id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
2 | 1507.08340v1 | 5 | [
171.19700622558594,
137.7530059814453,
444.15899658203125,
309.708984375
] | \begin{table}[!ht]
\renewcommand{\arraystretch}{1.3}
\caption{JVM and Spark Parameters for Different Workloads.}
\label{parameters}
\centering
\begin{tabular}{p{1cm}|l|ccccc}
\multicolumn{2}{c|}{} & \multicolumn{1}{c|}{{\bf Wc}} & \multicolumn{1}{c|}{{\bf Gp}} & \multicolumn{1}{c|}{{\bf So}} & \multicolumn{1}{c|}{{\bf Km}} & {\bf Nb} \\ \hline
JVM & Heap Size (GB) & \multicolumn{5}{c}{50} \\ \cline{2-7}
& Old Generation Garbage Collector & \multicolumn{5}{c}{PS MarkSweep} \\ \cline{2-7}
& Young Generation Garbage Collector & \multicolumn{5}{c}{PS Scavange} \\ \hline
Spark & spark.storage.memoryFraction & \multicolumn{1}{c|}{0.1} & \multicolumn{1}{c|}{0.1} & \multicolumn{1}{c|}{0.1} & \multicolumn{1}{c|}{0.6} & 0.1 \\ \cline{2-7}
& spark.shuffle.memoryFraction & \multicolumn{1}{l|}{0.7} & \multicolumn{1}{l|}{0.7} & \multicolumn{1}{l|}{0.7} & \multicolumn{1}{l|}{0.4} & \multicolumn{1}{l}{0.7} \\ \cline{2-7}
& spark.shuffle.consolidateFiles & \multicolumn{5}{c}{true} \\ \cline{2-7}
& spark.shuffle.compress & \multicolumn{5}{c}{true} \\ \cline{2-7}
& spark.shuffle.spill & \multicolumn{5}{c}{true} \\ \cline{2-7}
& spark.shuffle.spill.compress & \multicolumn{5}{c}{true} \\ \cline{2-7}
& spark.rdd.compress & \multicolumn{5}{c}{true} \\ \cline{2-7}
& spark.broadcast.compress & \multicolumn{5}{c}{true} \\ \hline
\end{tabular}
\end{table} | [
[
"",
null,
"Wc",
"Gp",
"So",
"Km",
"Nb"
],
[
"JVM",
"Heap Size (GB)",
"50",
null,
null,
null,
null
],
[
null,
"Old Generation Garbage Collector",
"PS MarkSweep",
null,
null,
null,
null
],
[
null,
"Young Generation Garbage Collector",
"PS Scavange",
null,
null,
null,
null
],
[
"Spark",
"spark.storage.memoryFraction",
"0.1",
"0.1",
"0.1",
"0.6",
"0.1"
],
[
null,
"spark.shuffle.memoryFraction",
"0.7",
"0.7",
"0.7",
"0.4",
"0.7"
],
[
null,
"spark.shuffle.consolidateFiles",
"true",
null,
null,
null,
null
],
[
null,
"spark.shuffle.compress",
"true",
null,
null,
null,
null
],
[
null,
"spark.shuffle.spill",
"true",
null,
null,
null,
null
],
[
null,
"spark.shuffle.spill.compress",
"true",
null,
null,
null,
null
],
[
null,
"spark.rdd.compress",
"true",
null,
null,
null,
null
],
[
null,
"spark.broadcast.compress",
"true",
null,
null,
null,
null
]
] | 0.651121 | null | null |
0 | 2106.00274v1 | 7 | [
211.72900390625,
82.06097412109375,
400.27099609375,
127.49102783203125
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Model & MSI GE63VR 7RF \\
\hline
Processor & Intel Core i7 7700HQ 2.80GHz \\
\hline
RAM & 16gb \\
\hline
Graphics & GTX 1070 8GB \\
\hline
\end{tabular}
\end{table} | [
[
"Model",
"MSI GE63VR 7RF"
],
[
"Processor",
"Intel Core i7 7700HQ 2.80GHz"
],
[
"RAM",
"16gb"
],
[
"Graphics",
"GTX 1070 8GB"
]
] | 1 | null | null |
1 | 2106.00274v1 | 7 | [
226.25999450683594,
362.5660095214844,
385.7401580810547,
420.0530090332031
] | \begin{table}[h!]
\centering
\begin{threeparttable}
\begin{tabular}{|c|c|}
\hline
\textbf{Iterations} & $10$\\
\hline
\textbf{Optimizer} & SGD\tnote{1} \\
\hline
\textbf{Learning Rate} (\textit{lr}) & $0.001$ \\
\hline
\textbf{Momentum} & $0.9$ \\
\hline
\textbf{Loss Function} & Cross-Entropy \\
\hline
\end{tabular}
\begin{tablenotes}
\item[1] Average Stochastic Gradient Descent.
\end{tablenotes}
\end{threeparttable}
\caption{Configuration used to train the ResNet-18 architecture to estimate the transition matrix.}
\label{tab:estimation_configuration}
\end{table} | [
[
"Iterations",
"10"
],
[
"Optimizer",
"SGD1"
],
[
"Learning Rate (lr)",
"0.001"
],
[
"Momentum",
"0.9"
],
[
"Loss Function",
"Cross-Entropy"
]
] | 0.519337 | null | null |
0 | 2304.04862v1 | 19 | [
135.5800018310547,
381.00299072265625,
473.9291294642857,
478.06201171875
] | \begin{table}[hbt!]
\centering
\begin{tabular}{|c|c|c c c c c|}
\hline
\multicolumn{2}{|c|}{\textbf{Error {[}\%{]}}} & \multicolumn{5}{c|}{\textbf{Soft body with inclusion}}\tabularnewline
\hline
\multicolumn{2}{|c|}{\rule{0pt}{3ex} Quantity of interest } & $t_{1}$ & $t_{2}$ & $t_{3}$ & $t_{4}$ & $\sigma_{yy}^{\mathrm{max}}$\tabularnewline
\hline
\multicolumn{2}{|c|}{\rule{0pt}{3ex} Low-fidelity} & 4.48 & 7.15 & 7.21 & 4.65 & 10.19\tabularnewline
\hline
\multicolumn{2}{|c|}{\rule{0pt}{3ex} Bi-fidelity with proposed selection strategy} & \textbf{0.50} & \textbf{1.37} & \textbf{1.39} & \textbf{0.67} & \textbf{2.20}\tabularnewline
\hline
\multirow{2}{*}{\rule{0pt}{3ex} Bi-fidelity with random selection} & \rule{0pt}{3ex} $M_m$ & 0.68 & 1.54 & 1.50 & 0.81 & 2.42\tabularnewline
\cline{2-7} \cline{3-7} \cline{4-7} \cline{5-7} \cline{6-7} \cline{7-7}
& \rule{0pt}{3ex} $\Sigma_m$ & 0.11 & 0.16 & 0.16 & 0.12 & 0.18\tabularnewline
\hline
\end{tabular}
\vspace{2mm}
\caption{\label{tab:errors_selection_strategy} Error of the bi-fidelity model constructed with the proposed selection strategy and a random selection.}
\end{table} | [
[
"Error [%]",
null,
"Soft body with inclusion"
],
[
"Quantity of interest",
null,
"t t t t σmax\n1 2 3 4 yy"
],
[
"Low-fidelity",
null,
"4.48 7.15 7.21 4.65 10.19"
],
[
"Bi-fidelity with proposed selection strategy",
null,
"0.50 1.37 1.39 0.67 2.20"
],
[
"Bi-fidelity with random selection",
"M\nm",
"0.68 1.54 1.50 0.81 2.42"
],
[
null,
"Σ\nm",
"0.11 0.16 0.16 0.12 0.18"
]
] | 0.381271 | null | null |
0 | 1805.11202v1 | 7 | [
317.9549865722656,
276.29986572265625,
556.6525268554688,
292.03363037109375
] | \begin{table}[h]
\centering
\caption{Risk differences of real and synthetic datasets}
\label{tbl:cjpd}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|l|c|c|c|c|c|}
\hline
& Real Data & SYN1-GAN & SYN2-NFGANI & SYN3-NFGANII & SYN4-FairGAN \\ \hline
$disk(\mathcal{D}) $ & 0.1989 & 0.1798$\pm$0.0026 & 0.0025$\pm$0.0007 & 0.0062$\pm$0.0037 & 0.0411$\pm$0.0295 \\ \hline
% \begin{tabular}[c]{@{}l@{}}$||P(\mathbf{x},y|s=1)$\\ $-P(\mathbf{x},y|s=0)||_2$\end{tabular} & 0.0213 & 0.0163 & 0.0100 & 0.0106 & 0.0128 \\ \hline
\end{tabular}
}
\end{table} | [
[
"",
"Real Data",
"SYN1-GAN",
"SYN2-NFGANI",
"SYN3-NFGANII",
"SYN4-FairGAN"
],
[
"disk(D)",
"0.1989",
"0.1798±0.0026",
"0.0025±0.0007",
"0.0062±0.0037",
"0.0411±0.0295"
]
] | 0.953488 | null | null |
0 | 2404.13049v2 | 2 | [
72.89384911277078,
475.6134033203125,
270.00019975142044,
734.1524047851562
] | \begin{table}[!htb]
\centering
\caption{Terminology and notation.}
\resizebox{0.8\columnwidth}{!}{%
\begin{tabular}{|l|l|}
\hline
Notation & Description \\ \hline \hline
$v$ & instance (standard cell or macro) \\ \hline
$p$ & instance pin or input-output pin \\ \hline
$e$ & net $e = \{ p \}$ \\ \hline
$V$ & Set of \textcolor{black}{all} instances \textcolor{black}{\{$v$\}} \\ \hline
\textcolor{black}{$E$} & Set of \textcolor{black}{all} nets \textcolor{black}{(hyperedges)} \textcolor{black}{\{$e$\}} \\ \hline
$P$ & Set of \textcolor{black}{all} pins \textcolor{black}{\{$p$\}} \\ \hline
$WL_{grad_x}(p)$ & Wirelength gradient on pin $p$ \\ \hline
$x_p$ & $x$ coordinate of pin $p$ \\ \hline
$x_e^+$ & $max_{i \in e}$ $x_i$, $\forall e \in E$ \\ \hline
$x_e^-$ & $min_{i \in e}$ $x_i$, $\forall e \in E$ \\ \hline
$a_i^+$ & \textcolor{black}{$exp({\frac{x_i - x_e^+}{\gamma}})$}, $\forall i \in e$, $e \in E$ \\ \hline
$a_i^-$ & \textcolor{black}{$exp({- \frac{x_i - x_e^-}{\gamma}})$}, $\forall i \in e$, $e \in E$ \\ \hline
$b_e^+$ & $\sum_{i \in e}{a_i^+}$, $e \in E$ \\ \hline
$b_e^-$ & $\sum_{i \in e}{a_i^-}$, $e \in E$ \\ \hline
$c_e^+$ & $\sum_{i \in e}{x_i a_i^+}$, $e \in E$ \\ \hline
$c_e^-$ & $\sum_{i \in e}{x_i a_i^-}$, $e \in E$ \\ \hline
\textcolor{black}{$X_v$} & Instance location, $\forall v \in V$ \\ \hline
$F_{WL_x}(v)$ & Wirelength force on instance $v$ \\ \hline
PU & Processing unit \\ \hline
PE & Processing element \\ \hline
\end{tabular}
}
\label{tab:terms}
\end{table} | [
[
"Notation",
"Description"
],
[
"v",
"instance (standard cell or macro)"
],
[
"p",
"instance pin or input-output pin"
],
[
"e",
"net e = {p}"
],
[
"V",
"Set of all instances {v}"
],
[
"E",
"Set of all nets (hyperedges) {e}"
],
[
"P",
"Set of all pins {p}"
],
[
"WL (p)\ngradx",
"Wirelength gradient on pin p"
],
[
"xp",
"x coordinate of pin p"
],
[
"x+\ne",
"max x i, ∀e ∈E\ni∈e"
],
[
"x−\ne",
"min x i, ∀e ∈E\ni∈e"
],
[
"a+\ni",
"xi− γx+\nexp( e ), ∀i ∈e, e ∈E"
],
[
"a−\ni",
"exp(−xi− γx−\ne ), ∀i ∈e, e ∈E"
],
[
"b+\ne",
"P a+ , e ∈E\ni∈e i"
],
[
"b−\ne",
"P a− , e ∈E\ni∈e i"
],
[
"c+\ne",
"P x ia+ , e ∈E\ni∈e i"
],
[
"c−\ne",
"P x ia− , e ∈E\ni∈e i"
],
[
"Xv",
"Instance location, ∀v ∈V"
],
[
"F (v)\nW Lx",
"Wirelength force on instance v"
],
[
"PU",
"Processing unit"
],
[
"PE",
"Processing element"
]
] | 0.409733 | null | null |
1 | 2404.13049v2 | 7 | [
51.316170411951404,
109.86798095703125,
297.6787082447725,
175.4219970703125
] | \begin{table}[!t]
\caption{\small Benchmarks.
``Macro Util'' stands for macro utilization,
which is defined as the total area of macros
divided by the core area.
\textcolor{black}{``Util'' stands for utilization,
which is defined as the total area of standard cells and macros with a 2$\mu$m halo width
divided by the core area.}}
%\resizebox{0.9\columnwidth}{!} {
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Designs & PE Array & \# Macros & \# Std Cells & \# Nets & Macro Util & \textcolor{black}{Util} \\ \hline
Tabla01 & 4 $\times$ 8 & 368 & 232K & 252K & 0.60 & \textcolor{black}{0.75} \\ \hline
Tabla02 & 4 $\times$ 16 & 1232 & 441K & 486K & 0.59 & \textcolor{black}{0.79} \\ \hline
Tabla03 & 8 $\times$ 8 & 760 & 372K & 408K & 0.58 & \textcolor{black}{0.78} \\ \hline
Tabla04 & 8 $\times$ 16 & 2488 & 741K & 830K & 0.54 & \textcolor{black}{0.76} \\ \hline
GeneSys01 & 16 $\times$ 16 & 368 & 986K & 1056K & 0.46 & \textcolor{black}{0.72} \\ \hline
GeneSys02 & 16 $\times$ 16 & 368 & 1055K & 1135K & 0.52 & \textcolor{black}{0.71} \\ \hline
%BlackParrot & -- & 196 & 827K & xx \\ \hline
%MemPool & -- & 326 & 2529K & 3239K \\ \hline
\end{tabular}
%}
\label{tab:benchmark}
\end{table} | [
[
"Designs",
"PE Array",
"# Macros",
"# Std Cells",
"# Nets",
"Macro Util",
"Util"
],
[
"Tabla01",
"4 × 8",
"368",
"232K",
"252K",
"0.60",
"0.75"
],
[
"Tabla02",
"4 × 16",
"1232",
"441K",
"486K",
"0.59",
"0.79"
],
[
"Tabla03",
"8 × 8",
"760",
"372K",
"408K",
"0.58",
"0.78"
],
[
"Tabla04",
"8 × 16",
"2488",
"741K",
"830K",
"0.54",
"0.76"
],
[
"GeneSys01",
"16 × 16",
"368",
"986K",
"1056K",
"0.46",
"0.72"
],
[
"GeneSys02",
"16 × 16",
"368",
"1055K",
"1135K",
"0.52",
"0.71"
]
] | 0.392906 | null | null |
2 | 2404.13049v2 | 8 | [
349.48012924194336,
94.5260009765625,
525.5329971313477,
160.08001708984375
] | \begin{table}[!t]
\caption{\textcolor{black}{Iterations} required for convergence of {\em RePlAce}, {\em DREAMPlace} and {\em DG-RePlAce}.
We highlight best values in blue bold font.}
\label{tab:iter}
%\resizebox{0.85\columnwidth}{!} {
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Design & {\em RePlAce} & {\em DREAMPlace} & {\em DG-RePlAce} \\ \hline
Tabla01 & 410 & 450 & \textbf{\textcolor{blue}{380}} \\ \hline
Tabla02 & 460 & 546 & \textbf{\textcolor{blue}{390}} \\ \hline
Tabla03 & 460 & 507 & \textbf{\textcolor{blue}{380}} \\ \hline
Tabla04 & 520 & 687 & \textbf{\textcolor{blue}{490}} \\ \hline
GeneSys01 & 520 & 593 & \textbf{\textcolor{blue}{470}} \\ \hline
GeneSys02 & 510 & 598 & \textbf{\textcolor{blue}{450}} \\ \hline
\end{tabular}
%}
\end{table} | [
[
"Design",
"RePlAce",
"DREAMPlace",
"DG-RePlAce"
],
[
"Tabla01",
"410",
"450",
"380"
],
[
"Tabla02",
"460",
"546",
"390"
],
[
"Tabla03",
"460",
"507",
"380"
],
[
"Tabla04",
"520",
"687",
"490"
],
[
"GeneSys01",
"520",
"593",
"470"
],
[
"GeneSys02",
"510",
"598",
"450"
]
] | 0.786241 | null | null |
3 | 2404.13049v2 | 9 | [
315.07506561279297,
340.6610412597656,
557.4342956542969,
370.27459716796875
] | \begin{table}[!t]
\caption{Effect of dataflow and datapath constraints (averages over all testcases).
We highlight best values of metrics in blue bold font.
Data points are normalized.
}
\label{tab:ablation_result}
\resizebox{0.99\columnwidth}{!} {
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Metrics & {\em RePlAce} & {\em DG-RePlAce$_{nf}$}
& {\em DG-RePlAce$_{np}$} & {\em DG-RePlAce} \\ \hline
WL$_{avg}$ & 1.00 & 0.92 & 0.91 & \textbf{\textcolor{blue}{0.90}} \\ \hline
TNS$_{avg}$ & 1.00 & 0.61 & 0.80 & \textbf{\textcolor{blue}{0.61}} \\ \hline
\end{tabular}
}
\end{table} | [
[
"Metrics",
"RePlAce",
"DG-RePlAce\nnf",
"DG-RePlAcenp",
"DG-RePlAce"
],
[
"WLavg",
"1.00",
"0.92",
"0.91",
"0.90"
],
[
"TNSavg",
"1.00",
"0.61",
"0.80",
"0.61"
]
] | 0.843373 | null | null |
4 | 2404.13049v2 | 10 | [
51.83756086561415,
664.826171875,
297.1579182942708,
745.6900024414062
] | \begin{table}[!b]
\caption{Experimental results on {\em TILOS MacroPlacement} benchmarks.
We highlight best values of metrics in blue bold font.
Data points for WL, Power, WNS and TNS are normalized.
{\em DREAMPlace*} represents running {\em DREAMPlace} with updated hyperparameters: $ignore\_net\_threshold$ = 1e9 and $iterations$ = 5000.
