ a very unpleasant sound.
39
+ sentences:
40
+ - Esta es una mina de Zimbabwe en este momento.
41
+ - Estábamos en la I-40.
42
+ - Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente
43
+ de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - negative_mse
48
+ model-index:
49
+ - name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
50
+ results:
51
+ - task:
52
+ type: knowledge-distillation
53
+ name: Knowledge Distillation
54
+ dataset:
55
+ name: MSE val en es
56
+ type: MSE-val-en-es
57
+ metrics:
58
+ - type: negative_mse
59
+ value: -29.5114666223526
60
+ name: Negative Mse
61
+ - task:
62
+ type: knowledge-distillation
63
+ name: Knowledge Distillation
64
+ dataset:
65
+ name: MSE val en pt
66
+ type: MSE-val-en-pt
67
+ metrics:
68
+ - type: negative_mse
69
+ value: -29.913604259490967
70
+ name: Negative Mse
71
+ - task:
72
+ type: knowledge-distillation
73
+ name: Knowledge Distillation
74
+ dataset:
75
+ name: MSE val en pt br
76
+ type: MSE-val-en-pt-br
77
+ metrics:
78
+ - type: negative_mse
79
+ value: -27.732226252555847
80
+ name: Negative Mse
81
+ ---
82
+
83
+ # SentenceTransformer based on google-bert/bert-base-multilingual-cased
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
92
+ - **Maximum Sequence Length:** 128 tokens
93
+ - **Output Dimensionality:** 768 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
110
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ )
112
+ ```
113
+
114
+ ## Usage
115
+
116
+ ### Direct Usage (Sentence Transformers)
117
+
118
+ First install the Sentence Transformers library:
119
+
120
+ ```bash
121
+ pip install -U sentence-transformers
122
+ ```
123
+
124
+ Then you can load this model and run inference.
125
+ ```python
126
+ from sentence_transformers import SentenceTransformer
127
+
128
+ # Download from the 🤗 Hub
129
+ model = SentenceTransformer("luanafelbarros/TriLingual-BERT-Distil")
130
+ # Run inference
131
+ sentences = [
132
+ "And in the audio world that's when the microphone gets too close to its sound source, and then it gets in this self-destructive loop that creates a very unpleasant sound.",
133
+ 'Y, en el mundo del audio, es cuando el micrófono se acerca demasiado a su fuente de sonido, y entra en este bucle autodestructivo que crea un sonido muy desagradable.',
134
+ 'Esta es una mina de Zimbabwe en este momento.',
135
+ ]
136
+ embeddings = model.encode(sentences)
137
+ print(embeddings.shape)
138
+ # [3, 768]
139
+
140
+ # Get the similarity scores for the embeddings
141
+ similarities = model.similarity(embeddings, embeddings)
142
+ print(similarities.shape)
143
+ # [3, 3]
144
+ ```
145
+
146
+ <!--
147
+ ### Direct Usage (Transformers)
148
+
149
+ <details><summary>Click to see the direct usage in Transformers</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Downstream Usage (Sentence Transformers)
156
+
157
+ You can finetune this model on your own dataset.
158
+
159
+ <details><summary>Click to expand</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Out-of-Scope Use
166
+
167
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
168
+ -->
169
+
170
+ ## Evaluation
171
+
172
+ ### Metrics
173
+
174
+ #### Knowledge Distillation
175
+
176
+ * Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br`
177
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
178
+
179
+ | Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
180
+ |:-----------------|:--------------|:--------------|:-----------------|
181
+ | **negative_mse** | **-29.5115** | **-29.9136** | **-27.7322** |
182
+
183
+ <!--
184
+ ## Bias, Risks and Limitations
185
+
186
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
187
+ -->
188
+
189
+ <!--
190
+ ### Recommendations
191
+
192
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
193
+ -->
194
+
195
+ ## Training Details
196
+
197
+ ### Training Dataset
198
+
199
+ #### Unnamed Dataset
200
+
201
+