}
\label{tab:result_tilos}
\resizebox{1\columnwidth}{!} {
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\multicolumn{1}{|l|}{\makecell{Design}}
& \makecell{Global Placer}
& \makecell{WL}
& \makecell{Power}
& \makecell{ WNS}
& \makecell{TNS}
& \makecell{GP \\ ($s$) }
& \makecell{ TAT\\($s$)}
\\ \hline \Xhline{2\arrayrulewidth}
\multirow{3}{*}{\makecell{BlackParrot}}
& {\em RePlAce} & 1.00 & 1.00 & -0.123 & -108.15 & 387 & 653 \\ \cline{2-8}
& {\em DREAMPlace} & 0.92 & 0.98 & -0.023 & -2.623 & 61
& \textbf{\textcolor{blue}{88}} \\ \cline{2-8}
& {\em DG-RePlAce} & \textbf{\textcolor{blue}{0.90}}
& \textbf{\textcolor{blue}{0.97}}
& \textbf{\textcolor{blue}{-0.014}}
& \textbf{\textcolor{blue}{-0.078}}
& \textbf{\textcolor{blue}{32}}
& 200 \\ \cline{2-8}
\hline \Xhline{2\arrayrulewidth}
\multirow{4}{*}{\makecell{MemPool \\ Group}}
& {\em RePlAce} & 1.00 & 1.00 & -0.073 & -99.989 & 1896 & 2712 \\ \cline{2-8}
& {\em DREAMPlace} & \textbf{\textcolor{blue}{0.92}}
& \textbf{\textcolor{blue}{0.97}}
& -0.086 & -134.421
& \textbf{\textcolor{blue}{72}}
& \textbf{\textcolor{blue}{167}} \\ \cline{2-8}
& {\em DREAMPlace*} & \textbf{\textcolor{blue}{0.92}}
& \textbf{\textcolor{blue}{0.97}}
& -0.069
& -108.193
& 178
& 284 \\ \cline{2-8}
& {\em DG-RePlAce} & 0.95 & 0.98
& \textbf{\textcolor{blue}{-0.067}}
& \textbf{\textcolor{blue}{-38.71}} & 122 & 591 \\ \cline{2-8}
\hline
\end{tabular}
}
\end{table} | [
[
"Design",
"Global Placer",
"WL",
"Power",
"WNS",
"TNS",
"GP\n(s)",
"TAT\n(s)"
],
[
"BlackParrot",
"RePlAce",
"1.00",
"1.00",
"-0.123",
"-108.15",
"387",
"653"
],
[
null,
"DREAMPlace",
"0.92",
"0.98",
"-0.023",
"-2.623",
"61",
"88"
],
[
null,
"DG-RePlAce",
"0.90",
"0.97",
"-0.014",
"-0.078",
"32",
"200"
],
[
"MemPool\nGroup",
"RePlAce",
"1.00",
"1.00",
"-0.073",
"-99.989",
"1896",
"2712"
],
[
null,
"DREAMPlace",
"0.92",
"0.97",
"-0.086",
"-134.421",
"72",
"167"
],
[
null,
"DREAMPlace*",
"0.92",
"0.97",
"-0.069",
"-108.193",
"178",
"284"
],
[
null,
"DG-RePlAce",
"0.95",
"0.98",
"-0.067",
"-38.71",
"122",
"591"
]
] | 0.536122 | null | null |
5 | 2404.13049v2 | 11 | [
51.7130560874939,
269.7884521484375,
297.27921295166016,
319.2959899902344
] | \begin{table} [!t]
\caption{Experimental results on the MegaBoom\_X4 design.
Data points for WL are normalized.
}
\label{tab:result_megaboom}
\resizebox{1\columnwidth}{!} {
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\multicolumn{1}{|l|}{\makecell{Design}}
& \makecell{\# Std \\ Cells}
& \makecell{\# Nets}
& \makecell{Global \\ Placer}
& \makecell{WL}
& \makecell{Horizontal \\ Congestion}
& \makecell{Vertical \\ Congestion}
\\ \hline \Xhline{2\arrayrulewidth}
\multirow{4}{*}{\makecell{MegaBoom\_X4}} &
\multirow{4}{*}{\makecell{5807K}} &
\multirow{4}{*}{\makecell{5831K}}
& {\em RePlAce} & 1.00 & 0.01\% & 0.07\% \\ \cline{4-7}
& & & {\em DREAMPlace} & 1.00 & 0.02\% & 0.08\% \\ \cline{4-7}
& & & {\em DREAMPlace*} & 1.00
& 0.01\%
& 0.08\% \\ \cline{4-7}
& & & {\em DG-RePlAce} & 1.00 & 0.00\% & 0.08\% \\ \cline{4-7}
\hline
\end{tabular}
}
\end{table} | [
[
"Design",
"# Std\nCells",
"# Nets",
"Global\nPlacer",
"WL",
"Horizontal\nCongestion",
"Vertical\nCongestion"
],
[
"MegaBoom X4",
"5807K",
"5831K",
"RePlAce",
"1.00",
"0.01%",
"0.07%"
],
[
null,
null,
null,
"DREAMPlace",
"1.00",
"0.02%",
"0.08%"
],
[
null,
null,
null,
"DREAMPlace*",
"1.00",
"0.01%",
"0.08%"
],
[
null,
null,
null,
"DG-RePlAce",
"1.00",
"0.00%",
"0.08%"
]
] | 0.471483 | null | null |
0 | 2407.19283v1 | 5 | [
315.40899658203125,
402.50201416015625,
559.60498046875,
458.00367228190106
] | \begin{table}[htbp]
\caption{Gas Consumption Metrics (Gas Units)}
\label{tab:gas_report}
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\textbf{Function Name} & \textbf{min} & \textbf{avg} & \textbf{median} & \textbf{max} & \textbf{\# calls} \\ \hline
create\_account & 26660 & 43201 & 46560 & 69676 & 17 \\ \hline
deposit & 30351 & 38939 & 38939 & 47527 & 12 \\ \hline
get\_balance & 921 & 921 & 921 & 921 & 14 \\ \hline
initiate\_transfer & 121580 & 121580 & 126279 & 131428 & 12 \\ \hline
make\_transfer & 135213 & 135213 & 140352 & 146192 & 12 \\ \hline
\end{tabular}
\end{table} | [
[
"Function Name",
"min",
"avg",
"median",
"max",
"# calls"
],
[
"create account",
"26660",
"43201",
"46560",
"69676",
"17"
],
[
"deposit",
"30351",
"38939",
"38939",
"47527",
"12"
],
[
"get balance",
"921",
"921",
"921",
"921",
"14"
],
[
"initiate transfer",
"121580",
"121580",
"126279",
"131428",
"12"
],
[
"make transfer",
"135213",
"135213",
"140352",
"146192",
"12"
]
] | 0.991667 | null | null |
0 | 2203.06843v1 | 2 | [
331.8389892578125,
174.33697509765625,
542.823974609375,
242.67999267578125
] | \begin{table}[h!]
\scriptsize
\centering
\caption{
Summary statistics for data accesses at the SoCal Repo from July to Dec. 2021
}
\begin{tabular}{|c||c|c|c|} \hline
& \# of accesses & data transfer size (TB) & shared data size (TB) \tabularnewline \hline \hline
July 2021 & 1,182,717 & 385.78 & 519.25 \tabularnewline \hline
Aug 2021 & 1,078,340 & 206.94 & 313.46 \tabularnewline \hline
Sep 2021 & 1,089,292 & 206.96 & 257.18 \tabularnewline \hline
Oct 2021 & 1,058,071 & 412.18 & 141.91 \tabularnewline \hline
Nov 2021 & 878,703 & 649.30 & 82.67 \tabularnewline \hline
Dec 2021 & 983,723 & 1,257.89 & 130.03 \tabularnewline \hline
Total & 6,270,846 & 3,119.07 & 1,444.51 \tabularnewline \hline
Daily average & 34,838.03 & 17.42 & 8.03 \tabularnewline \hline
\end{tabular}
\label{tab:summary_data_all}
\end{table} | [
[
"",
"# of accesses",
"data transfer size (TB)",
"shared data size (TB)"
],
[
"July 2021",
"1,182,717",
"385.78",
"519.25"
],
[
"Aug 2021",
"1,078,340",
"206.94",
"313.46"
],
[
"Sep 2021",
"1,089,292",
"206.96",
"257.18"
],
[
"Oct 2021",
"1,058,071",
"412.18",
"141.91"
],
[
"Nov 2021",
"878,703",
"649.30",
"82.67"
],
[
"Dec 2021",
"983,723",
"1,257.89",
"130.03"
],
[
"Total",
"6,270,846",
"3,119.07",
"1,444.51"
],
[
"Daily average",
"34,838.03",
"17.42",
"8.03"
]
] | 0.80798 | null | null |
0 | 2401.02982v4 | 8 | [
52.562538146972656,
56.41534423828125,
522.9786376953125,
211.13182067871094
] | \begin{table}[t!]
\resizebox{\linewidth}{!}{
\begin{tabular}{@{}cccccc@{}}
\toprule
\multirow{2}{*}{Task Name} & \multirow{2}{*}{Metrics} & \multicolumn{2}{c}{Base LLMs} & \multicolumn{2}{c}{Fiancial LLMs} \\ \cmidrule(l){3-6}
& & \multicolumn{1}{l}{LLaMA2-13B} & \multicolumn{1}{l}{LLaMA2-70B} & \multicolumn{1}{l}{XuanYuan-13B} & \multicolumn{1}{l}{XuanYuan-70B} \\ \midrule
\multicolumn{1}{c|}{1-1} & \multicolumn{1}{c|}{Acc} & 0.71 & 8.60 & 2.05 & \textbf{11.23} \\ \midrule
\multicolumn{1}{c|}{1-2} & \multicolumn{1}{c|}{F1} & 0.28 & 10.27 & 14.39 & \textbf{22.40} \\
\multicolumn{1}{c|}{2-1} & \multicolumn{1}{c|}{F1} & 0.42 & 0.43 & 13.97 & \textbf{21.33} \\ \midrule
\multicolumn{1}{c|}{2-2} & \multicolumn{1}{c|}{R-L} & 1.74 & 5.15 & 25.17 & \textbf{36.28} \\
\multicolumn{1}{c|}{2-3} & \multicolumn{1}{c|}{R-L} & 0.17 & 3.98 & 6.24 & \textbf{7.40} \\ \midrule
\multicolumn{1}{c|}{3-1} & \multicolumn{1}{c|}{EM} & 1.69 & \textbf{14.18} & 14.08 & 13.12 \\ \bottomrule
\end{tabular}
}
\caption{
Comparison between different parameter Financial specific LLMs and their base models.} \label{subtaskscore}
\end{table} | [
[
"GPT-4\n41.03 T\n40\n20\nGPT-4 35\n32.47\n30\n15 Distributions\nScores\n25\n10 20 Mean Score\nIntern 1lm 6.- 9c 3hat-7B GLM-4 15 T\n10.58\n5 Yi-34B 10 n\n10.68\n5\n0 Foundational Ability Reasoning Ability TechnY 3i i- c.3 44 a5B l Skill\nCategories",
"",
null,
null
],
[
null,
"Base LLMs Fiancial LLMs\nask Name Metrics\nLLaMA2-13B LLaMA2-70B XuanYuan-13B XuanYuan-70B",
null,
null
],
[
null,
"1-1",
"Acc",
"0.71 8.60 2.05 11.23"
],
[
null,
"1-2\n2-1",
"F1\nF1",
"0.28 10.27 14.39 22.40\n0.42 0.43 13.97 21.33"
],
[
null,
"2-2\n2-3",
"R-L\nR-L",
"1.74 5.15 25.17 36.28\n0.17 3.98 6.24 7.40"
],
[
null,
"3-1",
"EM",
"1.69 14.18 14.08 13.12"
],
[
null,
"able 5: Comparison between different parameter Fi\nancial specific LLMs and their base models.",
null,
null
]
] | 0.498288 | null | null |
0 | 1810.12125v4 | 6 | [
169.79641977945963,
272.09002685546875,
442.20367940266925,
425.5150146484375
] | \begin{table}[!h]
\centering
\caption{Frequently Used Notations.}
\label{tb:notations}
%\setlength{\tabcolsep}{2.2mm}{
\begin{tabular}{|l|l|}
\hline
Notation & Description \\ \hline
$D$ & an ER workload consisting of record pairs \\ \hline
$D_i$ & a subset of $D$ \\ \hline
$S$, $S_i$ & a labeling solution for $D$ \\ \hline
$d$, $d_i$ & a record pair in $D$ \\ \hline
$TN(D_i)$ & the total number of pairs in $D_i$ \\ \hline
$EN(D_i)$ & the total number of equivalent pairs in $D_i$ \\ \hline
$P(d_i)$ & the estimated equivalence probability of $d_i$ \\ \hline
$f$, $f_i$ & a feature of record pair \\ \hline
$F$, $F_i$ & a feature set \\ \hline
$D_f$ & the set of record pairs having the feature $f$ \\ \hline
\end{tabular}
\end{table} | [
[
"Notation",
"Description"
],
[
"D",
"an ER workload consisting of record pairs"
],
[
"D\ni",
"a subset of D"
],
[
"S, S\ni",
"a labeling solution for D"
],
[
"d, d\ni",
"a record pair in D"
],
[
"TN(D )\ni",
"the total number of pairs in D\ni"
],
[
"EN(D )\ni",
"the total number of equivalent pairs in D\ni"
],
[
"P(d )\ni",
"the estimated equivalence probability of d\ni"
],
[
"f, f\ni",
"a feature of record pair"
],
[
"F, F\ni",
"a feature set"
],
[
"D\nf",
"the set of record pairs having the feature f"
]
] | 0.928292 | null | null |
0 | 2404.08230v1 | 7 | [
145.16919860839843,
580.70703125,
464.339794921875,
625.93701171875
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{ADULT: Binarization of Protected labels}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Label} & \textbf{Privileged Class (1)} & \textbf{Unprivileged Class (0)} \\ \hline
Age & Less than or equal to 40 years & Greater than 40 years \\ \hline
Race & White, Asian-Pac-Islander & Black, Amer-Indian-Eskimo, other \\ \hline
Sex & Male & Female \\ \hline
\end{tabular}
\label{adult_binarize}
\end{table} | [
[
"Label",
"Privileged Class (1)",
"Unprivileged Class (0)"
],
[
"Age",
"Less than or equal to 40 years",
"Greater than 40 years"
],
[
"Race",
"White, Asian-Pac-Islander",
"Black, Amer-Indian-Eskimo, other"
],
[
"Sex",
"Male",
"Female"
]
] | 0.963731 | null | null |
1 | 2404.08230v1 | 8 | [
138.16283162434897,
242.54400634765625,
471.347162882487,
299.0820007324219
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{MIMIC-III: Binarization of Protected labels}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Label} & \textbf{Privileged Class (1)} & \textbf{Unprivileged Class (0)} \\ \hline
Age & Greater than 60 years & Less than or equal to 60 years \\ \hline
Gender & Male & Female \\ \hline
Insurance & Private, other & Medicare, Medicaid \\ \hline
Marital Status & Married, Life partner & Single, Widowed, Divorced, Separated \\ \hline
\end{tabular}
\label{mimic_binarize}
\end{table} | [
[
"Label",
"Privileged Class (1)",
"Unprivileged Class (0)"
],
[
"Age",
"Greater than 60 years",
"Less than or equal to 60 years"
],
[
"Gender",
"Male",
"Female"
],
[
"Insurance",
"Private, other",
"Medicare, Medicaid"
],
[
"Marital Status",
"Married, Life partner",
"Single, Widowed, Divorced, Separated"
]
] | 0.972 | null | null |
2 | 2404.08230v1 | 12 | [
190.90966033935547,
543.8289794921875,
418.60015360514325,
600.8410034179688
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{MIMIC: Fairness Scores for Baseline Model}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Label} & \textbf{DI Ratio Score} & \textbf{Diff in FN Scores} \\ \hline
Age & 1.008 & -0.006 \\ \hline
Marital status & \cellcolor[gray]{0.8}1.308 & 0.005 \\ \hline
Gender & 1.182 & -5.645${\rm e}^{-05}$\\ \hline
Insurance & 1.021 & -0.004 \\ \hline
\end{tabular}
\label{mimic_fairness_scores}
\end{table} | [
[
"Label",
"DI Ratio Score",
"Diff in FN Scores"
],
[
"Age",
"1.008",
"-0.006"
],
[
"Marital status",
"1.308",
"0.005"
],
[
"Gender",
"1.182",
"-5.645e−05"
],
[
"Insurance",
"1.021",
"-0.004"
]
] | 0.856187 | null | null |
3 | 2404.08230v1 | 13 | [
155.26257106236048,
226.46634928385416,
454.2464163643973,
294.17933146158856
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{MIMIC: Performance and Fairness of Models from Proposed Method, Reweighing Method, and Baseline Model}
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Score} & \textbf{Model 23} & \cellcolor[gray]{0.8}\textbf{Model 40} & \textbf{Reweighing} & \textbf{Baseline Model} \\ \hline
\textbf{Accuracy} & 0.879 & \cellcolor[gray]{0.8}0.883 & 0.883 & 0.866 \\ \hline
\textbf{AUROC} & 0.771 & \cellcolor[gray]{0.8}0.797 & 0.777 & 0.603 \\ \hline
\textbf{AUPRC} & 0.354 & \cellcolor[gray]{0.8}0.367 & 0.332 & 0.181\\ \hline
\textbf{DI Ratio} & 0.99 & \cellcolor[gray]{0.8}1.043 & 1.188 & 1.308 \\ \hline
\textbf{Diff in FN} & 0.0199 & \cellcolor[gray]{0.8}0.005 & -0.05 & 0.005 \\ \hline
\end{tabular}
\label{mimic_pareto_scores}
\end{table} | [
[
"Score",
"Model 23",
"Model 40",
"Reweighing",
"Baseline Model"
],
[
"Accuracy",
"0.879",
"0.883",
"0.883",
"0.866"
],
[
"AUROC",
"0.771",
"0.797",
"0.777",
"0.603"
],
[
"AUPRC",
"0.354",
"0.367",
"0.332",
"0.181"
],
[
"DI Ratio",
"0.99",
"1.043",
"1.188",
"1.308"
],
[
"Diff in FN",
"0.0199",
"0.005",
"-0.05",
"0.005"
]
] | 0.769231 | null | null |
4 | 2404.08230v1 | 15 | [
133.0368398030599,
334.9419860839844,
476.4723307291667,
391.4800109863281
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: F1 and Fairness Scores for Altered Data Experiments}
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Label} & \textbf{F1 Score} & \textbf{DI Ratio Score} & \textbf{Diff in FN} & \textbf{Diff in FP} \\ \hline
Morning-Sad-Happy & 0.749 & 1.153 & -0.041 & 0.0979 \\ \hline
Morning-Stressed-Calm & 0.803 & 1.045 & -0.009 & 0.073 \\ \hline
Evening-Sad-Happy & 0.798 & \cellcolor[gray]{0.8}1.291 & -0.123 & 0.088 \\ \hline
Evening-Stressed-Calm & 0.788 & 1.0536 & -0.0281 & 0.048 \\ \hline
\end{tabular}
\label{snap_altered_results}
\end{table} | [
[
"Label",
"F1 Score",
"DI Ratio Score",
"Diff in FN",
"Diff in FP"
],
[
"Morning-Sad-Happy",
"0.749",
"1.153",
"-0.041",
"0.0979"
],
[
"Morning-Stressed-Calm",
"0.803",
"1.045",
"-0.009",
"0.073"
],
[
"Evening-Sad-Happy",
"0.798",
"1.291",
"-0.123",
"0.088"
],
[
"Evening-Stressed-Calm",
"0.788",
"1.0536",
"-0.0281",
"0.048"
]
] | 0.926733 | null | null |
5 | 2404.08230v1 | 19 | [
117.90699768066406,
87.02301025390625,
491.60198974609375,
265.155029296875
] | \begin{table}[htbp]
\centering
\caption{ADULT: List of extracted features}
\begin{tabular}{c|c}
\hline
Feature & Classes \\ \hline
Age & Continuous \\ \hline
Education & \begin{tabular}[c]{@{}c@{}} Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, \\ HS-grad, Some-college, Assoc-voc, Assoc-acdm, Prof-school, Bachelors, \\ Masters, Doctorate \end{tabular} \\ \hline
Marital Status & \begin{tabular}[c]{@{}c@{}} Married-civ-spouse, Divorced, Never-married, Separated, Widowed, \\ Married-spouse-absent, Married-AF-spouse \end{tabular}
\\ \hline
Occupation & \begin{tabular}[c]{@{}c@{}} Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, \\ Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, \\ Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, \\ Armed-Forces \end{tabular}
\\ \hline
Race & White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
\\ \hline
Relationship & Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried
\\ \hline
Sex & Female, Male
\\ \hline
Workclass & \begin{tabular}[c]{@{}c@{}} Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, State-gov, \\ Without-pay, Never-worked \end{tabular}
\\ \hline
\end{tabular}
\label{tab:adult}
\end{table} | [
[
"Feature",
"Classes"
],
[
"Age",
"Continuous"
],
[
"Education",
"Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th,\nHS-grad, Some-college, Assoc-voc, Assoc-acdm, Prof-school, Bachelors,\nMasters, Doctorate"
],
[
"Marital Status",
"Married-civ-spouse, Divorced, Never-married, Separated, Widowed,\nMarried-spouse-absent, Married-AF-spouse"
],
[
"Occupation",
"Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,\nProf-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,\nFarming-fishing, Transport-moving, Priv-house-serv, Protective-serv,\nArmed-Forces"
],
[
"Race",
"White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black"
],
[
"Relationship",
"Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried"
],
[
"Sex",
"Female, Male"
],
[
"Workclass",
"Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, State-gov,\nWithout-pay, Never-worked"
]
] | 0.455238 | null | null |
6 | 2404.08230v1 | 21 | [
189.05135169396033,
147.15802001953125,
420.4590565074574,
429.84698486328125
] | \begin{table}[htbp]
\centering
%\resizebox{\columnwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{MIMIC-III: Demographic Distributions}
\begin{tabular}{|l|l|l|}
\hline
& \textbf{Patients n(\%)} & \textbf{IHM rate (\%)} \\ \hline
\textbf{Totals} & 18,094 & 13.23 \\ \hline
\textbf{Age} \\ \hline
0-17 & 0 (0.0) & 0 \\ \hline
18-29 & 782 (4.3) & 5.6 \\ \hline
30-49 & 2,680 (14.8) & 9.3 \\ \hline
50-69 & 6,636 (36.7) & 11.1 \\ \hline
70-89 & 7,043 (38.9) & 16.5 \\ \hline
90+ & 953 (5.3) & 21.8 \\ \hline
\textbf{Gender} \\ \hline
Female & 8,090 (44.7) & 13.5 \\ \hline
Male & 10,004 (55.3) & 13 \\ \hline
\textbf{Insurance} \\ \hline
Medicare & 10,337 (57.1) & 15.3 \\ \hline
Medicaid & 1,489 (8.2) & 10.3 \\ \hline
Private & 5,601 (31.0) & 10.2 \\ \hline
Other & 667 (3.7) & 11.6 \\ \hline
\textbf{Marital Status} \\ \hline
Married & 8,564 (45.3) & 46.4 \\ \hline
Single & 4,422 (24.4) & 19.3 \\ \hline
Widowed & 2,654 (14.7) & 17.4 \\ \hline
Divorced & 1,119 (6.2) & 5.4 \\ \hline
Separated & 194 (1.0) & 1.1 \\ \hline
Unknown (default) & 302 (1.7) & 1.1 \\ \hline
Life partner & 5 (0.03) & 0 \\ \hline
\end{tabular}
\label{mimic_demo_dist}
\end{table} | [
[
"",
"Patients n(%)",
"IHM rate (%)"
],
[
"Totals",
"18,094",
"13.23"
],
[
"Age",
"",
null
],
[
"0-17",
"0 (0.0)",
"0"
],
[
"18-29",
"782 (4.3)",
"5.6"
],
[
"30-49",
"2,680 (14.8)",
"9.3"
],
[
"50-69",
"6,636 (36.7)",
"11.1"
],
[
"70-89",
"7,043 (38.9)",
"16.5"
],
[
"90+",
"953 (5.3)",
"21.8"
],
[
"Gender",
"",
null
],
[
"Female",
"8,090 (44.7)",
"13.5"
],
[
"Male",
"10,004 (55.3)",
"13"
],
[
"Insurance",
"",
null
],
[
"Medicare",
"10,337 (57.1)",
"15.3"
],
[
"Medicaid",
"1,489 (8.2)",
"10.3"
],
[
"Private",
"5,601 (31.0)",
"10.2"
],
[
"Other",
"667 (3.7)",
"11.6"
],
[
"Marital Status",
"",
null
],
[
"Married",
"8,564 (45.3)",
"46.4"
],
[
"Single",
"4,422 (24.4)",
"19.3"
],
[
"Widowed",
"2,654 (14.7)",
"17.4"
],
[
"Divorced",
"1,119 (6.2)",
"5.4"
],
[
"Separated",
"194 (1.0)",
"1.1"
],
[
"Unknown (default)",
"302 (1.7)",
"1.1"
],
[
"Life partner",
"5 (0.03)",
"0"
]
] | 0.96745 | null | null |
7 | 2404.08230v1 | 22 | [
72.18974179999773,
118.593017578125,
539.8102800236192,
400.4849853515625
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Sleep and Nap Related Survey Data}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|l|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
State Score & State anxiety score\\ \hline
no\_sleep\_24 & Number of times participant slept in 24 hours. \\ \hline
sleep\_latency & Time taken to fall asleep\\ \hline
pre\_sleep\_activity & What activity the participant performed before going to sleep. \\ \hline
awakening & If the participant woke up through the night (yes or no) \\ \hline
awakening\_occations & Number of awakenings\\ \hline
wake\_reason & How the participant woke up (spontaneously, alarm, or disturbance). \\ \hline
count\_awakening & How many times participant woke up through the night. \\ \hline
awakening\_duration & How long was the participant awake for if they woke up through the night. \\ \hline
nap & If the participant took a nap (yes or no) \\ \hline
nap\_occations & Number of naps \\ \hline
count\_nap & How many times the participant took a nap. \\ \hline
nap\_duration & How long the nap was. \\ \hline
first\_event\_none & If an event is scheduled that day (yes or no)\\ \hline
time\_in\_bed & How long the participant spent in bed for the day. \\ \hline
sleep\_try\_time\_mins\_since\_midnight & What time the participant tries to go to sleep \\ \hline
wake\_time\_mins\_since\_midnight & Wake time in minutes since midnight\\ \hline
first\_event\_mins\_since\_midnight & first event time in minutes since midnight\\ \hline
presleep\_media\_interaction & If the participant has presleep media interaction (yes or no) \\ \hline
presleep\_personal\_interaction & If the participant has presleep personal interaction (yes or no) \\ \hline
positive\_interaction & If the participant had any positive interactions with someone for the day (yes or no). \\ \hline
negative\_interaction & If the participant had any negative interactions with someone for the day (yes or no). \\ \hline
\end{tabularx}
%\end{tabular}
\label{snap_sleep_feature_description}
\end{table} | [
[
"Features",
"Description"
],
[
"State Score",
"State anxiety score"
],
[
"no_sleep_24",
"Number of times participant slept in 24 hours."
],
[
"sleep_latency",
"Time taken to fall asleep"
],
[
"pre_sleep_activity",
"What activity the participant performed before going to sleep."
],
[
"awakening",
"If the participant woke up through the night (yes or no)"
],
[
"awakening_occations",
"Number of awakenings"
],
[
"wake_reason",
"How the participant woke up (spontaneously, alarm, or disturbance)."
],
[
"count_awakening",
"How many times participant woke up through the night."
],
[
"awakening_duration",
"How long was the participant awake for if they woke up through the night."
],
[
"nap",
"If the participant took a nap (yes or no)"
],
[
"nap_occations",
"Number of naps"
],
[
"count_nap",
"How many times the participant took a nap."
],
[
"nap_duration",
"How long the nap was."
],
[
"first_event_none",
"If an event is scheduled that day (yes or no)"
],
[
"time_in_bed",
"How long the participant spent in bed for the day."
],
[
"sleep_try_time_mins_since_midnight",
"What time the participant tries to go to sleep"
],
[
"wake_time_mins_since_midnight",
"Wake time in minutes since midnight"
],
[
"first_event_mins_since_midnight",
"first event time in minutes since midnight"
],
[
"presleep_media_interaction",
"If the participant has presleep media interaction (yes or no)"
],
[
"presleep_personal_interaction",
"If the participant has presleep personal interaction (yes or no)"
],
[
"positive_interaction",
"If the participant had any positive interactions with someone for the day\n(yes or no)."
],
[
"negative_interaction",
"If the participant had any negative interactions with someone for the day\n(yes or no)."
]
] | 0.936683 | null | null |
8 | 2404.08230v1 | 22 | [
72.18974179999773,
485.7560119628906,
539.8102800236192,
689.2919921875
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Activity Related Survey Data}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|l|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
academic & If the participant attended any academic activities (yes or no). \\ \hline
count\_academic & How many academic activities the participant attended. \\ \hline
academic\_duration & How long the participant spent on academic activities \\ \hline
study\_duration & How many hours participant studied for, outside of academic activities. \\ \hline
exercise & If the participants engaged in any exercise-based activities (yes or no) \\ \hline
exercise\_occations & How many times the participant engaged in exercise-based activities. \\ \hline
exercise\_duration & For how long the participant exercised. \\ \hline
extracurricular & If the participant attended any other extracurricular activities (yes or no). \\ \hline
count\_extracurricular & How many extracurricular activities the participant attended in the day. \\ \hline
extracurricular\_duration & How long the participant attended extracurricular activities for. \\ \hline
overslept & If the participant overslept and missed any scheduled events.\\ \hline
caffeine\_count & Total servings of caffeine participant had for the day. \\ \hline
drugs & If the participant had any other drugs or medication besides (yes or no). \\ \hline
drugs\_alcohol & If the participant had any alcohol (yes or no). \\ \hline
drugs\_alert & If the participant had any drugs to keep them alert (yes or no). \\ \hline
drugs\_sleepy & If the participant had any drugs that made them sleepy (yes or no). \\ \hline
drugs\_tired & If the participant had any drugs that made them tired (yes or no).\\ \hline
\end{tabularx}
%\end{tabular}
\label{snap_activity_feature_description}
\end{table} | [
[
"Features",
"Description"
],
[
"academic",
"If the participant attended any academic activities (yes or no)."
],
[
"count_academic",
"How many academic activities the participant attended."
],
[
"academic_duration",
"How long the participant spent on academic activities"
],
[
"study_duration",
"How many hours participant studied for, outside of academic activities."
],
[
"exercise",
"If the participants engaged in any exercise-based activities (yes or no)"
],
[
"exercise_occations",
"How many times the participant engaged in exercise-based activities."
],
[
"exercise_duration",
"For how long the participant exercised."
],
[
"extracurricular",
"If the participant attended any other extracurricular activities (yes or no)."
],
[
"count_extracurricular",
"How many extracurricular activities the participant attended in the day."
],
[
"extracurricular_duration",
"How long the participant attended extracurricular activities for."
],
[
"overslept",
"If the participant overslept and missed any scheduled events."
],
[
"caffeine_count",
"Total servings of caffeine participant had for the day."
],
[
"drugs",
"If the participant had any other drugs or medication besides (yes or no)."
],
[
"drugs_alcohol",
"If the participant had any alcohol (yes or no)."
],
[
"drugs_alert",
"If the participant had any drugs to keep them alert (yes or no)."
],
[
"drugs_sleepy",
"If the participant had any drugs that made them sleepy (yes or no)."
],
[
"drugs_tired",
"If the participant had any drugs that made them tired (yes or no)."
]
] | 0.98422 | null | null |
9 | 2404.08230v1 | 23 | [
72.18904762268066,
97.9329833984375,
539.8120795355903,
389.1400146484375
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Electrodermal Activity and Skin Conductance Features Extracted from Wearable Sensor Data}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|X|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
\textbf{Electrodermal activity (EDA) Peak Features} \\ \hline
Sum AUC & Sum of the AUC of all peaks for this period where
the amplitude of the peak is calculated as the difference
from base tonic signal \\ \hline
Sum AUC Full & Sum of AUC of peaks where amplitude is calculated as difference from 0 \\ \hline
Median RiseTime & Median rise time for peaks (seconds) \\ \hline
Median Amplitude & Median amplitude of peaks ($\mu$S) \\ \hline
Count Peaks & Number of detected peaks \\ \hline
SD Peaks 30 min & Compute number of peaks per 30 minute epoch, take standard deviation of this signal \\ \hline
Med Peaks 30 min & Compute number of peaks per 30 minute epoch, take median of this signal \\ \hline
Percent Med Peak & Percentage of signal containing 1 minute epochs with
greater than 5 peaks \\ \hline
Percent High Peak & Same as Percent Med Peak \\ \hline
\textbf{Skin Conductance Level (SCL) Features} \\ \hline
Percent Off & Percentage of period where sensor was off \\ \hline
Max Unnorm & Maximum level of un-normalized EDA signal \\ \hline
Med Unnorm & Median of un-normalized EDA signal \\ \hline
Mean Unnorm & Mean of un-normalized EDA signal \\ \hline
Median Norm & Median of z-score normalized EDA signal \\ \hline
SD Norm & Standard Deviation of z-score normalized EDA signal \\ \hline
Mean Deriv & Mean derivative of z-score normalized EDA signal ($\mu$S/second) \\ \hline
\end{tabularx}
%\end{tabular}
\label{snap_sensor_feature_description}
\end{table} | [
[
"Features",
"Description"
],
[
"Electrodermal activity (EDA) Peak Features",
""
],
[
"Sum AUC",
"Sum of the AUC of all peaks for this period where the\namplitude of the peak is calculated as the difference from\nbase tonic signal"
],
[
"Sum AUC Full",
"Sum of AUC of peaks where amplitude is calculated as\ndifference from 0"
],
[
"Median RiseTime",
"Median rise time for peaks (seconds)"
],
[
"Median Amplitude",
"Median amplitude of peaks (µS)"
],
[
"Count Peaks",
"Number of detected peaks"
],
[
"SD Peaks 30 min",
"Compute number of peaks per 30 minute epoch, take\nstandard deviation of this signal"
],
[
"Med Peaks 30 min",
"Compute number of peaks per 30 minute epoch, take\nmedian of this signal"
],
[
"Percent Med Peak",
"Percentage of signal containing 1 minute epochs with\ngreater than 5 peaks"
],
[
"Percent High Peak",
"Same as Percent Med Peak"
],
[
"Skin Conductance Level (SCL) Features",
""
],
[
"Percent Off",
"Percentage of period where sensor was off"
],
[
"Max Unnorm",
"Maximum level of un-normalized EDA signal"
],
[
"Med Unnorm",
"Median of un-normalized EDA signal"
],
[
"Mean Unnorm",
"Mean of un-normalized EDA signal"
],
[
"Median Norm",
"Median of z-score normalized EDA signal"
],
[
"SD Norm",
"Standard Deviation of z-score normalized EDA signal"
],
[
"Mean Deriv",
"Mean derivative of z-score normalized EDA signal\n(µS/second)"
]
] | 0.985201 | null | null |
10 | 2404.08230v1 | 24 | [
72.18995215676047,
97.9329833984375,
539.8109741210938,
422.66400146484375
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Accelerometer and Skin Temperature Features Extracted from Wearable Sensor Data}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|l|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
\textbf{Accelerometer Features} \\ \hline
Step Count & Number of steps detected \\ \hline
Mean Movement Step Time & Average number of samples (at 8Hz) between two steps (aggregated first to 1 minute, then we take the mean of only the
parts of this signal occurring during movement) \\ \hline
Stillness Percent & Percentage of time the person spent nearly motionless \\ \hline
Sum Stillness weighted AUC & Sum the weights of the peak AUC signal by how still the user was every 5 minutes \\ \hline
Sum Steps Weighted AUC & Sum the weights of the peak AUC signal by the step count over every 5 minutes \\ \hline
Sum Stillness Weighted Peaks & Multiply the number of peaks every 5 minutes by the
amount of stillness during that period \\ \hline
Max Stillness Weighted Peaks & Max value for the number of peaks multiplied by the stillness for any five minute period \\ \hline
Sum Steps Weighted Peaks & Divide number of peaks every five minutes by step count and sum \\ \hline
Med Steps Weighted Peaks & Average value of number of peaks divided by step count for every 5 mins \\ \hline
\textbf{Skin Temperature (ST) Features} \\ \hline
Max Raw Temp & Maximum of the raw temperature signal (\textdegree C) \\ \hline
Min Raw Temp & Minimum of the raw temperature signal (\textdegree C) \\ \hline
SD Raw Temp & Standard deviation of the raw temperature signal \\ \hline
Med Raw Temp & Standard deviation of the raw temperature signal \\ \hline
Sum Temp Weighted AUC & Sum of peak AUC divided by the average temp for every 5 minutes \\ \hline
Sum Temp Weighted Peaks & Number of peaks divided by the average temp for every 5 minutes \\ \hline
Max Temp Weighted Peaks & Maximum number of peaks in any 5 minute period
divided by the average temperature \\ \hline
SD Stillness Temp & Standard deviation of the temperature recorded during periods when
the person was still \\ \hline
Med Stillness Temp & Median of the temperature recorded during periods when
the person was still \\ \hline
\end{tabularx}
%\end{tabular}
\label{snap_sensor_feature_description2}
\end{table} | [
[
"Features",
"Description"
],
[
"Accelerometer Features",
""
],
[
"Step Count",
"Number of steps detected"
],
[
"Mean Movement Step Time",
"Average number of samples (at 8Hz) between two steps (aggregated first to 1\nminute, then we take the mean of only the parts of this signal occurring during\nmovement)"
],
[
"Stillness Percent",
"Percentage of time the person spent nearly motionless"
],
[
"Sum Stillness weighted AUC",
"Sum the weights of the peak AUC signal by how still the user was every 5\nminutes"
],
[
"Sum Steps Weighted AUC",
"Sum the weights of the peak AUC signal by the step count over every 5\nminutes"
],
[
"Sum Stillness Weighted Peaks",
"Multiply the number of peaks every 5 minutes by the amount of stillness\nduring that period"
],
[
"Max Stillness Weighted Peaks",
"Max value for the number of peaks multiplied by the stillness for any fvie\nminute period"
],
[
"Sum Steps Weighted Peaks",
"Divide number of peaks every fvie minutes by step count and sum"
],
[
"Med Steps Weighted Peaks",