202
+ * Size: 3,560,698 training samples
203
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
204
+ * Approximate statistics based on the first 1000 samples:
205
+ | | english | non_english | label |
206
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
207
+ | type | string | string | list |
208
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
209
+ * Samples:
210
+ | english | non_english | label |
211
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
212
+ | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.04180986061692238, 0.12620249390602112, -0.14501447975635529, 0.09695684909820557, -0.10850819200277328, ...]</code> |
213
+ | <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[0.0034368489868938923, -0.02741478756070137, -0.09426739811897278, 0.04873204976320267, -0.008266829885542393, ...]</code> |
214
+ | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[-0.05048828944563866, 0.2713043689727783, 0.024581076577305794, -0.07316197454929352, -0.044288791716098785, ...]</code> |
215
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
216
+ ```json
217
+ {
218
+ "loss": "MSELoss",
219
+ "matryoshka_dims": [
220
+ 768,
221
+ 512,
222
+ 256,
223
+ 128,
224
+ 64
225
+ ],
226
+ "matryoshka_weights": [
227
+ 1,
228
+ 1,
229
+ 1,
230
+ 1,
231
+ 1
232
+ ],
233
+ "n_dims_per_step": -1
234
+ }
235
+ ```
236
+
237
+ ### Evaluation Dataset
238
+
239
+ #### Unnamed Dataset
240
+
241
+
242
+ * Size: 6,974 evaluation samples
243
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
244
+ * Approximate statistics based on the first 1000 samples:
245
+ | | english | non_english | label |
246
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
247
+ | type | string | string | list |
248
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
249
+ * Samples:
250
+ | english | non_english | label |
251
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
252
+ | <code>Thank you so much, Chris.</code> | <code>Muchas gracias Chris.</code> | <code>[-0.1432434469461441, -0.10335833579301834, -0.07549277693033218, -0.1542435735464096, 0.009247343055903912, ...]</code> |
253
+ | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.02740730345249176, -0.0601208470761776, -0.023767368867993355, 0.02245006151497364, 0.007412586361169815, ...]</code> |
254
+ | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.09117366373538971, 0.08627621084451675, -0.05912208557128906, -0.007647979073226452, 0.0008422975661233068, ...]</code> |
255
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
256
+ ```json
257
+ {
258
+ "loss": "MSELoss",
259
+ "matryoshka_dims": [
260
+ 768,
261
+ 512,
262
+ 256,
263
+ 128,
264
+ 64
265
+ ],
266
+ "matryoshka_weights": [
267
+ 1,
268
+ 1,
269
+ 1,
270
+ 1,
271
+ 1
272
+ ],
273
+ "n_dims_per_step": -1
274
+ }
275
+ ```
276
+
277
+ ### Training Hyperparameters
278
+ #### Non-Default Hyperparameters
279
+
280
+ - `eval_strategy`: steps
281
+ - `per_device_train_batch_size`: 200
282
+ - `per_device_eval_batch_size`: 200
283
+ - `learning_rate`: 2e-05
284
+ - `num_train_epochs`: 2
285
+ - `warmup_ratio`: 0.1
286
+ - `fp16`: True
287
+ - `label_names`: ['label']
288
+
289
+ #### All Hyperparameters
290
+ <details><summary>Click to expand</summary>
291
+
292
+ - `overwrite_output_dir`: False
293
+ - `do_predict`: False
294
+ - `eval_strategy`: steps
295
+ - `prediction_loss_only`: True
296
+ - `per_device_train_batch_size`: 200
297
+ - `per_device_eval_batch_size`: 200
298
+ - `per_gpu_train_batch_size`: None
299
+ - `per_gpu_eval_batch_size`: None
300
+ - `gradient_accumulation_steps`: 1
301
+ - `eval_accumulation_steps`: None
302
+ - `torch_empty_cache_steps`: None
303
+ - `learning_rate`: 2e-05
304
+ - `weight_decay`: 0.0
305
+ - `adam_beta1`: 0.9
306
+ - `adam_beta2`: 0.999
307
+ - `adam_epsilon`: 1e-08
308
+ - `max_grad_norm`: 1.0
309
+ - `num_train_epochs`: 2
310
+ - `max_steps`: -1
311