"Average value of number of peaks divided by step count for every 5 mins"
],
[
"Skin Temperature (ST) Features",
""
],
[
"Max Raw Temp",
"Maximum of the raw temperature signal (°C)"
],
[
"Min Raw Temp",
"Minimum of the raw temperature signal (°C)"
],
[
"SD Raw Temp",
"Standard deviation of the raw temperature signal"
],
[
"Med Raw Temp",
"Standard deviation of the raw temperature signal"
],
[
"Sum Temp Weighted AUC",
"Sum of peak AUC divided by the average temp for every 5 minutes"
],
[
"Sum Temp Weighted Peaks",
"Number of peaks divided by the average temp for every 5 minutes"
],
[
"Max Temp Weighted Peaks",
"Maximum number of peaks in any 5 minute period divided by the average\ntemperature"
],
[
"SD Stillness Temp",
"Standard deviation of the temperature recorded during periods when the person\nwas still"
],
[
"Med Stillness Temp",
"Median of the temperature recorded during periods when the person was still"
]
] | 0.982245 | null | null |
11 | 2404.08230v1 | 25 | [
72.19070593516032,
96.2769775390625,
539.809315999349,
479.93701171875
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Features Extracted from Weather API 1}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|l|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
Sunrise & Time of sunrise (UTC) \\ \hline
Moon\_phase & Moon phase value on a scale of 0−1(new moon-full moon) \\ \hline
Apparent\_temp\_max & Maximum apparent temperature of the day (\textdegree F) \\ \hline
Apparent\_temp\_min & Minimum apparent temperature of the day (\textdegree F) \\ \hline
Temperature\_max & Maximum temperature of the day (\textdegree F) \\ \hline
Temperature\_min & Minimum temperature of the day (\textdegree F) \\ \hline
Avg\_cloud\_cover & Percentage of sky covered by cloud on a scale of 0-1 \\ \hline
Avg\_dew\_point & Average dew point temperature \\ \hline
Avg\_humidity & Daily average value of humidity on a scale of 0-1 \\ \hline
Avg\_pressure & Average atmospheric pressure on the sea level (hPa) \\ \hline
Morning\_pressure\_change & Trinary value of pressure difference between midnight and noon (rising, falling, steady) \\ \hline
Evening\_pressure\_change & Trinary value of pressure difference between noon and midnight (rising, falling, steady) \\ \hline
Avg\_visibility & Average visibility (meters) \\ \hline
weather\_precip\_probability & Precipitation probability \\ \hline
Temperature\_rolling\_mean & Rolling average of temperature \\ \hline
Temperature\_rolling\_std & Rolling standard deviation of temperature \\ \hline
apparentTemperature\_rolling\_mean & Rolling average of apparent temperature \\ \hline
apparentTemperature\_rolling\_std & Rolling standard deviation of apparent temperature \\ \hline
apparentTemperature\_today\_vs\_avg\_past & Difference between today’s apparent temperature and its rolling average \\ \hline
pressure\_rolling\_mean & Rolling average of pressure \\ \hline
pressure\_rolling\_std & Rolling standard deviation of pressure \\ \hline
apparentTemperature\_today\_vs\_avg\_past & Difference in today’s apparent temperature and its rolling average \\ \hline
pressure\_rolling\_mean & Rolling average of pressure \\ \hline
pressure\_rolling\_std & Rolling standard deviation of pressure \\ \hline
pressure\_today\_vs\_avg\_past & Difference between today’s pressure and its rolling average \\ \hline
cloudCover\_rolling\_mean & Rolling average of cloud cover \\ \hline
cloudCover\_rolling\_std & Rolling standard deviation of cloud cover \\ \hline
cloudCover\_today\_vs\_avg\_past & Difference between today’s cloud cover and its rolling average \\ \hline
humidity\_rolling\_mean & Rolling average humidity \\ \hline
humidity\_rolling\_std & Rolling standard deviation humidity \\ \hline
humidity\_today\_vs\_avg\_past & Difference between today’s humidity and its rolling average \\ \hline
\end{tabularx}
\label{snap_weather_feature_description}
\end{table} | [
[
"Features",
"Description"
],
[
"Sunrise",
"Time of sunrise (UTC)"
],
[
"Moon_phase",
"Moon phase value on a scale of 0-1(new moon-full moon)"
],
[
"Apparent_temp_max",
"Maximum apparent temperature of the day (°F)"
],
[
"Apparent_temp_min",
"Minimum apparent temperature of the day (°F)"
],
[
"Temperature_max",
"Maximum temperature of the day (°F)"
],
[
"Temperature_min",
"Minimum temperature of the day (°F)"
],
[
"Avg_cloud_cover",
"Percentage of sky covered by cloud on a scale of 0-1"
],
[
"Avg_dew_point",
"Average dew point temperature"
],
[
"Avg_humidity",
"Daily average value of humidity on a scale of 0-1"
],
[
"Avg_pressure",
"Average atmospheric pressure on the sea level (hPa)"
],
[
"Morning_pressure_change",
"Trinary value of pressure difference between midnight and noon (rising,\nfalling, steady)"
],
[
"Evening_pressure_change",
"Trinary value of pressure difference between noon and midnight (rising,\nfalling, steady)"
],
[
"Avg_visibility",
"Average visibility (meters)"
],
[
"weather_precip_probability",
"Precipitation probability"
],
[
"Temperature_rolling_mean",
"Rolling average of temperature"
],
[
"Temperature_rolling_std",
"Rolling standard deviation of temperature"
],
[
"apparentTemperature_rolling_mean",
"Rolling average of apparent temperature"
],
[
"apparentTemperature_rolling_std",
"Rolling standard deviation of apparent temperature"
],
[
"apparentTemperature_today_vs_avg_past",
"Difference between today’s apparent temperature and its rolling average"
],
[
"pressure_rolling_mean",
"Rolling average of pressure"
],
[
"pressure_rolling_std",
"Rolling standard deviation of pressure"
],
[
"apparentTemperature_today_vs_avg_past",
"Difference in today’s apparent temperature and its rolling average"
],
[
"pressure_rolling_mean",
"Rolling average of pressure"
],
[
"pressure_rolling_std",
"Rolling standard deviation of pressure"
],
[
"pressure_today_vs_avg_past",
"Difference between today’s pressure and its rolling average"
],
[
"cloudCover_rolling_mean",
"Rolling average of cloud cover"
],
[
"cloudCover_rolling_std",
"Rolling standard deviation of cloud cover"
],
[
"cloudCover_today_vs_avg_past",
"Difference between today’s cloud cover and its rolling average"
],
[
"humidity_rolling_mean",
"Rolling average humidity"
],
[
"humidity_rolling_std",
"Rolling standard deviation humidity"
],
[
"humidity_today_vs_avg_past",
"Difference between today’s humidity and its rolling average"
]
] | 0.710638 | null | null |
12 | 2404.08230v1 | 25 | [
72.19070593516032,
520.5750122070312,
539.809315999349,
711.6090087890625
] | \begin{table}[htbp]
\centering
%\resizebox{\textwidth}{!}{
%\renewcommand{\arraystretch}{1.3}
\caption{SNAPSHOT: Description of Features Extracted from Weather API 2}
%\begin{tabular}{|l|l|}
\begin{tabularx}{\textwidth}{|l|X|}
\hline
\textbf{Features} & \textbf{Description} \\ \hline
windSpeed\_rolling\_mean & Rolling average of wind speed \\ \hline
windSpeed\_rolling\_std & Rolling standard deviation of wind speed \\ \hline
windSpeed\_today\_vs\_avg\_past & Difference between today’s wind speed and its rolling average \\ \hline
precipProbability\_rolling\_mean & Rolling average of precipitation probability \\ \hline
precipProbability\_rolling\_std & Rolling standard deviation of precipitation probability \\ \hline
precipProbability\_today\_vs\_avg\_past & Difference between current precipitation probability and its rolling average \\ \hline
sunlight & Duration of sunlight (sec) \\ \hline
quality\_of\_day & Quality of the day defined in terms of 8 categories in the range {−4, 4}: clear=4, partly-cloudy=3, cloudy=2, wind=1, fog=-1, rain=-2, sleet=-3, snow=-4 \\ \hline
avg\_quality\_of\_day & Average value for quality\_of\_day \\ \hline
precipType & Type of precipitation as integer: None=0, Rain=1, Hail=2, Sleet=3, Snow=4, Other=5 \\ \hline
max\_precip\_intensity & Maximum Precipitation volume (mm) \\ \hline
median\_wind\_speed & Median wind speed of the day (meter/sec) \\ \hline
median\_wind\_bearing & Median wind bearing of the day (degrees) \\ \hline
\end{tabularx}
\label{snap_weather_feature_description2}
\end{table} | [
[
"Features",
"Description"
],
[
"windSpeed_rolling_mean",
"Rolling average of wind speed"
],
[
"windSpeed_rolling_std",
"Rolling standard deviation of wind speed"
],
[
"windSpeed_today_vs_avg_past",
"Difference between today’s wind speed and its rolling average"
],
[
"precipProbability_rolling_mean",
"Rolling average of precipitation probability"
],
[
"precipProbability_rolling_std",
"Rolling standard deviation of precipitation probability"
],
[
"precipProbability_today_vs_avg_past",
"Difference between current precipitation probability and its rolling average"
],
[
"sunlight",
"Duration of sunlight (sec)"
],
[
"quality_of_day",
"Quality of the day defined in terms of 8 categories in the range -4, 4:\nclear=4, partly-cloudy=3, cloudy=2, wind=1, fog=-1, rain=-2, sleet=-3,\nsnow=-4"
],
[
"avg_quality_of_day",
"Average value for quality_of_day"
],
[
"precipType",
"Type of precipitation as integer: None=0, Rain=1, Hail=2, Sleet=3,\nSnow=4, Other=5"
],
[
"max_precip_intensity",
"Maximum Precipitation volume (mm)"
],
[
"median_wind_speed",
"Median wind speed of the day (meter/sec)"
],
[
"median_wind_bearing",
"Median wind bearing of the day (degrees)"
]
] | 0.903415 | null | null |
0 | 2309.00730v1 | 3 | [
148.47900390625,
162.80401611328125,
463.52099609375,
344.55499267578125
] | \begin{table}[ht]
\caption{Here we define criteria deemed mandatory for extreme AO systems (i.e., any method in development cannot sacrifice these), and criteria that we could potentially gain with future technology developments. }
\label{tab:criteria}
\begin{center}
\begin{tabular}{|l|l|} %% this creates two columns
%% |l|l| to left justify each column entry
%% |c|c| to center each column entry
%% use of \rule[]{}{} below opens up each row
\hline
\rule[-1ex]{0pt}{3.5ex} mandatory criteria & \\
\hline
\rule[-1ex]{0pt}{3.5ex} & achieves at least 60\% Strehl ratio in the IR \\
\rule[-1ex]{0pt}{3.5ex} & runs in real time \\
\rule[-1ex]{0pt}{3.5ex} & robust over a full night \\
\rule[-1ex]{0pt}{3.5ex} & accounts for static NCPAs \\
\hline
\rule[-1ex]{0pt}{3.5ex} ideal criteria & \\
\hline
\rule[-1ex]{0pt}{3.5ex} & accounts for non-linearities \\
\rule[-1ex]{0pt}{3.5ex} & does not require high fidelity instrument model \\
\rule[-1ex]{0pt}{3.5ex} & high sky coverage at high performance \\
\rule[-1ex]{0pt}{3.5ex} & tunable and flexible \\
\rule[-1ex]{0pt}{3.5ex} & accounts for \textit{dynamic} NCPAs \\
\rule[-1ex]{0pt}{3.5ex} & does not require consistent operator attention \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"mandatory criteria",
""
],
[
"",
"achieves at least 60% Strehl ratio in the IR\nruns in real time\nrobust over a full night\naccounts for static NCPAs"
],
[
"ideal criteria",
""
],
[
"",
"accounts for non-linearities\ndoes not require high fidelity instrument model\nhigh sky coverage at high performance\ntunable and flexible\naccounts for dynamic NCPAs\ndoes not require consistent operator attention"
]
] | 0.50797 | null | null |
0 | 2011.05537v1 | 15 | [
108.17056928362165,
211.72900390625,
531.3115931919643,
411.3800048828125
] | \begin{table}
\begin{tabular}{|p{0.15\linewidth}|p{0.1\linewidth}|p{0.1\linewidth}|p{0.1\linewidth}|p{0.1\linewidth}|p{0.2\linewidth}|p{0.1\linewidth}|}
\hline
Dataset Name & Samples & Continuous Features & Categorical Features & Total Features & Class Distributions & UCI Link \\ \hline
Adult & 48842 & 6 & 8 & 14 & 24.78\% positive (binary imbalanced) & \href{http://archive.ics.uci.edu/ml/datasets/Adult}{UCI} \\ \hline
Bank Marketing & 45211 & 8 & 12 & 20 & N/A (binary) & \href{https://archive.ics.uci.edu/ml/datasets/Bank+Marketing#}{UCI} \\ \hline
Car Evaluation & 1728 & 0 & 6 & 6 & 0 - 70.023 \%, 1 - 22.222 \%, 2 - 3.993 \%, 3 - 3.762 \% (multiclass imbalanced) & \href{https://archive.ics.uci.edu/ml/datasets/Car+Evaluation}{UCI} \\ \hline
Mushroom & 8124 & 0 & 22 & 22 & 51.8\% positive (binary balanced) & \href{https://archive.ics.uci.edu/ml/datasets/Mushroom}{UCI} \\ \hline
Online Shoppers Purchasing Intention (Shopping) & 12330 & 10 & 8 & 18 & 84.5\% negative (binary imbalanced) & \href{https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset#}{UCI} \\ \hline
\end{tabular}
\caption{Details on Public Datasets used for benchmarking.}
\end{table} | [
[
"Dataset Name",
"Samples",
"Continuous\nFeatures",
"Categorical\nFeatures",
"Total\nFeatures",
"Class Distributions",
"UCI Link"
],
[
"Adult",
"48842",
"6",
"8",
"14",
"24.78% positive\n(binary imbal-\nanced)",
"UCI"
],
[
"Bank Market-\ning",
"45211",
"8",
"12",
"20",
"N/A (binary)",
"UCI"
],
[
"Car Evaluation",
"1728",
"0",
"6",
"6",
"0 - 70.023 %, 1\n- 22.222 %, 2 -\n3.993 %, 3 - 3.762\n% (multiclass im-\nbalanced)",
"UCI"
],
[
"Mushroom",
"8124",
"0",
"22",
"22",
"51.8% positive (bi-\nnary balanced)",
"UCI"
],
[
"Online Shop-\npers Purchas-\ning Intention\n(Shopping)",
"12330",
"10",
"8",
"18",
"84.5% negative (bi-\nnary imbalanced)",
"UCI"
]
] | 0.617284 | null | null |
0 | 1907.02677v3 | 8 | [
322.5270965576172,
600.2030029296875,
549.347998046875,
690.6640014648438
] | \begin{table}[htbp]
\caption{Details of the SNMP trap capture at Dartmouth College.} \label{tab:stats}
\centering{
\small{
\begin{tabular}{|l|c|}
\hline \textbf{Statistic}
& \textbf{Number} \\
\hline Capture period & Jan 1st 2012 - Dec 31st 2018 \\
& (2556 days) \\
log entries (SNMP traps) & 5 Billion \\ %Data
%Size (compressed) & 371 GB \\
Data Size (raw) & 7 TB \\
Access points & 3,330 \\
Authenticated Users & 38,096 \\
Stations & 624,903 \\
SSIDs & 20 \\ \hline
\end{tabular}
}}
\end{table} | [
[
"Statistic",
"Number"
],
[
"Capture period\nlog entries (SNMP traps)\nData Size (raw)\nAccess points\nAuthenticated Users\nStations\nSSIDs",
"Jan 1st 2012 - Dec 31st 2018\n(2556 days)\n5 Billion\n7 TB\n3,330\n38,096\n624,903\n20"
]
] | 0.50463 | null | null |
0 | 1608.05347v1 | 22 | [
90,
113.80403137207031,
522,
197.4110107421875
] | \begin{table}[h]
\centering
\begin{subtable}{0.5\textwidth}
\begin{tabular*}{\textwidth}{@{}l@{\extracolsep{\fill}}l|}
\toprule
\textbf{Parameter} & \textbf{Symbol} \\ \midrule
no. of trace instances & $K$ \\
global latent variables in trace $k$ & $\btheta_k$ \\
local latent variables in trace $k$ & $\Z_k$ \\
observation set in trace $k$ & $\D_k$ \\
input variable & $\y_r$ \\
evidence set & $\x_{[r,E]}$ \\
\bottomrule
\end{tabular*}
\end{subtable}%
\begin{subtable}{0.5\textwidth}
\begin{tabular*}{\textwidth}{ll}
\toprule
\textbf{Parameter} & \textbf{Symbol} \\ \midrule
weight of trace $k$ & $w_k$ \\
sample of $\z_{r}$ in trace $k$ & $\z_{[k,r]}$ \\
sample of $\x_{[r,Q]}$ in trace $k$ & $\x_{[k,r,Q]}$ \\
no. of internal Monte Carlo samples & $T$ \\
$t$-th Monte Carlo sample of $\z_{[k,r]}$ & $\z_{[k,t,r]}$ \\
weighted density estimate in trace $k$ & $q_k$ \\
\bottomrule
\end{tabular*}
\end{subtable}
\bcaption{Parameters and symbols used in
Algorithms~\ref{alg:venturescript-simulate} and
\ref{alg:venturescript-logpdf}.}{}
\end{table} | [
[
"no. of trace instances K\nglobal latent variables in trace k θ\nk\nlocal latent variables in trace k Z\nk\nobservation set in trace k\nDk\ninput variable y\nr\nevidence set x\n[r,E]",
"weight of trace k w\nk\nsample of z in trace k z\nr [k,r]\nsample of x in trace k x\n[r,Q] [k,r,Q]\nno. of internal Monte Carlo samples T\nt-th Monte Carlo sample of z z\n[k,r] [k,t,r]\nweighted density estimate in trace k q\nk"
]
] | 0.372311 | null | null |
1 | 1608.05347v1 | 26 | [
90,
113.80403137207031,
522,
243.530029296875
] | \begin{table}[ht]
\centering
\begin{tabular*}{\textwidth}{l|l}
\toprule
\textbf{Parameter} & \textbf{Symbol} \\ \midrule
number of importance samples & $J, J'$ \\
identifier of the population & $r$ \\
indices of CGPM nodes in the network & $k=1,2,\dots,K$ \\
CGPM representing node $k$ & $\G_k$ \\
parents of node $k$ & $\pi_k$ \\
input variables exogenous to network for node $k$ & $\y_{[k,r]}$ \\
query set for node $k$ & $\x_{[k,r,Q_k]}$ \\
evidence set for node $k$ & $\x_{[k,r,E_k]}$ \\
query/evidence sets aggregated over all nodes in network
& $\x_{[r,A]} = \underset{k\in[K]}{\cup}{\x_{[k,r,A_k]}}$ \\
\bottomrule
\end{tabular*}
\bcaption{%
Parameters and symbols used in Algorithms~\ref{alg:network-inference-simulate}, \ref{alg:network-inference-logpdf}, and \ref{alg:network-inference-forward}.}{%
All parameters provided to the functions in which they appear.
\textsc{Weighted-Sample} ignores \texttt{query} and \texttt{evidence} from the global environment, and is provided with an explicit set of constrained nodes by \textsc{Simulate} and \textsc{LogPdf}.}
\end{table} | [
[
"number of importance samples\nidentifier of the population\nindices of CGPM nodes in the network\nCGPM representing node k\nparents of node k\ninput variables exogenous to network for node k\nquery set for node k\nevidence set for node k\nquery/evidence sets aggregated over all nodes in network",
"J, J′\nr\nk = 1, 2, . . . , K\nGk\nπ\nk\ny\n[k,r]\nx\n[k,r,Qk]\nx\n[k,r,Ek]\nx [r,A] = k∈∪ [K]x [k,r,Ak]"
]
] | 0.417085 | null | null |
0 | 1812.05691v2 | 23 | [
122.81620178222656,
551.261962890625,
486.3707013811384,
629.1699829101562
] | \begin{table}[th]
\centering
\begin{small}\begin{tabular}{|
p{15mm}|c|c|c|c|c|c|c|c|c|c|}
\hline
& \textbf{(min)} & \multicolumn{7}{|c|}{\textbf{Dose level}} & \textbf{(max)} & \\ \cline{2-10}
\textbf{Model} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} & \textbf{6} & \textbf{7} & \textbf{8} & \textbf{All} \\ \hline
With Cancer Type & 1.01 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.01 & 1.01 & 1.01 \\ \hline
Without Cancer Type & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \hline
\end{tabular}
\end{small}
\caption{\label{tab:curve_prediction_cancer_type} Mean error results when including the cancer type as a feature, in addition to all molecular features, relative to using only the molecular features. Using the cancer type seems to add little-to-no new predictive power to the model.}
\end{table} | [
[
"Model",
"(min)",
"Dose level",
null,
null,
null,
null,
null,
null,
"(max)",
"All"
],
[
null,
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
null
],
[
"With Can-\ncer Type",
"1.01",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.01",
"1.01",
"1.01"
],
[
"Without\nCancer\nType",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00",
"1.00"
]
] | 0.502165 | null | null |
0 | 2109.11098v1 | 28 | [
109.79299926757812,
442.3080139160156,
502.4909973144531,
524.4000244140625
] | \begin{table}[h!]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Target & $c_{\mathrm{bckgr}}$ & computed $c_{\mathrm{rel}}$ & $c_{\mathrm{%
bckgr}}$ & computed $c_{\text{target}}$ & True $c_{\text{target}}$ \\ \hline
Bush & 1 & 7.62 & 1 & 10.99 & $[3,20]$ \\
Wood stake & 1 & 2.01 & 1 & 2.26 & $[2,6]$ \\
Metal box & 4 & 4.00 & $[3,5]$ & $[12.00,20.00]$ & $[10,30]$ \\
Metal cylinder & 4 & 4.01 & $[3,5]$ & $[12.3,20.5]$ & $[10,30]$ \\
Plastic cylinder & 4 & 0.59 & $[3,5]$ & $[1.6,2.95]$ & $\left[ 1.1,3.2\right]
$ \\ \hline
\end{tabular}%
\\[0pt]
\end{center}
\caption{Computed dielectric constants of five targets}
\label{tab1}
\end{table} | [
[
"Target",
"c\nbckgr",
"computed c\nrel",
"c\nbckgr",
"computed c\ntarget",
"True c\ntarget"
],
[
"Bush\nWood stake\nMetal box\nMetal cylinder\nPlastic cylinder",
"1\n1\n4\n4\n4",
"7.62\n2.01\n4.00\n4.01\n0.59",
"1\n1\n[3, 5]\n[3, 5]\n[3, 5]",
"10.99\n2.26\n[12.00, 20.00]\n[12.3, 20.5]\n[1.6, 2.95]",
"[3, 20]\n[2, 6]\n[10, 30]\n[10, 30]\n[1.1, 3.2]"
]
] | 0.402597 | null | null |
0 | 2207.10241v3 | 3 | [
140.17799377441406,
72.198974609375,
471.8219909667969,
128.73699951171875
] | \begin{table}[t!]
\begin{tabular}{ |c|c|c|c| }
\hline
& {Training dataset} & PDE instances & Enriched scheme
\\ \hline
PINN, DRM, DGM & not required & single instance & unavailable
\\ \hline
FNO, DON, DDM & required & multiple instances & unavailable
\\ \hline
PIDON, PINO & not required & multiple instances & unavailable
\\ \hline
ULGNet (ours) & not required & multiple instances & available
\\ \hline
\end{tabular}
% \begin{tabular}{ |c|c|c|c|c| }
% \hline
% & PINN, DRM, DGM & FNO, DON, DDM & PIDON &ULGNet (ours) \\ \hline
% Training dataset & not required & required & not required & not required\\ \hline
% PDE instances & single & multiple & multiple & multiple \\ \hline
% Enriched scheme & unavailable & unavailable & unavailable & available \\ \hline
% \end{tabular}
\caption{Comparison of machine learning approaches for solving PDEs.
Here, PINN, DRM, DGM, FNO, DON, DDM, PINO, and PIDON stand for Physics Informed Neural Network \cite{PINN001}, Deep Ritz Method \cite{yu2018deep}, Deep Galerkin Method \cite{sirignano2018dgm}, Fourier Neural Operator \cite{li2020fourier}, Deep Operator Network \cite{lu2021learning}, Data Driven Discretization \cite{bar2019learning}, physics-informed neural operator \cite{PINO}, and physics-informed DeepONet \cite{PIDON}, respectively.}
\label{t:01}
\end{table} | [
[
"",
"Training dataset",
"PDE instances",
"Enriched scheme"
],
[
"PINN, DRM, DGM",
"not required",
"single instance",
"unavailable"
],
[
"FNO, DON, DDM",
"required",
"multiple instances",
"unavailable"
],
[
"PIDON, PINO",
"not required",
"multiple instances",
"unavailable"
],
[
"ULGNet (ours)",
"not required",
"multiple instances",
"available"
]
] | 0.442244 | null | null |
0 | 2105.00467v1 | 9 | [
348.8590087890625,
117.75799560546875,
525.3060302734375,
168.3690185546875
] | \begin{table}
\small
\caption{Synthetic workloads based on the distribution of ${op}_{BI}$ transition probability.}
\begin{tabular}{ |p{1.4cm}||p{1.5cm}|p{2.2cm}| }
\hline
Workload & Distribution & Parameters\\
\hline
BT-Exp & Exponential & mean=0.5\\
BT-Gamma & Gamma & shape =1, scale=1\\
BT-Uniform & Uniform & value $\in$ [0.0, 1.0]\\
BT-Normal & Normal & mean=0, stddev=1 \\
\hline
\end{tabular}
\label{tab:workloads_transition}
\end{table} | [
[
"Workload",
"Distribution",
"Parameters"
],
[
"BT-Exp\nBT-Gamma\nBT-Uniform\nBT-Normal",
"Exponential\nGamma\nUniform\nNormal",
"mean=0.5\nshape =1, scale=1\nvalue ∈[0.0, 1.0]\nmean=0, stddev=1"
]
] | 0.632768 | null | null |
1 | 2105.00467v1 | 9 | [
319.7090148925781,
218.0880126953125,
554.2059936523438,
295.5979919433594
] | \begin{table}
\caption{Synthetic workloads based on the distribution of \# user sessions per task.}
\begin{tabular}{|c||c|p{1.9cm}|p{1.8cm}|}
\hline
Workload & Distribution & [Min,Max] \# session per task (HI) & [Min,Max] \# session per task (AHI)\\
\hline
ST-Exp & Exponential & [3,20] & [1,8] \\
ST-Gamma & Gamma & [3,27] & [1,9]\\
ST-Uniform & Uniform & [10,11] & [2,3]\\
ST-Normal & Normal & [3,13] & [1,5]\\
\hline
\end{tabular}
\label{tab:workloads_user_session}
%\vspace{-20pt}
\end{table} | [
[
"Workload",
"Distribution",
"[Min,Max] #\nsession per\ntask (HI)",
"[Min,Max] #\nsession per\ntask (AHI)"
],
[
"ST-Exp\nST-Gamma\nST-Uniform\nST-Normal",
"Exponential\nGamma\nUniform\nNormal",
"[3,20]\n[3,27]\n[10,11]\n[3,13]",
"[1,8]\n[1,9]\n[2,3]\n[1,5]"
]
] | 0.617068 | null | null |
2 | 2105.00467v1 | 12 | [
56.9109992980957,
466.82501220703125,
288.69000244140625,
489.5400085449219
] | \begin{table}
\caption{Effect of co-occurrence statistics to improve dimension prediction accuracy.}
\begin{tabular}{ |c||c|c|c|c|}
\hline
$\#$\textbf{Inferred Dimensions} & 0 & 1 & 2 & 3 \\
\hline
\textbf{Dimension Accuracy} & 0.6635 & 0.6858 & 0.7018 & 0.7256\\
\hline
\end{tabular}
\label{tab:infDim}
\end{table} | [
[
"#Inferred Dimensions",
"0",
"1",
"2",
"3"
],
[
"Dimension Accuracy",
"0.6635",
"0.6858",
"0.7018",
"0.7256"
]
] | 0.931677 | null | null |
3 | 2105.00467v1 | 14 | [
82.98200225830078,
159.12799072265625,
262.6199951171875,
193.20001220703125
] | \begin{table}[h]
\centering
\caption{User study results.}
\begin{tabular}{|c||c|c|c|}
\hline
& \textbf{$Task_{US_1}$} & \textbf{$Task_{US_2}$} & \textbf{$Task_{US_3}$} \\ \hline
Precision@3 & 88.9\% & 97.93\% & 88.9\% \\ \hline
MRR & 0.72 & 0.46 & 0.69 \\ \hline
\end{tabular}
\label{tab:user_study_results}
\end{table} | [
[
"",
"𝑇𝑎𝑠𝑘𝑈𝑆1",
"𝑇𝑎𝑠𝑘𝑈𝑆2",
"𝑇𝑎𝑠𝑘𝑈𝑆3"
],
[
"Precision@3",
"88.9%",
"97.93%",
"88.9%"
],
[
"MRR",
"0.72",
"0.46",
"0.69"
]
] | 0.634146 | null | null |
0 | 2006.05082v1 | 4 | [
68.76399993896484,
626.2789916992188,
273.62701416015625,
688.1690063476562
] | \begin{table}[h!]
\vspace{-4mm}
\centering
\caption{Corresponds between our model and Bayes' model.}
\begin{tabular}{c|c}
\toprule
stop time $t$ & latent variable \\
label $\vy$ & observation \\
loss $\ell(\vy,\vx_t;\theta)$ & likelihood $p_\theta(\vy|t,\vx)$ \\
stop time distribution $q_\phi$ & posterior $p_\theta(t|\vy,\vx)$\\
regularization & prior $p(t|\vx)$ \\
\bottomrule
\end{tabular}
\vspace{-2mm}
\label{tab:relation}
\end{table} | [
[
"stop time t\nlabel y\nloss ℓ(y, x ; θ)\nt\nstop time distribution q\nφ\nregularization",
"latent variable\nobservation\nlikelihood p (y t, x)\nθ |\nposterior p (ty, x)\nθ |\nprior p(tx)\n|"
]
] | 0.367089 | null | null |
1 | 2006.05082v1 | 7 | [
68.26139831542969,
664.5482177734375,
248.33853266789362,
717.5167236328125
] | \begin{table}[h!]
\vspace{-3mm}
\centering
\caption{Different algorithms for training LISTA-stop.}
\resizebox{.9\linewidth}{!}{
\begin{tabular}{@{}c|c|c|c|c@{}}
\toprule
SNR & mixed & 20 & 30 & 40 \\
\midrule
{AEVB algorithm} & -21.92 & -19.92 & -23.27 & -23.58 \\
\hline
Stage I. + II. & \textbf{-22.41} & \textbf{-20.29} & \textbf{-23.90} & \textbf{-24.21}\\
\hline
{Stage I.+II.+III.} & \textbf{-22.78} & \textbf{-20.59} & \textbf{-24.29} & \textbf{-24.73}\\
\bottomrule
\end{tabular}}
\vspace{-1mm}
\label{tab:ablation-algo}
\end{table} | [
[
"SNR",
"mixed",
"20",
"30"
],
[
"AEVB algorithm",
"-21.92",
"-19.92",
"-23.27"
],
[
"Stage I. + II.",
"-22.41",
"-20.29",
"-23.90"
],
[
"Stage I.+II.+III.",
"-22.78",
"-20.59",
"-24.29"
]
] | 0.596774 | null | null |
2 | 2006.05082v1 | 8 | [
308.47100830078125,
687.0650024414062,
537.9190063476562,
713.4879760742188
] | \begin{table}[h!]
\centering
\caption{Image recognition with oracle stop distribution.}
\begin{tabular}{c||c|c}
\toprule
VGG16 & SDN training & Our Stage I. training\\
\hline
58.60\% & 77.78\% (best layer) & 83.26\% (best layer)\\
\bottomrule
\end{tabular}
\label{tab:image_rec}
\vspace{-5mm}
\end{table} | [
[
"VGG16",
"SDN training",
"Our Stage I. training"
],
[
"58.60%",
"77.78% (best layer)",
"83.26% (best layer)"
]
] | 0.540881 | null | null |
0 | 1306.2584v2 | 5 | [
72,
82.7750244140625,
575.864990234375,
667.2822723388672
] | \begin{table}[!hp]
\setcounter{table}{0}
\makeatletter
\renewcommand{\thetable}{\@arabic\c@table}
\makeatother
\setlength{\LTcapwidth}{\textwidth}
\renewcommand{\arraystretch}{1.5}
\begin{longtable}{|p{1in}|p{4in}|p{1.5in}|}
\caption{Listing of the 18 attractor signatures}\\
\hline
\textbf{Name} & \textbf{Top members} & \textbf{Comments}\\
\hline
\endfirsthead
\multicolumn{3}{c}
{{\bfseries \tablename \thetable{} -- continued from previous page}} \\
\hline
\textbf{Name} & \textbf{Top members} & \textbf{Comments}\\
\hline
\endhead
\hline \multicolumn{3}{r}{{Continued on next page...}} \\
\endfoot
\hline \hline
\endlastfoot
\hline
\multicolumn{3}{|l|}{\textbf{mRNA}}\\
\hline
\textbf{LYM} & \textit{SASH3, CD53, NCKAP1L, LCP2, IL10RA, PTPRC, EVI2B, BIN2, WAS, HAVCR2} & lymphocyte infiltration\\
\hline
\textbf{CIN} & \textit{TPX2, KIF4A, KIFC1, NCAPG, BUB1, NCAPH, CDCA5, KIF2C, PLK1, CENPA} & mitotic chromosomal instability\\
\hline
\textbf{MES} & \textit{COL3A1, COL5A2, COL1A2, THBS2, COL5A1, VCAN, COL6A3, SPARC, AEBP1, FBN1} & mesenchymal transition \\
\hline
\textbf{END} & \textit{CDH5, ROBO4, CXorf36, CD34, CLEC14A, ARHGEF15, CD93, LDB2, ELTD1, MYCT1} & endothelial markers\\
\hline
\textbf{``\textit{AHSA2}''} & \textit{AHSA2, LOC91316, PILRB, ZNF767, TTLL3, CCNL2, PABPC1L, LENG8, CHKB CPT1B, SEC31B} &\\
\hline
\textbf{IFIT} & \textit{IFIT3, MX1, OAS2, RSAD2, CMPK2, IFIT1, IFI44L, IFI44, IFI6, OAS1} & interferon-induced\\
\hline
\textbf{``\textit{WDR38}''} & \textit{WDR38, YSK4, ROPN1L, C1orf194, MORN5, WDR16, RSPH4A, FAM183A, ZMYND10, DNAI1} & \\
\hline
\multicolumn{3}{|l|}{\textbf{Genomically co-localized mRNA}} \\
\hline
\textbf{MHC Class II} & \textit{HLA-DPA1, HLA-DRA, HLA-DPB1, HLA-DRB1, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DQA1, HLA-DRB5} & strongly associated with LYM\\
\hline
\textbf{GIMAP cluster} & \textit{GIMAP4, GIMAP7, GIMAP6, GIMAP5, GIMAP8, GIMAP1} & strongly associated with LYM\\
\hline
\textbf{Chr8q24.3 amplicon} & \textit{SHARPIN, HSF1, TIGD5, GPR172A, ZC3H3, EXOSC4, SCRIB, CYHR1, MAF1, PUF60} & most prominent Pan-Cancer amplicon\\
\hline
\multicolumn{3}{|l|}{\textbf{microRNA}} \\
\hline
\textbf{\textit{DLK1}-\textit{DIO3} RNA cluster} & mir-127, mir-134, mir-379, mir-409, mir-382, mir-758, mir-381, mir-370, mir-654, mir-431 & includes \textit{MEG3} long noncoding RNA; associated with MES\\
\hline
\textbf{``mir-509''} & mir-509, mir-514, mir-508 & \\
\hline
\textbf{``mir-144''} & mir-144, mir-451, mir-486 & associated with erythropoiesis\\
\hline
\multicolumn{3}{|l|}{\textbf{Methylation}}\\
\hline
\textbf{``RMND1''} & RMND1-6-151814639, MAP3K7-6-91353911, DNAAF1-16-82735714, PTRH2-17-55139429, ZNF143-11-9439170, cg03627896
, TAMM41-3-11863582, CDK5-7-150385869, OTUB1-11-63510174, AATF-17-32380976 & \\
\hline
\textbf{M+} & cg13928306, MTMR11-1-148175405, cg27324619, TNKS1BP1-11-56846646, C11orf52-11-111294703, IL17RC-3-9934128, cg24765079, ERBB3-12-54759072, IL22RA1-1-24342151, C11orf52-11-111294903 & methylated in infiltrating lymphocytes\\
\hline
\textbf{M-} & BIN2-12-50003941, PTPRCAP-11-66961771, TNFAIP8L2-1-149395922, IGFLR1-19-40925164, FAM113B-12-45896487, CD6-11-60495754, KLHL6-3-184755939, PTPN7-1-200396189, FAM78A-9-133141340, ACAP1-17-7180947 & Unmethylated in infiltrating lymphocytes, may be causal to the expression of some of the genes of the LYM signature\\
\hline
\multicolumn{3}{|l|}{\textbf{Protein activity}} \\
\hline
\textbf{``c-Met''} & c-Met, Snail, PARP\_cleaved, Caspase-8, ERCC1, Rb & Related to apoptosis\\
\hline
\textbf{``Akt''} & Akt, Tuberin, STAT5A &\\
\end{longtable}
\begin{figure}[!p]
\fbox{
\begin{minipage}{6.5in}
\includegraphics[width=\textwidth]{figure2.png}
\caption{
Scatter plots connecting the LYM, M+ and M- metagenes in 12 cancer types. Each dot represents a cancer sample. The horizontal and vertical axes measure the average methylation values of the two methylation signatures, M- and M+, while the value of the expression of the LYM metagene is color-coded. In all three cases, the metagene is defined by the average of the top ranked genes as described in \textbf{Table ~\ref{tab:tabS1}}.
}
\label{fig:fig2}
\end{minipage}
}
\end{figure}
\subsection{Lymphocyte infiltration: LYM mRNA signature; M+\hspace{1pt} methylation signature; M-\hspace{1pt} methylation signature}
These three signatures are related to tumor infiltration by lymphocytes. We list
them together because they are strongly interrelated (\textbf{Fig. ~\ref{fig:fig2}}) even though each
of the three was independently derived using an unsupervised computational method.
The presence of LYM is accompanied by the presence of M+ and the absence of M- in
all solid cancer types, suggesting that the three signatures reflect the same
biomolecular event, which appears to be the infiltration of immune cells in tumor
tissue. Indeed, there is remarkable similarity (\textbf{Fig. ~\ref{fig:fig3}}) between the LYM signature
and the ``immune score'' of the ESTIMATE tumor purity computational tool (\url{http://ibl.mdanderson.org/estimate}).
The values of the M+ methylation signature are also remarkably similar to those of the methylation-based
``leukocyte percentage'' estimation \cite{huiNature} (available under Synapse ID syn1809222).
\begin{figure}[!p]
\fbox{
\begin{minipage}{6.5in}
\includegraphics[width=\textwidth]{figure3.png}
\caption{
Scatter plots demonstrating the pan-cancer similarity of the value of the LYM metagene with the immune score of the ESTIMATE tumor purity computational tool (http://ibl.mdanderson.org/estimate) measuring immune cell infiltration. Each dot represents a cancer sample. The horizontal axis measures the expression value of the LYM metagene and the vertical axis measures the ESTIMATE immune score of infiltration. Note that the ESTIMATE did not provide scores for rectum cancer, and the estimation of immune cell infiltration is not applicable in leukemia.
}
\label{fig:fig3}
\end{minipage}
}
\end{figure}
We had previously found\cite{billCancerInfo} all three LYM, M+ and M- signatures from their association with
the expression of miR-142. We have now confirmed this association with miR-142 in the pancan12 data sets,
and we found that miR-150 and miR-155 are also strongly associated with the LYM signature.
We had also previously independently identified the LYM signature as an attractor metagene\cite{mePLoS}, and
used it in the winning model of the Sage Bionetworks Breast Cancer Prognosis Challenge\cite{meSTM}.
Specifically the LYM signature is strongly associated with improved prognosis in ER-negative breast cancers,
and this fact also provides an explanation for the relatively better prognosis in medullary,
compared with other types of high-grade breast cancers.
The interrelationship of the LYM, M+ and M- signatures, as shown in \textbf{Fig. ~\ref{fig:fig2}}, appears to be a consequence
of the presence of different subclasses of cells (as opposed to being a methylation switch inside
the same cell), consistent with their assumed role of measuring the extent of lymphocyte infiltration
in the tumor. In other words, the M+ methylation sites, normally unmethylated, are largely methylated
in the infiltrating leukocytes; and the M- methylation sites, normally methylated, are largely
unmethylated in the infiltrating leukocytes. Consistently, many of the genes methylated by the M-
signature are identical to those of LYM (six among the 27 genes of the M- signature (\textit{BIN2}, \textit{TNFAIP8L2},
\textit{ACAP1}, \textit{NCKAP1L}, \textit{FAM78A}, \textit{PTPN7}) listed in Table S1 are also among the 168
genes listed in the LYM attractor metagene
($P < 9.21\times10^{-7}$ based on Fisher’s exact test). The observed significant overlap in the gene sets and
the negative association between gene expression in LYM and DNA methylation in M- are consistent with the notion
that the absence of DNA methylation is permissive for gene expression, suggesting that the expression of the LYM
signature in the infiltrating lymphocytes may be facilitated in part by the hypomethylation of the M- signature.