+ - `lr_scheduler_type`: linear
312
+ - `lr_scheduler_kwargs`: {}
313
+ - `warmup_ratio`: 0.1
314
+ - `warmup_steps`: 0
315
+ - `log_level`: passive
316
+ - `log_level_replica`: warning
317
+ - `log_on_each_node`: True
318
+ - `logging_nan_inf_filter`: True
319
+ - `save_safetensors`: True
320
+ - `save_on_each_node`: False
321
+ - `save_only_model`: False
322
+ - `restore_callback_states_from_checkpoint`: False
323
+ - `no_cuda`: False
324
+ - `use_cpu`: False
325
+ - `use_mps_device`: False
326
+ - `seed`: 42
327
+ - `data_seed`: None
328
+ - `jit_mode_eval`: False
329
+ - `use_ipex`: False
330
+ - `bf16`: False
331
+ - `fp16`: True
332
+ - `fp16_opt_level`: O1
333
+ - `half_precision_backend`: auto
334
+ - `bf16_full_eval`: False
335
+ - `fp16_full_eval`: False
336
+ - `tf32`: None
337
+ - `local_rank`: 0
338
+ - `ddp_backend`: None
339
+ - `tpu_num_cores`: None
340
+ - `tpu_metrics_debug`: False
341
+ - `debug`: []
342
+ - `dataloader_drop_last`: False
343
+ - `dataloader_num_workers`: 0
344
+ - `dataloader_prefetch_factor`: None
345
+ - `past_index`: -1
346
+ - `disable_tqdm`: False
347
+ - `remove_unused_columns`: True
348
+ - `label_names`: ['label']
349
+ - `load_best_model_at_end`: False
350
+ - `ignore_data_skip`: False
351
+ - `fsdp`: []
352
+ - `fsdp_min_num_params`: 0
353
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
354
+ - `fsdp_transformer_layer_cls_to_wrap`: None
355
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
356
+ - `deepspeed`: None
357
+ - `label_smoothing_factor`: 0.0
358
+ - `optim`: adamw_torch
359
+ - `optim_args`: None
360
+ - `adafactor`: False
361
+ - `group_by_length`: False
362
+ - `length_column_name`: length
363
+ - `ddp_find_unused_parameters`: None
364
+ - `ddp_bucket_cap_mb`: None
365
+ - `ddp_broadcast_buffers`: False
366
+ - `dataloader_pin_memory`: True
367
+ - `dataloader_persistent_workers`: False
368
+ - `skip_memory_metrics`: True
369
+ - `use_legacy_prediction_loop`: False
370
+ - `push_to_hub`: False
371
+ - `resume_from_checkpoint`: None
372
+ - `hub_model_id`: None
373
+ - `hub_strategy`: every_save
374
+ - `hub_private_repo`: False
375
+ - `hub_always_push`: False
376
+ - `gradient_checkpointing`: False
377
+ - `gradient_checkpointing_kwargs`: None
378
+ - `include_inputs_for_metrics`: False
379
+ - `include_for_metrics`: []
380
+ - `eval_do_concat_batches`: True
381
+ - `fp16_backend`: auto
382
+ - `push_to_hub_model_id`: None
383
+ - `push_to_hub_organization`: None
384
+ - `mp_parameters`:
385
+ - `auto_find_batch_size`: False
386
+ - `full_determinism`: False
387
+ - `torchdynamo`: None
388
+ - `ray_scope`: last
389
+ - `ddp_timeout`: 1800
390
+ - `torch_compile`: False
391
+ - `torch_compile_backend`: None
392
+ - `torch_compile_mode`: None
393
+ - `dispatch_batches`: None
394
+ - `split_batches`: None
395
+ - `include_tokens_per_second`: False
396
+ - `include_num_input_tokens_seen`: False
397
+ - `neftune_noise_alpha`: None
398
+ - `optim_target_modules`: None
399
+ - `batch_eval_metrics`: False
400
+ - `eval_on_start`: False
401
+ - `use_liger_kernel`: False
402
+ - `eval_use_gather_object`: False
403
+ - `average_tokens_across_devices`: False
404
+ - `prompts`: None
405
+ - `batch_sampler`: batch_sampler
406
+ - `multi_dataset_batch_sampler`: proportional
407
+
408
+ </details>
409
+
410
+ ### Training Logs
411
+ | Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
412
+ |:------:|:-----:|:-------------:|:---------------:|:--------------------------:|:--------------------------:|:-----------------------------:|
413
+ | 0.0562 | 1000 | 0.0626 | 0.0513 | -21.2968 | -20.7534 | -24.2460 |
414
+ | 0.1123 | 2000 | 0.0478 | 0.0432 | -22.1192 | -21.8663 | -23.2775 |
415
+ | 0.1685 | 3000 | 0.0423 | 0.0391 | -21.6697 | -21.5869 | -21.6856 |
416
+ | 0.0562 | 1000 | 0.0396 | 0.0376 | -21.7666 | -21.7181 | -21.6779 |
417
+ | 0.1123 | 2000 | 0.0381 | 0.0358 | -23.4969 | -23.5022 | -22.9817 |