The sharp definition of the LYM signature (being a Pan-Cancer attractor signature pointing to few genes
at the core of coexpression) provides strong hints about the precise nature of this leukocyte infiltration.
Specifically, the membership of the top-ranked genes (\textit{SASH3}, \textit{CD53}, \textit{NCKAP1L}, \textit{LCP2},
\textit{IL10RA}, \textit{PTPRC}, \textit{EVI2B}, \textit{BIN2}, \textit{WAS}, \textit{HAVCR2}, \ldots)
point to a specific type of lymphocytes. We have speculated\cite{mePLoS} that these infiltrating lymphocytes
are T cells having undergone a particular type of co-stimulation providing hypotheses for related adoptive transfer therapy.
Two proteins strongly associated with the LYM signature are two tyrosine kinases: Lck (lymphocyte-specific protein tyrosine kinase)
and Syk (spleen tyrosine kinase).
\subsection{CIN (mitotic chromosomal instability) mRNA signature}
This signature is related to mitotic chromosomal instability. It is similar to numerous known ``proliferation'' signatures,
but its sharp definition as an attractor metagene specifically points to the kinetochore-microtubule interface and
associated kinesins. Comparison with similar mitotic signatures in normal cells may help pinpoint driver genes for
malignant chromosomal instability. The signature is strongly associated with tumor grade as well as poor prognosis in many,
if not all, cancer types.
Two proteins strongly associated with the CIN signature are Cyclin B1 and CDK1. Consistently, it is known that the cyclin
B1-Cdk1 complex of cyclin-dependent kinase 1 is involved in the early events of mitosis, and that nuclear cyclin B1 protein
may induce chromosomal instability and enhance the aggressiveness of the carcinoma cells\cite{bibi7}.
\subsection{MES (mesenchymal transition) mRNA signature}
This signature is related to mesenchymal transition and invasiveness of cancer cells. It is similar to numerous
``stromal'' or ``mesenchymal'' signatures; however there is evidence\cite{dimitrisBMCCancer} that many among the genes of the
signature are largely produced by transdifferentiated cancer cells. We hypothesize that such cells, known to
assume the duties of cancer-associated fibroblasts in some tumors\cite{hanahan2011}, may have become indistinguishable,
even using laser capture microdissection, from stromal fibroblasts. We had originally identified the MES signature
from its association with tumor stage\cite{hoonBMCMedGenomics}; specifically the signature appears only after a particular cancer
type-specific tumor stage threshold has been reached.
The values of the MES signature are remarkably similar to the ``stromal score'' of the ESTIMATE tumor purity computational tool
(\url{http://ibl.mdanderson.org/estimate}) measuring fibroblast infiltration. Based on our previous reasoning, however,
we believe that this interpretation may not be fully accurate, and that it will be important to find out to what extent
some of the cells expressing some of these mesenchymal markers may actually be transdifferentiated cancer cells, and
whether the estimated tumor purity may be affected by other types of normal cells instead of stromal fibroblasts.
The co-regulated microRNAs most strongly associated with the MES signature are miR-199a, miR-199b, and miR-214. The \textit{DLK1}-
\textit{DIO3} RNA cluster attractor signature, described later, is also strongly associated with MES.
The protein most strongly associated with the MES signature is Fibronectin.
\subsection{END (endothelial marker) mRNA signature}
This is a novel angiogenesis-associated attractor signature. Nearly all the top-ranked genes (\textbf{Table 1}) are
endothelial markers. The top gene, \textit{CDH5}, codes for VE-cadherin, which is known to be involved in a pathway suppressing
angiogenic sprouting\cite{bib9}. The second gene, \textit{ROBO4}, is known to inhibit VEGF-induced pathologic angiogenesis and endothelial
hyperpermeability\cite{bib10}. Consistently, the END attractor metagene appears to be protective and anti-angiogenic, stabilizing the
vascular network. For example, 22 out of the 27 genes of the END attractor are among the 265 genes included in File S2 of a recent
study\cite{bib11} of renal cell carcinoma ($P < 8.4\times10^{-38}$ based on Fisher’s exact test) as most associated with patients’
survival. These good-prognosis genes were intermixed in the same file with many poor-prognosis genes of the CIN attractor,
suggesting that the CIN and END attractor metagenes are two of the most prognostic features in renal cell carcinoma.
Interestingly, the MES and END attractor metagenes are positively associated with each other (\textbf{Fig. ~\ref{fig:fig4}}), in the sense
that overexpression of the END signature tends to imply overexpression of the MES signature and vice-versa. This is consistent
with mutual exclusivity between angiogenesis and invasiveness and with related findings\cite{bib12} that VEGF inhibits tumor cell
invasion and mesenchymal transition, while antiangiogenic therapy is associated with increased invasiveness\cite{bib13}. It may also
explain the paradoxical protective nature of signatures related to the MES attractor metagene in invasive breast cancers\cite{bib14}.
\begin{figure}[!p]
\fbox{
\begin{minipage}{6.5in}
\includegraphics[width=\textwidth]{figure4.png}
\caption{
Scatter plots demonstrating the association between MES and END attractor metagenes. The horizontal and vertical axes measure the values of the MES and END signatures. The two signatures have positive correlation, although this association is not sufficiently strong to merge the two attractors into one. This association suggests that the invasive MES signature and the antiangiogenic END signature tend to be present simultaneously.
}
\label{fig:fig4}
\end{minipage}
}
\end{figure}
\subsection{``AHSA2'' mRNA signature}
We do not yet know what this signature represents. We observed that several noncoding RNAs (e.g. NCRNA00105, NCRNA00201)
are in relatively high-ranked positions among its members.
\subsection{IFIT (interferon-induced) mRNA signature}
The members of this signature are interferon-induced. For example, we observed large enrichment of the genes of the
signature among those upregulated by IFN-$\alpha$ in the side population (SP) of ovarian cancer cells\cite{bib15} from the
list provided in Supplementary Table S4 of that paper, in which the authors concluded that tumors bearing large SP numbers
could be particularly sensitive to IFN-$\alpha$ treatment.
\subsection{``WDR38'' mRNA signature}
We do not know what this signature represents, except that we had found one of its key members, gene \textit{ZMYND10}, to be
protective and associated with estrogen receptor expression in breast cancer.
\subsection{MHC Class II genomically co-localized mRNA signature}
We found this signature using the genomically co-localized version of the algorithm. It is very highly correlated with LYM.
\subsection{GIMAP genomically co-localized mRNA signature}
As above, we found this signature using the genomically co-localized version of the algorithm. It is also very highly correlated with LYM.
\subsection{Chr8q24.3 amplicon mRNA signature}
This is the strongest pan-cancer amplicon signature. It was previously found predictive of early relapse in ER-positive breast cancers\cite{bib16}.
\subsection{``RMND1'' methylation signature}
We do not yet know what the comethylation of the sites of this signature signifies.
\begin{figure}[!t]
\fbox{
\begin{minipage}{6.5in}
\includegraphics[width=\textwidth]{figure5.png}
\caption{
The \textit{DLK1}-\textit{DIO3} cluster of noncoding RNAs. Shown is a screen capture from the UCSC Genome Browser (\url{http://genome.ucsc.edu}). The cluster of imprinted genes delineated by the \textit{DLK1} and \textit{DIO3} genes (outside the shown region) is located on chromosome 14. We found that the corresponding pan-cancer attractor signature does not contain any paternally inherited protein-coding genes. It does contain the numerous noncoding RNA genes expressed from the maternally inherited homolog, including the \textit{MEG3} long noncoding RNA gene.
}
\label{fig:fig5}
\end{minipage}
}
\end{figure}
\subsection{\textit{DLK1}-\textit{DIO3} RNA cluster signature}
This is the strongest pan-cancer multi-microRNA coexpression signature. It consists of numerous noncoding RNAs within the
\textit{DLK1}-\textit{DIO3} imprinted genomic region of chr14q32. \textbf{Fig. ~\ref{fig:fig5}} shows a screen capture of the genomic region
from the UCSC Genome Browser (\url{http://genome.ucsc.edu/}). We confirmed that the coexpression signature also includes the
\textit{MEG3} long noncoding RNA located at the upstream end of the region. It may also include numerous small nuclear
RNAs at the central region, but there were no associated probe sets to confirm the coexpression. We found that this ncRNA
signature is associated with the MES (mesenchymal transition) mRNA signature. For example, the ranked list of mRNAs most
associated with the \textit{DLK1}-\textit{DIO3} ncRNA signature starts from \textit{POSTN}, \textit{PCOLCE}, \textit{COL5A2}, \textit{COL1A2},
\textit{GLT8D2}, \textit{COL5A1}, \textit{SFRP2}, and \textit{FAP}.
Expression of the imprinted \textit{DLK1}-\textit{DIO3} ncRNA cluster is believed to be vital for the development potential of
embryonic stem cells\cite{bib17}, consistent with the hypothesis\cite{bib18} that mesenchymal transition in cancer reactivates
embryonic developmental programs and makes cancer cells invasive and stem-like. The \textit{DLK1}-\textit{DIO3} ncRNA signature
was also found to define a stem-like subtype of hepatocellular carcinoma associated with poor survival\cite{bib19}. The details
of the regulation mechanism for this ncRNA cluster coexpression in the \textit{DLK1}-\textit{DIO3} region are unclear.
\subsection{``miR-509/miR-514/miR-508'' microRNA signature}
These three microRNAs are co-localized at chrXq27.3. We do not know what this signature signifies.
\subsection{``miR-144/miR-451/miR-486'' microRNA signature}
This is a three-microRNA signature related to erythropoiesis. The first two genes are located in the bicistronic microRNA
locus miR-144/451, highly expressed during erythrocyte development\cite{bib20}. The mRNAs most associated to this microRNA
signature are hemoglobin-related: \textit{HBB}, \textit{HBA1}, \textit{HBA2} and \textit{ALAS2}. The protein most associated
with this signature is HER3. These three microRNAs were identified as promising biomarkers for detection of esophageal cancer.
\subsection{c-Met/Snail/PARP\_cleaved/Caspase-8/ERCC1/Rb protein activity signature}
This protein coexpression signature appears to combine the contribution of several pathways and we hope that a plausible
and useful biological ``story'' will be developed based on the simultaneous activity of all these six proteins in some
cancer samples. We note that each of these proteins\cite{bib21, bib22, bib23, bib24, bib25, bib26} has been related in various ways with resistance to chemotherapy
or apoptosis.
\subsection{Akt/Tuberin/STAT5A protein activity signature}
We do not know what the coexpression of Akt, Tuberin, STAT5A proteins represents in cancer. It is known, however, that
low levels of STAT5A protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes\cite{bib27}.
\section*{DISCUSSION}
The Pan-Cancer nature (\textbf{Fig. ~\ref{fig:figS1}}) of each of the signatures described in this paper suggests that they represent
important biomolecular events. A reasonable concern is whether some of these ``pan-cancer'' signatures may instead reflect
fundamental normal ``pan-tissue'' biological mechanisms. Even if this is true for some of these signatures, this does not
exclude the possibility that they are aberrant and play important roles in some cancer samples. Furthermore, this provides
the opportunity to compare similar signatures in normal vs. malignant tissues to pinpoint potential cancer-specific genes.
Because of its exhaustive search starting from all potential ``seeds'' in all data sets from twelve different cancer types,
our iterative data mining algorithm is guaranteed to have identified all pan-cancer molecular signatures involving simultaneous
presence of a large number of coordinately expressed genes, proteins, or comethylated sites. We hope that these signatures are
further scrutinized by the medical research community for the purpose of developing potential diagnostic, predictive, and
eventually therapeutic products applicable in multiple cancers.
\section*{ACKNOWLEDGEMENTS}
We are thankful to Hanina Hibshoosh, Chris Miller and Gordon Mills for helpful discussions,
which contributed to improved interpretation of the signatures disclosed in this paper.
\section*{Accessibility} All figures in this paper, including supplementary figures and tables, as well as the files of generated attractor molecular signatures, are available in Synapse under ID syn1686966.
\section*{Data description and availability} The data sets of TCGA pancan12 freeze 4.7 used to derive the results of this paper are described and are available under Synapse ID syn300013 with doi:10.7303/syn300013. The twelve cancer types are bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD) , lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), rectum adenocarcinoma (READ), and uterine corpus endometrioid carcinoma (UCEC).
\pagebreak
%% Put the bibliography here, most people will use BiBTeX in
%% which case the environment below should be replaced with
%% the \bibliography{} command.
\begin{thebibliography}{1}
\bibitem{hanahan2000} Hanahan, D. \& Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
\bibitem{hanahan2011} Hanahan, D. \& Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-74 (2011).
\bibitem{mePLoS} Cheng, W.Y., Ou Yang, T.H. \& Anastassiou, D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 9, e1002920 (2013).
\bibitem{meSTM} Cheng, W.Y., Ou Yang, T.H. \& Anastassiou, D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 5, 181ra50 (2013).
\bibitem{bib5} McCarthy, N. Prognostic models: Rising to the challenge. Nat Rev Cancer, doi:10.1038/nrc3530 (2013).
\bibitem{huiNature} Shen, H. \textit{et al.} Comprehensive Cross-Cancer Comparison of DNA Methylation Profiles, submitted. (2013).
\bibitem{billCancerInfo} Andreopoulos, B. \& Anastassiou, D. Integrated Analysis Reveals hsa-miR-142 as a Representative of a Lymphocyte-Specific Gene Expression and Methylation Signature. Cancer Inform 11, 61-75 (2012).
\bibitem{bibi7} Suzuki, T. \textit{et al.} Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98, 644-51 (2007).
\bibitem{dimitrisBMCCancer} Anastassiou, D. \textit{et al.} Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo. BMC Cancer 11, 529 (2011).
\bibitem{hoonBMCMedGenomics} Kim, H., Watkinson, J., Varadan, V. \& Anastassiou, D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 3, 51 (2010).
\bibitem{bib9} Abraham, S. \textit{et al.} VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19, 668-74 (2009).
\bibitem{bib10} Jones, C.A. \textit{et al.} Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14, 448-53 (2008).
\bibitem{bib11} Wozniak, M.B. \textit{et al.} Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One 8, e57886 (2013).
\bibitem{bib12} Lu, K.V. \textit{et al.} VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21-35 (2012).
\bibitem{bib13} Paez-Ribes, M. \textit{et al}. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220-31 (2009).
\bibitem{bib14} Beck, A.H., Espinosa, I., Gilks, C.B., van de Rijn, M. \& West, R.B. The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88, 591-601 (2008).
\bibitem{bib15} Moserle, L. \textit{et al}. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 68, 5658-68 (2008).
\bibitem{bib16} Bilal, E. \textit{et al}. Amplified Loci on Chromosomes 8 and 17 Predict Early Relapse in ER-Positive Breast Cancers. PLoS One 7, e38575 (2012).
\bibitem{bib17} Stadtfeld, M. \textit{et al}. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175-81 (2010).
\bibitem{bib18} Mani, S.A. \textit{et al}. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-15 (2008).
\bibitem{bib19} Luk, J.M. \textit{et al}. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 286, 30706-13 (2011).
\bibitem{bib20} Yu, D. \textit{et al}. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev 24, 1620-33 (2010).
\bibitem{bib21} Tang, M.K., Zhou, H.Y., Yam, J.W. \& Wong, A.S. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 12, 128-38 (2010).
\bibitem{bib22} Haslehurst, A.M. \textit{et al}. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12, 91 (2012).
\bibitem{bib23} D’Amours, D., Sallmann, F.R., Dixit, V.M. \& Poirier, G.G. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 114, 3771-8 (2001).
\bibitem{bib24} Kim, P.K., Mahidhara, R. \& Seol, D.W. The role of caspase-8 in resistance to cancer chemotherapy. Drug Resist Updat 4, 293-6 (2001).
\bibitem{bib25} Olaussen, K.A. \textit{et al}. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355, 983-91 (2006).
\bibitem{bib26} Collard, T.J. \textit{et al}. The retinoblastoma protein (Rb) as an anti-apoptotic factor: expression of Rb is required for the anti-apoptotic function of BAG-1 protein in colorectal tumour cells. Cell Death Dis 3, e408 (2012).
\bibitem{bib27} Peck, A.R. \textit{et al}. Low levels of Stat5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes. Breast Cancer Res 14, R130 (2012).
\end{thebibliography}
\pagebreak
\begin{methods}
\subsection{Data normalization}
The data platform for each cancer types and its corresponding Synapse ID is given below.
\begin{table}[!hf]
\renewcommand{\arraystretch}{1}
\hspace*{-0.5in}
\begin{threeparttable}
\begin{tabular}{ |l|c|c|c|c|}
\hline
\textbf{Molecular profile} & mRNA & Protein & miRNA & DNA methylation \\
\hline
\multirow{3}{*}{\textbf{Platform}} & & Reverse phase protein & & Infinium \\
& Illumina HiSeq & lysate microarray & Illumina HiSeq & HumanMethylation27 \\
& & (RPPA) & & BeadChip \\
\hline
\textbf{Cancer type} & \multicolumn{4}{|c|}{\textbf{Synapse ID}} \\
\hline
BLCA&syn1571504&syn1681048&syn1571494&syn1889358\tnote{*}\\
BRCA&syn417812&syn1571267&syn395575&syn411485\\
COAD&syn1446197&syn416772&syn464211&syn411993\\
GBM&syn1446214&syn416777&NA&syn412284\\
HNSC&syn1571420&syn1571409&syn1571411&syn1889356\tnote{*}\\
KIRC&syn417925&syn416783&syn395617&syn412701\\
LAML&syn1681084&NA&syn1571533&syn1571536\\
LUAD&syn1571468&syn1571446&syn1571453&syn1571458\\
LUSC&syn418033&syn1367036&syn395691&syn415758\\
OV&syn1446264&syn416789&syn1356544&syn415945\\
READ&syn1446276&syn416795&syn464222&syn416194\\
UCEC&syn1446289&syn416800&syn395720&syn416204\\
\hline
\end{tabular}
\begin{tablenotes}
\item[*] The data sets were extracted from HumanMethylation450 BeadChip.
\end{tablenotes}
\end{threeparttable}
\end{table} | [
[
"Name",
"Top members",
"Comments"
],
[
"END",
"CDH5, ROBO4, CXorf36, CD34, CLEC14A, ARHGEF15,\nCD93, LDB2, ELTD1, MYCT1",
"endothelial markers"
],
[
"“AHSA2”",
"AHSA2, LOC91316, PILRB, ZNF767, TTLL3, CCNL2,\nPABPC1L, LENG8, CHKB CPT1B, SEC31B",
""
],
[
"IFIT",
"IFIT3, MX1, OAS2, RSAD2, CMPK2, IFIT1, IFI44L, IFI44,\nIFI6, OAS1",
"interferon-induced"
],
[
"“WDR38”",
"WDR38, YSK4, ROPN1L, C1orf194, MORN5, WDR16,\nRSPH4A, FAM183A, ZMYND10, DNAI1",
""
],
[
"Genomically co-localized mRNA",
null,
null
],
[
"MHC Class II",
"HLA-DPA1, HLA-DRA, HLA-DPB1, HLA-DRB1, HLA-\nDMA, HLA-DMB, HLA-DOA, HLA-DQA1, HLA-DRB5",
"strongly associated\nwith LYM"
],
[
"GIMAP clus-\nter",
"GIMAP4, GIMAP7, GIMAP6, GIMAP5, GIMAP8, GIMAP1",
"strongly associated\nwith LYM"
],
[
"Chr8q24.3\namplicon",
"SHARPIN, HSF1, TIGD5, GPR172A, ZC3H3, EXOSC4,\nSCRIB, CYHR1, MAF1, PUF60",
"most prominent Pan-\nCancer amplicon"
],
[
"microRNA",
null,
null
],
[
"DLK1-DIO3\nRNA cluster",
"mir-127, mir-134, mir-379, mir-409, mir-382, mir-758, mir-\n381, mir-370, mir-654, mir-431",
"includes MEG3 long\nnoncoding RNA; asso-\nciated with MES"
],
[
"“mir-509”",
"mir-509, mir-514, mir-508",
""
],
[
"“mir-144”",
"mir-144, mir-451, mir-486",
"associated with ery-\nthropoiesis"
],
[
"Methylation",
null,
null
],
[
"“RMND1”",
"RMND1-6-151814639, MAP3K7-6-91353911, DNAAF1-\n16-82735714, PTRH2-17-55139429, ZNF143-11-9439170,\ncg03627896 , TAMM41-3-11863582, CDK5-7-150385869,\nOTUB1-11-63510174, AATF-17-32380976",
""
],
[
"M+",
"cg13928306, MTMR11-1-148175405, cg27324619,\nTNKS1BP1-11-56846646, C11orf52-11-111294703,\nIL17RC-3-9934128, cg24765079, ERBB3-12-54759072,\nIL22RA1-1-24342151, C11orf52-11-111294903",
"methylated in infiltrat-\ning lymphocytes"
]
] | 0.588757 | null | null |
0 | 2304.00477v2 | 5 | [
308.00763549804685,
396.8905944824219,
524.4168701171875,
435.0594177246094
] | \begin{table}[h]
\centering
% \vspace{-5pt}
\begin{threeparttable}
\resizebox{\linewidth}{!}{
\begin{tabular}{|l|c|c|c|}
\hline
& \tool & Code Interpreter & Pandas Agent \\
\hline
\textbf{Relevance} & {\bf 4.50$\pm$0.76} & 4.08$\pm$0.86 & 1.92$\pm$1.00 \\
\hline
\textbf{Completeness} & {\bf 4.67$\pm$0.55} & 3.54$\pm$1.00 & 1.12$\pm$0.33 \\
\hline
\textbf{Understandability} & {\bf 4.46$\pm$0.64} & 4.25$\pm$0.83 & 1.62$\pm$0.90 \\
\hline
\end{tabular}}
% \vspace{-10pt}
\caption{Results of the User Study}
\label{tab:user_study}
\end{threeparttable}
% \vspace{-10pt}
\end{table} | [
[
"",
"InsightPilot",
"Code Interpreter",
"Pandas Agent"
],
[
"Relevance",
"4.50±0.76",
"4.08±0.86",
"1.92±1.00"
],
[
"Completeness",
"4.67±0.55",
"3.54±1.00",
"1.12±0.33"
],
[
"Understandability",
"4.46±0.64",
"4.25±0.83",
"1.62±0.90"
]
] | 0.754902 | null | null |
0 | 1904.03259v1 | 5 | [
182.80410461425782,
128.98699951171875,
411.5070007324219,
254.11700439453125
] | \begin{table}
\begin{small}
\begin{center}
\begin{tabular}{|c|c|}
\hline
\textbf{Algorithm} & \textbf{Supervision} \\
\hline\hline
Kmeans clustering & Internal\\
Variational autoencoders & Internal\\
Deep belief networks & Internal\\
Principal component analysis & Internal\\
K nearest neighbor (kNN) & External\\
CNN image classification & External\\
Generative adversarial nets & External\\
Kmeans-to-kNN & Both\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption[category]{Supervision type of some algorithms}
\label{tab:category}
\end{table} | [
[
"Algorithm",
"Supervision"
],
[
"Kmeans clustering\nVariational autoencoders\nDeep belief networks\nPrincipal component analysis\nK nearest neighbor (kNN)\nCNN image classification\nGenerative adversarial nets\nKmeans-to-kNN",
"Internal\nInternal\nInternal\nInternal\nExternal\nExternal\nExternal\nBoth"
]
] | 0.557003 | null | null |
0 | 1910.12734v1 | 2 | [
319.16900634765625,
272.697021484375,
556.98798828125,
373.9169921875
] | \begin{table}[htbp]
\small
\centering
\begin{tabular}{|l|p{1.5cm}|p{5cm}|}
\hline
Date & Place & Description \\ \hline
5/30/06 & Palazzo del Quirinale & On. Sen. Franco MARINI, Presidente del Senato della Repubblica, e On. Fausto BERTINOTTI, Presidente della Camera dei Deputati \\ \hline
6/7/06 & Palazzo del Quirinale & On. Silvio BERLUSCONI, Presidente di Forza Italia \\ \hline
6/3/08 & Palazzo della FAO & Intervento alla cerimonia di apertura della Conferenza sulla,sicurezza alimentare, promossa dalla FAO \\ \hline
\end{tabular}
\caption{Sample records from the Diary of the President of the Italian Republic, Giorgio Napolitano.}
\label{tab:sample_diary}
\vspace{-20pt}
\end{table} | [
[
"Date",
"Place",
"Description"
],
[
"5/30/06",
"Palazzo del\nQuirinale",
"On. Sen. Franco MARINI, Presidente del\nSenato della Repubblica, e On. Fausto\nBERTINOTTI, Presidente della Camera dei\nDeputati"
],
[
"6/7/06",
"Palazzo del\nQuirinale",
"On. Silvio BERLUSCONI, Presidente di Forza\nItalia"
],
[
"6/3/08",
"Palazzo della\nFAO",
"Intervento alla cerimonia di apertura della\nConferenza sulla,sicurezza alimentare, pro-\nmossa dalla FAO"
]
] | 0.868778 | null | null |
0 | 2405.13998v1 | 15 | [
114.22317326322515,
137.3695068359375,
495.2857276429521,
665.2869873046875
] | \begin{table}[h]
\centering
\renewcommand{\arraystretch}{1.2}
\caption{Summary of the main symbols and notation used in this work.}
\begin{tabular}{|>{\centering\arraybackslash}m{0.2\textwidth}|>{\arraybackslash}m{0.7\textwidth}|}
\hline
\rowcolor{gray!30}
\textbf{Notation} & \textbf{Description} \\ \hline
\multicolumn{2}{|>{\columncolor{gray!15}}c|}{\textbf{Operator Learning}} \\ \hline
$\mathcal{X}$ & The input function space \\
$\mathcal{Y}$ & The output function space \\
$u \in \mathcal{X}$ & Input function
\\
$s \in \mathcal{Y}$ & Output function \\
$y$ & Query coordinate in the input domain of $s$ \\
$\mathcal{G}: \mathcal{X} \rightarrow \mathcal{Y}$ & The operator mapping between function spaces
\\
$\curlyE: \curlyX \to \R^n$ & Encoder mapping \\
$\curlyD: \R^n \to \curlyY $ & Decoder mapping \\
\hline
\multicolumn{2}{|>{\columncolor{gray!15}}c|}{\textbf{Fourier Neural Operator}} \\ \hline
$\mathcal{F}, \mathcal{F}^{-1}$ & Fourier transform and its inverse \\
$\mathcal{F}_n, \mathcal{F}_n^{-1}$ & Discrete Fourier transform and its inverse truncated on the first $n$ modes \\
$K$ & Linear transformation applied to the $n$ leading Fourier modes \\
$W$ & Linear transformation (bias term) applied to the layer inputs \\
$k$ & Fourier modes / wave numbers \\
% $k_{\text{max}}$ & Max Fourier modes used in the Fourier layer \\
$\sigma$ & Activation function \\
\hline
\multicolumn{2}{|>{\columncolor{gray!15}}c|}{\textbf{Continuous Vision Transformer}} \\ \hline
$\text{PE}_{t}$ & Temporal positional embedding \\
$\text{PE}_{s}$ & Spatial positional embedding \\
% $\text{SA}$ & Self-attention \\
$\text{MSA}$ & Multi-head self-attention \\
$\text{MHA}$ & Multi-head attention \\
% $\text{CSA}$ & Multi-head cross-attention \\
$\text{LN}$ & Layer normalization \\
$P$ & Patch size of Vision Transformer \\
$C$ & Embedding dimension of Vision Transformer \\
% $N_x \times N_y$ & Resolution of dummy grid \\
$\mathbf{x} \in \mathbb{R}^{N_x \times N_y \times C}$ & Latent grid features \\
$\epsilon$ & Locality of interpolated latent grid features \\
\hline
\multicolumn{2}{|>{\columncolor{gray!15}}c|}{\textbf{Partial Differential Equations}} \\ \hline
$\zeta$ & Vorticity of shallow water equations \\
$\eta$ & Height of shallow water equations \\
$\mathbf{u}$ & Velocity field \\
$P$ & Pressure field \\
$c$ & Passive scalar (smoke) \\
% $\mathbf{f}$ & Buoyancy \\
$\nu$ & Viscosity \\
\hline
\multicolumn{2}{|>{\columncolor{gray!15}}c|}{\textbf{Hyperparameters}} \\ \hline
$B$ & Batch size \\
$Q$ & Number of query coordinates in each batch \\
$D$ & Number of latent variables of interest \\
$T$ & Number of previous time-steps \\
$H \times W$ & Resolution of spatial discretization \\
\hline
\end{tabular}
\label{tab:notation}
\end{table} | [
[
"Notation",
"Description"
],
[
"Operator Learning",
null
],
[
"X\nY\nu\n∈X\ns\n∈Y\ny\n:\nG X →Y\n: →Rn\nE X\n: Rn\nD →Y",
"The input function space\nThe output function space\nInput function\nOutput function\nQuery coordinate in the input domain of s\nThe operator mapping between function spaces\nEncoder mapping\nDecoder mapping"
],
[
"Fourier Neural Operator",
null
],
[
"F, F−1\nFn, Fn−1\nK\nW\nk\nσ",
"Fourier transform and its inverse\nDiscrete Fourier transform and its inverse truncated on the first n modes\nLinear transformation applied to the n leading Fourier modes\nLinear transformation (bias term) applied to the layer inputs\nFourier modes / wave numbers\nActivation function"
],
[
"Continuous Vision Transformer",
null
],
[
"PE\nt\nPE\ns\nMSA\nMHA\nLN\nP\nC\nx ∈RNx×Ny×C\nϵ",
"Temporal positional embedding\nSpatial positional embedding\nMulti-head self-attention\nMulti-head attention\nLayer normalization\nPatch size of Vision Transformer\nEmbedding dimension of Vision Transformer\nLatent grid features\nLocality of interpolated latent grid features"
],
[
"Partial Differential Equations",
null
],
[
"ζ\nη\nu\nP\nc\nν",
"Vorticity of shallow water equations\nHeight of shallow water equations\nVelocity field\nPressure field\nPassive scalar (smoke)\nViscosity"
],
[
"Hyperparameters",
null
],
[
"B\nQ\nD\nT\nH W\n×",
"Batch size\nNumber of query coordinates in each batch\nNumber of latent variables of interest\nNumber of previous time-steps\nResolution of spatial discretization"
]
] | 0.406918 | null | null |
0 | 1809.07879v1 | 2 | [
124.22612476348877,
173.08203125,
471.0808753967285,
252.18499755859375
] | \begin{table}\label{dataset}
\centering
\begin{threeparttable}
{\footnotesize
\caption{Data set}
\begin{tabular}[H]{|c|c|c|c|c|c|c|c|c|c|}
\hline
Star & P & T &H&rms1&img&rms2&A&z&V\\
&(HPa)&($^{\circ}{\rm C}$)&(\%)&(px)&&(px)&($^{\circ}...$)&($^{\circ}...$)&($^{\circ}$/h)\\ \hline
\color{gray}1&\color{gray}2&\color{gray}3&\color{gray}4&\color{gray}5&\color{gray}6&\color{gray}7&\color{gray}8&\color{gray}9&\color{gray}10\\ \hline
$\alpha Cas$&1002.1&8.6&50.0&0.15&161&0.2&322.28286&60.91284 &8.27\\ \hline
$\alpha Ori$ &1002.3&8.0&50.0&0.21&312&0.16&231.03903&48.43744&14.87 \\ \hline
$\gamma Cep$& 1002.3&7.4&50.0 &0.21&263&0.23&350.05359&55.17984& 3.21\\ \hline
$\alpha Hya$& 1002.4&7.1&50.0 &0.24&523&0.19&176.01978&53.27512&14.82\\ \hline
\end{tabular}}
\begin{tablenotes}
\small
\item 1 - Observed star, 2 - Pressure, 3 - Temperature, 4 - Humidity, 5 -root mean square 1 in pixels, 6 - number of images taken by the CCD camera, 7 - root mean square 2 in pixels, 8 - Azimuth, 9 - Zenith distance, 10 - Star apparent velocity
\end{tablenotes}
\end{threeparttable}
\end{table} | [
[
"Star",
"P\n(HPa)",
"T\n(◦C)",
"H\n(%)",
"rms1\n(px)",
"img",
"rms2\n(px)",
"A\n(◦...)",
"z\n(◦...)",
"V\n(◦/h)"
],
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10"
],
[
"αCas",
"1002.1",
"8.6",
"50.0",
"0.15",
"161",
"0.2",
"322.28286",
"60.91284",
"8.27"
],
[
"αOri",
"1002.3",
"8.0",
"50.0",
"0.21",
"312",
"0.16",
"231.03903",
"48.43744",
"14.87"
],
[
"γCep",
"1002.3",
"7.4",
"50.0",
"0.21",
"263",
"0.23",
"350.05359",
"55.17984",
"3.21"
],
[
"αHya",
"1002.4",
"7.1",
"50.0",
"0.24",
"523",
"0.19",
"176.01978",
"53.27512",
"14.82"
]
] | 0.531469 | null | null |
1 | 1809.07879v1 | 5 | [
160.38190390846947,
173.52801513671875,
428.45018976384944,
287.10198974609375
] | \begin{table}
\centering
\caption{Percentage of inertia for each dimension and cumulative percentage of inertia}
{\footnotesize
\begin{tabular}[!h]{|c|c|c|}
\hline
Dimension&Percentage of inertia&Cumulative percentage of inertia\\ \hline
1&$23.04\%$&$23.04\%$ \\ \hline
2&$18.62\%$&$41.66\%$\\ \hline
3&$16.56\%$&$58.23\%$\\ \hline
4&$12.74\%$&$70.98\%$\\ \hline
5&$9.53\%$&$80.51\%$\\ \hline
6&$7.25\%$&$87.77\%$\\ \hline
7&$5.36\%$&$93.14\%$\\ \hline
8&$3.74\%$&$96.89\%$\\ \hline
9&$3.11\%$&$100\%$\\ \hline
\end{tabular}
}
\label{variance}
\end{table} | [
[
"Dimension",
"Percentage of inertia",
"Cumulative percentage of inertia"
],
[
"1",
"23.04%",
"23.04%"
],
[
"2",
"18.62%",
"41.66%"
],
[
"3",
"16.56%",
"58.23%"
],
[
"4",
"12.74%",
"70.98%"
],
[
"5",
"9.53%",
"80.51%"
],
[
"6",
"7.25%",
"87.77%"
],
[
"7",
"5.36%",
"93.14%"
],
[
"8",
"3.74%",
"96.89%"
],
[
"9",
"3.11%",
"100%"
]
] | 0.366412 | null | null |
2 | 1809.07879v1 | 8 | [
206.47990972345525,
352.22601318359375,
388.79376455453723,
465.7336832682292
] | \begin{table}
\centering
{\footnotesize
\caption{Variables coorrelations with the first four dimesnions} \label{coordvar}
\begin{tabular}[H]{|c|c|c|c|c|}
\hline
Variable&Dim.1&Dim.2&Dim.3&Dim.4\\ \hline
P&0.22&\cellcolor{green!15}0.61&\cellcolor{green!15}0.51&-0.35\\ \hline
T&\cellcolor{green!15}0.52&-0.06&-0.35&\cellcolor{green!15}-0.65\\ \hline
H&0.03&0.38&\cellcolor{green!15}0.83&0.04\\ \hline
rms1&\cellcolor{green!15}0.67&-0.44&0.39&0.03\\ \hline
img&\cellcolor{green!15}-0.77&-0.23&0.20&0.07\\ \hline
rms2&0.38&\cellcolor{green!15}-0.71&0.32&0.22\\ \hline
A&0.11&\cellcolor{green!15}0.55&-0.25&0.46\\ \hline
Z&0.37&0.08&-0.04&\cellcolor{green!15}0.56\\ \hline
velocity&\cellcolor{green!15}0.64&0.29&-0.22&0.16\\ \hline
\end{tabular}}
\end{table} | [
[
"Variable",
"Dim.1",
"Dim.2",
"Dim.3",
"Dim.4"
],
[
"P",
"0.22",
"0.61",
"0.51",
"-0.35"
],
[
"T",
"0.52",
"-0.06",
"-0.35",
"-0.65"
],
[
"H",
"0.03",
"0.38",
"0.83",
"0.04"
],
[
"rms1",
"0.67",
"-0.44",
"0.39",
"0.03"
],
[
"img",
"-0.77",
"-0.23",
"0.20",
"0.07"
],
[
"rms2",
"0.38",
"-0.71",
"0.32",
"0.22"
],
[
"A",
"0.11",
"0.55",
"-0.25",
"0.46"
],
[
"Z",
"0.37",
"0.08",
"-0.04",
"0.56"
],
[
"velocity",
"0.64",
"0.29",
"-0.22",
"0.16"
]
] | 0.45 | null | null |
0 | 2007.15745v3 | 46 | [
134.78399658203125,
145.91098403930664,
472.64501953125,
360.1080093383789
] | \begin{table}
\centering
\caption{Configuration space for the hyper-parameters of tested ML models}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{l|l|l|l}
\Xhline{1.2pt}
\textbf{ML Model } & \multicolumn{1}{l|}{\textbf{Hyper-parameter}} & \multicolumn{1}{l|}{\textbf{Type}} & \textbf{Search Space} \\
\Xhline{1.2pt}
\multirow{6}{*}{RF Classifier} & n\_estimators & Discrete & {[}10,100] \\
\cline{2-4}
& max\_depth & \multicolumn{1}{l|}{Discrete} & {[}5,50] \\
\cline{2-4}
& min\_samples\_split & Discrete & {[}2,11] \\
\cline{2-4}
& min\_samples\_leaf & Discrete & {[}1,11] \\
\cline{2-4}
& criterion & \multicolumn{1}{l|}{Categorical} & {[}'gini', 'entropy'] \\
\cline{2-4}
& max\_features & Discrete & {[}1,64] \\
\hline
\multirow{2}{*}{SVM Classifier} & C & Continuous & {[}0.1,50] \\
\cline{2-4}
& kernel & Categorical & {[}'linear', 'poly', 'rbf', 'sigmoid'] \\
\hline
KNN Classifier & n\_neighbors & Discrete & {[}1,20] \\
\hline
\multirow{6}{*}{RF Regressor} & n\_estimators & Discrete & {[}10,100] \\
\cline{2-4}
& max\_depth & Discrete & {[}5,50] \\
\cline{2-4}
& min\_samples\_split & Discrete & {[}2,11] \\
\cline{2-4}
& min\_samples\_leaf & Discrete & {[}1,11] \\
\cline{2-3}\cline{4-4}
& criterion & Categorical & {[}'mse', 'mae'] \\
\cline{2-4}
& max\_features & Discrete & {[}1,13] \\
\hline
\multirow{3}{*}{SVM Regressor} & C & Continuous & {[}0.1,50] \\
\cline{2-4}
& kernel & Categorical & {[}'linear', 'poly', 'rbf', 'sigmoid'] \\
\cline{2-4}
& epsilon & Continuous & {[}0.001,1] \\
\hline
KNN Regressor & n\_neighbors & Discrete & {[}1,20] \\
\Xhline{1.2pt}
\end{tabular}
\label{ta1}%
\end{table} | [
[
"ML Model",
"Hyper-parameter",
"Type",
"Search Space"
],
[
"RF Classifier",
"n estimators",
"Discrete",
"[10,100]"
],
[
null,
"max depth",
"Discrete",
"[5,50]"
],
[
null,
"min samples split",
"Discrete",
"[2,11]"
],
[
null,
"min samples leaf",
"Discrete",
"[1,11]"
],
[
null,
"criterion",
"Categorical",
"[’gini’, ’entropy’]"
],
[
null,
"max features",
"Discrete",
"[1,64]"
],
[
"SVM Classifier",
"C",
"Continuous",
"[0.1,50]"
],
[
null,
"kernel",
"Categorical",
"[’linear’, ’poly’, ’rbf’, ’sigmoid’]"
],
[
"KNN Classifier",
"n neighbors",
"Discrete",
"[1,20]"
],
[
"RF Regressor",
"n estimators",
"Discrete",
"[10,100]"
],
[
null,
"max depth",
"Discrete",
"[5,50]"
],
[
null,
"min samples split",
"Discrete",
"[2,11]"
],
[
null,
"min samples leaf",
"Discrete",
"[1,11]"
],
[
null,
"criterion",
"Categorical",
"[’mse’, ’mae’]"
],
[
null,
"max features",
"Discrete",
"[1,13]"
],
[
"SVM Regressor",
"C",
"Continuous",
"[0.1,50]"
],
[
null,
"kernel",
"Categorical",
"[’linear’, ’poly’, ’rbf’, ’sigmoid’]"
],
[
null,
"epsilon",
"Continuous",
"[0.001,1]"
],
[
"KNN Regressor",
"n neighbors",
"Discrete",
"[1,20]"
]
] | 0.409993 | null | null |
1 | 2007.15745v3 | 47 | [
214.51699829101562,
155.9289894104004,
392.9119873046875,
276.17798614501953
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the RF classifier on the MNIST dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{Accuracy} (\%) & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 90.65 & 0.09 \\
\hline
GS & 93.32 & 48.62 \\
\hline
RS & 93.38 & 16.73 \\
\hline
BO-GP & 93.38 & 20.60 \\
\hline
BO-TPE & 93.88 & 12.58 \\
\hline
Hyperband & 93.38 & 8.89 \\
\hline
BOHB & 93.38 & 9.45 \\
\hline
GA & 93.83 & 19.19 \\
\hline
PSO & 93.73 & 12.43 \\
\Xhline{1.2pt}
\end{tabular}
\label{te1}%
\end{table} | [
[
"Optimization\nAlgorithm",
"Accuracy\n(%)",
"CT (s)"
],
[
"Default HPs",
"90.65",
"0.09"
],
[
"GS",
"93.32",
"48.62"
],
[
"RS",
"93.38",
"16.73"
],
[
"BO-GP",
"93.38",
"20.60"
],
[
"BO-TPE",
"93.88",
"12.58"
],
[
"Hyperband",
"93.38",
"8.89"
],
[
"BOHB",
"93.38",
"9.45"
],
[
"GA",
"93.83",
"19.19"
],
[
"PSO",
"93.73",
"12.43"
]
] | 0.77907 | null | null |
2 | 2007.15745v3 | 48 | [
214.51699829101562,
167.9549903869629,
392.9119873046875,
288.20398712158203
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the SVM classifier on the MNIST dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{Accuracy} (\%) & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 97.05 & 0.29 \\
\hline
GS & 97.44 & 32.90 \\
\hline
RS & 97.35 & 12.48 \\
\hline
BO-GP & 97.50 & 17.56 \\
\hline
BO-TPE & 97.44 & 3.02 \\
\hline
Hyperband & 97.44 & 11.37 \\
\hline
BOHB & 97.44 & 8.18 \\
\hline
GA & 97.44 & 16.89 \\
\hline
PSO & 97.44 & 8.33 \\
\Xhline{1.2pt}
\end{tabular}
\label{te2}%
\end{table} | [
[
"Optimization\nAlgorithm",
"Accuracy\n(%)",
"CT (s)"
],
[
"Default HPs",
"97.05",
"0.29"
],
[
"GS",
"97.44",
"32.90"
],
[
"RS",
"97.35",
"12.48"
],
[
"BO-GP",
"97.50",
"17.56"
],
[
"BO-TPE",
"97.44",
"3.02"
],
[
"Hyperband",
"97.44",
"11.37"
],
[
"BOHB",
"97.44",
"8.18"
],
[
"GA",
"97.44",
"16.89"
],
[
"PSO",
"97.44",
"8.33"
]
] | 0.777778 | null | null |
3 | 2007.15745v3 | 48 | [
214.51699829101562,
352.6469955444336,
392.9119873046875,
472.9296620686849
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the KNN classifier on the MNIST dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{Accuracy} (\%) & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 96.27 & 0.24 \\
\hline
GS & 96.22 & 7.86 \\
\hline
RS & 96.33 & 6.44 \\
\hline
BO-GP & 96.83 & 1.12 \\
\hline
BO-TPE & 96.83 & 2.33 \\
\hline
Hyperband & 96.22 & 4.54 \\
\hline
BOHB & 97.44 & 3.84 \\
\hline
GA & 96.83 & 2.34 \\
\hline
PSO & 96.83 & 1.73 \\
\hline
\Xhline{1.2pt}
\end{tabular}
\label{te3}%
\end{table} | [
[
"Optimization\nAlgorithm",
"Accuracy\n(%)",
"CT (s)"
],
[
"Default HPs",
"96.27",
"0.24"
],
[
"GS",
"96.22",
"7.86"
],
[
"RS",
"96.33",
"6.44"
],
[
"BO-GP",
"96.83",
"1.12"
],
[
"BO-TPE",
"96.83",
"2.33"
],
[
"Hyperband",
"96.22",
"4.54"
],
[
"BOHB",
"97.44",
"3.84"
],
[
"GA",
"96.83",
"2.34"
],
[
"PSO",
"96.83",
"1.73"
]
] | 0.771084 | null | null |
4 | 2007.15745v3 | 48 | [
214.51699829101562,
539.6760101318359,
392.9119873046875,
659.9250030517578
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the RF regressor on the Boston-housing dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{MSE} & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 31.26 & 0.08 \\
\hline
GS & 29.02 & 4.64 \\
\hline
RS & 27.92 & 3.42 \\
\hline
BO-GP & 26.79 & 17.94 \\
\hline
BO-TPE & 25.42 & 1.53 \\
\hline
Hyperband & 26.14 & 2.56 \\
\hline
BOHB & 25.56 & 1.88 \\
\hline
GA & 26.95 & 4.73 \\
\hline
PSO & 25.69 & 3.20 \\
\Xhline{1.2pt}
\end{tabular}
\label{te4}%
\end{table} | [
[
"Optimization\nAlgorithm",
"MSE",
"CT (s)"
],
[
"Default HPs",
"31.26",
"0.08"
],
[
"GS",
"29.02",
"4.64"
],
[
"RS",
"27.92",
"3.42"
],
[
"BO-GP",
"26.79",
"17.94"
],
[
"BO-TPE",
"25.42",
"1.53"
],
[
"Hyperband",
"26.14",
"2.56"
],
[
"BOHB",
"25.56",
"1.88"
],
[
"GA",
"26.95",
"4.73"
],
[
"PSO",
"25.69",
"3.20"
]
] | 0.793846 | null | null |
5 | 2007.15745v3 | 49 | [
214.51699829101562,
215.68002700805664,
392.9119873046875,
335.92899322509766
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the SVM regressor on the Boston-housing dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{MSE} & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 77.43 & 0.02 \\
\hline
GS & 67.07 & 1.33 \\
\hline
RS & 61.40 & 0.48 \\
\hline
BO-GP & 61.27 & 5.87 \\
\hline
BO-TPE & 59.40 & 0.33 \\
\hline
Hyperband & 73.44 & 0.32 \\
\hline
BOHB & 59.67 & 0.31 \\
\hline
GA & 60.17 & 1.12 \\
\hline
PSO & 58.72 & 0.53 \\
\Xhline{1.2pt}
\end{tabular}
\label{te5}%
\end{table} | [
[
"Optimization\nAlgorithm",
"MSE",
"CT (s)"
],
[
"Default HPs",
"77.43",
"0.02"
],
[
"GS",
"67.07",
"1.33"
],
[
"RS",
"61.40",
"0.48"
],
[
"BO-GP",
"61.27",
"5.87"
],
[
"BO-TPE",
"59.40",
"0.33"
],
[
"Hyperband",
"73.44",
"0.32"
],
[
"BOHB",
"59.67",
"0.31"
],
[
"GA",
"60.17",
"1.12"
],
[
"PSO",
"58.72",
"0.53"
]
] | 0.79257 | null | null |
6 | 2007.15745v3 | 49 | [
214.51699829101562,
493.8869857788086,
392.9119873046875,
614.1360015869141
] | \begin{table}
\centering
\caption{Performance evaluation of applying HPO methods to the KNN regressor on the Boston-housing dataset}
\setlength\extrarowheight{1pt}
\centering
\scriptsize
\begin{tabular}{p{2cm}|p{1.5cm}|p{1.5cm}}
\Xhline{1.2pt}
\textbf{Optimization Algorithm} & \textbf{MSE} & \textbf{CT} (s) \\
\Xhline{1.2pt}
Default HPs & 81.48 & 0.004 \\
\hline
GS & 81.53 & 0.12 \\
\hline
RS & 80.77 & 0.11 \\
\hline
BO-GP & 80.77 & 0.49 \\
\hline
BO-TPE & 80.83 & 0.08 \\
\hline
Hyperband & 80.87 & 0.10 \\
\hline
BOHB & 80.77 & 0.09 \\
\hline
GA & 80.77 & 0.33 \\
\hline
PSO & 80.74 & 0.19 \\
\Xhline{1.2pt}
\end{tabular}
\label{te6}%
\end{table} | [
[
"Optimization\nAlgorithm",
"MSE",
"CT (s)"
],
[
"Default HPs",
"81.48",
"0.004"
],
[
"GS",
"81.53",
"0.12"
],
[
"RS",
"80.77",
"0.11"
],
[
"BO-GP",
"80.77",
"0.49"
],
[
"BO-TPE",
"80.83",
"0.08"
],
[
"Hyperband",
"80.87",
"0.10"
],
[
"BOHB",
"80.77",
"0.09"
],
[
"GA",
"80.77",
"0.33"
],
[
"PSO",
"80.74",
"0.19"
]
] | 0.790123 | null | null |
0 | 2209.12885v2 | 13 | [
225.2760009765625,
462.4630126953125,
383.40301513671875,
512.2479858398438
] | \begin{table}[ht]
\caption{Hyperparameters and their chosen values}
\centering
\begin{tabular}{c|c}
\midrule
Hyperparameter & Value \\
\midrule
Number of hidden layers & $3$ \\
Hidden layer size & $50$ \\
Step factor & $5$ \\
Training data size & $3\cdot 10^4$\\
\midrule
\end{tabular}
\label{tab:hparam_values}
\end{table} | [
[
"Number of hidden layers\nHidden layer size\nStep factor\nTraining data size",
"3\n50\n5\n3 104\n·"
]
] | 0.511327 | null | null |
1 | 2209.12885v2 | 27 | [
148.79200744628906,
338.0060119628906,
459.885986328125,
387.7919921875
] | \begin{table}[ht]
\caption{Hyperparameters and their possible values.}
\centering
\begin{tabular}{c|c}
\midrule \\
Hyperparameter & Search space \\
\midrule
Number of hidden layers & $\{2, 3, 4\}$ \\
Hidden layer size & $\{20, 30, 40, 50, 60, 70\}$ \\
Step factor & $\{5, 10, 15, 20, 25, 30\}$ \\
Training data size & $\{10^4, 2\cdot10^4, 3\cdot10^4, 4\cdot10^4, 5\cdot10^4, 6\cdot10^4\}$\\
\midrule
\end{tabular}
\label{tab:hparam}
\end{table} | [
[
"Number of hidden layers\nHidden layer size\nStep factor\nTraining data size",
"2, 3, 4\n{ }\n20, 30, 40, 50, 60, 70\n{ }\n5, 10, 15, 20, 25, 30\n{ }\n104, 2 104, 3 104, 4 104, 5 104, 6 104\n{ · · · · · }"
]
] | 0.498024 | null | null |
0 | 1307.0781v1 | 14 | [
175.91109924316407,
53.33697509765625,
429.4549987792969,
120.38897705078125
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
Learner & 1 &2 &3 & 4\\
\hline
Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\
Function (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\
\hline
Error & 47, & 53, & 47, & 47, \\
percentage (S1) & 3 & 4 & 47 & 47\\
\hline
Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\
Function (S2) & Random & Random & J48 & Always $0$ \\
\hline
Error & 47, & 53, & 47, & 47, \\
percentage (S2) & 50 & 50 & 47 & 47 \\
\hline
\end{tabular}
}
\add{\vspace{-0.1in}}
\caption{Simulation setup}
\vspace{-0.25in}
\label{tab:sim_setup}
\end{table} | [
[
"Learner",
"1",
"2",
"3",
"4"
],
[
"Classification\nFunction (S1)",
"Naive Bayes,\nLogistic",
"Always 1,\nVoted Perceptron",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S1)",
"47,\n3",
"53,\n4",
"47,\n47",
"47,\n47"
],
[
"Classification\nFunction (S2)",
"Naive Bayes,\nRandom",
"Always 1,\nRandom",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S2)",
"47,\n50",
"53,\n50",
"47,\n47",
"47,\n47"
]
] | 0.504854 | null | null |
1 | 1307.0781v1 | 14 | [
212.12024688720703,
151.96697998046875,
393.2457580566406,
179.71002197265625
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|c|c|}
\hline
& $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ \\
\hline
(C1) CoS & $t^{1/8} \log t$ & $2 t^{1/8} \log t$ & $t^{1/8} \log t$ & $\lceil T \rceil^{1/4}$ \\
\hline
%(C1) DCZA & $t^{1/8} \log t$ & $2 t^{1/8} \log t$ & $t^{1/8} \log t$ & & $1$ & $4$ \\
%\hline
(C2) CoS & $t^{1/2} \log t$ & $2 t^{1/2} \log t$ & $t^{1/2} \log t$ & $\lceil T \rceil^{1/4}$ \\
\hline
%(C2) DCZA & $t^{2/p} \log t$ & $2 t^{2/p} \log t$ & $t^{2/p} \log t$ & & $1$ & $(3+\sqrt{17})/2$ \\
%\hline
\end{tabular}
}
\add{\vspace{-0.05in}}
\caption{Parameters for CoS}
\label{tab:par_setup}
\add{\vspace{-0.4in}}
\end{table} | [
[
"",
"D1(t)",
"D2(t)",
"D3(t)",
"mT"
],
[
"(C1) CoS",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"⌈T⌉1/4"
],
[
"(C2) CoS",
"t1/2 log t",
"2t1/2 log t",
"t1/2 log t",
"⌈T⌉1/4"
]
] | 0.544601 | null | null |
2 | 1307.0781v1 | 3 | [
176.27973225911458,
53.33697509765625,
429.19012451171875,
155.47601318359375
] | \begin{table}[t]
\centering
{\renewcommand{\arraystretch}{0.6}
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
& \cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \cite{mateos2010distributed, kargupta1999collective} & \cite{zheng2011attribute} & This work \\
\hline
Aggregation & non-cooperative & cooperative & cooperative & \rev{no} \\
\hline
Message & none & data & training & data and label \\
exchange & & & residual & only if improves \\
& & & & performance \\
\hline
Learning & offline/online & offline & offline & Non-bayesian \\
approach&&&& online\\
\hline
Correlation & N/A & no & no & yes\\
exploitation & & & &\\
\hline
Information from & no & all & all & only if improves \\
other learners & & & & accuracy \\
\hline
Data partition & horizontal & horizontal & vertical & horizontal \\
\hline
Bound on regret, & no &no &no &yes - sublinear\\
convergence rate &&&&\\
\hline
\end{tabular}
}
}
\caption{Comparison with related work in distributed data mining}
\label{tab:comparison1}
\add{\vspace{-0.1in}}
\end{table} | [
[
"",
"[3], [8], [13]–[15]",
"[7], [9]",
"[5]",
"This work"
],
[
"Aggregation",
"non-cooperative",
"cooperative",
"cooperative",
"no"
],
[
"Message\nexchange",
"none",
"data",
"training\nresidual",
"data and label\nonly if improves\nperformance"
],
[
"Learning\napproach",
"offline/online",
"offline",
"offline",
"Non-bayesian\nonline"
],
[
"Correlation\nexploitation",
"N/A",
"no",
"no",
"yes"
],
[
"Information from\nother learners",
"no",
"all",
"all",
"only if improves\naccuracy"
],
[
"Data partition",
"horizontal",
"horizontal",
"vertical",
"horizontal"
],
[
"Bound on regret,\nconvergence rate",
"no",
"no",
"no",
"yes - sublinear"
]
] | 0.475786 | null | null |
3 | 1307.0781v1 | 3 | [
179.8161277770996,
191.3740234375,
429.19012451171875,
243.114990234375
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.25em}
\vspace{-0.2in}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
&\cite{slivkins2009contextual, dudik2011efficient, langford2007epoch, chu2011contextual} & \cite{hliu1, anandkumar, tekin2012sequencing} & \cite{tekin4} & This work \\
\hline
Multi-user & no & yes & yes & yes \\
\hline
Cooperative & N/A & yes & no & yes \\
\hline
Contextual & yes & no & no & yes \\
\hline
Data arrival & arbitrary & i.i.d. or Markovian & i.i.d. & i.i.d or arbitrary \\
process& & & & \\
\hline
Regret & sublinear & logarithmic & may be linear & sublinear \\
\hline
\end{tabular}
}
\caption{Comparison with related work in multi-armed bandits}
\vspace{-0.35in}
\label{tab:comparison2}
\end{table} | [
[
"",
"[16]–[19]",
"[23]–[25]",
"[26]",
"This work"
],
[
"Multi-user",
"no",
"yes",
"yes",
"yes"
],
[
"Cooperative",
"N/A",
"yes",
"no",
"yes"
],
[
"Contextual",
"yes",
"no",
"no",
"yes"
],
[
"Data arrival\nprocess",
"arbitrary",
"i.i.d. or Markovian",
"i.i.d.",
"i.i.d or arbitrary"
],
[
"Regret",
"sublinear",
"logarithmic",
"may be linear",
"sublinear"
]
] | 0.643505 | null | null |
0 | 1609.00904v1 | 2 | [
319.5,
54.198974609375,
549.8150024414062,
120.75
] | \begin{table}
\begin{tabular}{|r||c|c|c|c|}
\hline
Name & Nom. & Int. & Cont. & Note \\ \hline
Mad. & 0 & 500 & 0 & hyper-XOR problem \\
Car. & 18 & 0 & 14 & car auction \\
Home. & 295 & 0 & 1 & real estate \\
Mel. & 178 & 61 & 11 & grant applications \\
Credit & 0 & 6 & 4 & credit risks\\
\hline
\end{tabular}
\caption{Datasets and their characteristics. Nom = nominal. Int = integer. Cont = continuous.}
\label{tbl:datasets}
\end{table} | [
[
"Name",
"Nom.",
"Int.",
"Cont.",
"Note"
],
[
"Mad.\nCar.\nHome.\nMel.\nCredit",
"0\n18\n295\n178\n0",
"500\n0\n0\n61\n6",
"0\n14\n1\n11\n4",
"hyper-XOR problem\