418
+ | 0.1685 | 3000 | 0.0362 | 0.0339 | -24.7639 | -24.8878 | -23.8888 |
419
+ | 0.2247 | 4000 | 0.0347 | 0.0323 | -26.5721 | -26.7422 | -25.4072 |
420
+ | 0.2808 | 5000 | 0.0332 | 0.0310 | -27.6024 | -27.8268 | -26.4132 |
421
+ | 0.3370 | 6000 | 0.0321 | 0.0299 | -27.7974 | -28.0294 | -26.6213 |
422
+ | 0.3932 | 7000 | 0.0312 | 0.0292 | -28.2719 | -28.4834 | -27.0468 |
423
+ | 0.4493 | 8000 | 0.0305 | 0.0285 | -28.2561 | -28.5574 | -26.8752 |
424
+ | 0.5055 | 9000 | 0.0299 | 0.0280 | -28.6342 | -28.9112 | -27.2933 |
425
+ | 0.5617 | 10000 | 0.0294 | 0.0275 | -28.5512 | -28.8469 | -27.1072 |
426
+ | 0.6178 | 11000 | 0.029 | 0.0271 | -28.6788 | -28.9608 | -27.2056 |
427
+ | 0.6740 | 12000 | 0.0286 | 0.0267 | -29.0159 | -29.3281 | -27.4770 |
428
+ | 0.7302 | 13000 | 0.0283 | 0.0264 | -28.9224 | -29.2461 | -27.3500 |
429
+ | 0.7863 | 14000 | 0.028 | 0.0261 | -29.1044 | -29.4303 | -27.4377 |
430
+ | 0.8425 | 15000 | 0.0277 | 0.0259 | -29.2340 | -29.5758 | -27.6223 |
431
+ | 0.8987 | 16000 | 0.0275 | 0.0257 | -29.1356 | -29.4699 | -27.4667 |
432
+ | 0.9548 | 17000 | 0.0273 | 0.0255 | -29.3281 | -29.6671 | -27.7174 |
433
+ | 1.0110 | 18000 | 0.0271 | 0.0253 | -29.2991 | -29.6635 | -27.6675 |
434
+ | 1.0672 | 19000 | 0.0268 | 0.0251 | -29.3581 | -29.7326 | -27.6587 |
435
+ | 1.1233 | 20000 | 0.0266 | 0.0250 | -29.4233 | -29.7941 | -27.7913 |
436
+ | 1.1795 | 21000 | 0.0265 | 0.0248 | -29.3941 | -29.7583 | -27.6951 |
437
+ | 1.2357 | 22000 | 0.0264 | 0.0247 | -29.5963 | -29.9737 | -27.9191 |
438
+ | 1.2918 | 23000 | 0.0262 | 0.0245 | -29.4587 | -29.8472 | -27.7702 |
439
+ | 1.3480 | 24000 | 0.0262 | 0.0244 | -29.4977 | -29.8868 | -27.8142 |
440
+ | 1.4042 | 25000 | 0.026 | 0.0244 | -29.5356 | -29.9184 | -27.8426 |
441
+ | 1.4603 | 26000 | 0.0259 | 0.0243 | -29.5614 | -29.9388 | -27.8360 |
442
+ | 1.5165 | 27000 | 0.0259 | 0.0242 | -29.5362 | -29.9353 | -27.8223 |
443
+ | 1.5727 | 28000 | 0.0258 | 0.0241 | -29.5088 | -29.9043 | -27.7884 |
444
+ | 1.6288 | 29000 | 0.0258 | 0.0241 | -29.4550 | -29.8543 | -27.6788 |
445
+ | 1.6850 | 30000 | 0.0257 | 0.0240 | -29.5373 | -29.9282 | -27.7855 |
446
+ | 1.7412 | 31000 | 0.0256 | 0.0239 | -29.5195 | -29.9096 | -27.7866 |
447
+ | 1.7973 | 32000 | 0.0256 | 0.0239 | -29.5292 | -29.9266 | -27.7579 |
448
+ | 1.8535 | 33000 | 0.0256 | 0.0239 | -29.5202 | -29.9196 | -27.7408 |
449
+ | 1.9097 | 34000 | 0.0255 | 0.0239 | -29.5090 | -29.9126 | -27.7311 |
450
+ | 1.9659 | 35000 | 0.0255 | 0.0238 | -29.5115 | -29.9136 | -27.7322 |
451
+
452
+
453
+ ### Framework Versions
454
+ - Python: 3.10.12
455
+ - Sentence Transformers: 3.3.1
456
+ - Transformers: 4.46.3
457
+ - PyTorch: 2.5.1+cu121
458
+ - Accelerate: 1.1.1
459
+ - Datasets: 3.2.0
460
+ - Tokenizers: 0.20.3
461
+
462
+ ## Citation
463
+
464
+ ### BibTeX
465
+
466
+ #### Sentence Transformers
467
+ ```bibtex
468
+ @inproceedings{reimers-2019-sentence-bert,
469
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
470
+ author = "Reimers, Nils and Gurevych, Iryna",
471
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
472
+ month = "11",
473
+ year = "2019",
474
+ publisher = "Association for Computational Linguistics",
475
+ url = "https://arxiv.org/abs/1908.10084",
476
+ }
477
+ ```
478
+
479
+ <!--
480
+ ## Glossary
481
+
482
+ *Clearly define terms in order to be accessible across audiences.*
483
+ -->
484
+
485
+ <!--
486
+ ## Model Card Authors
487
+
488
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
489
+ -->
490
+
491
+ <!--
492
+ ## Model Card Contact
493
+
494
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
495
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.46.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 119547
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4512058103a50be5ce89267082f6759ef943371bc505dc3be3cd73f61d8439
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff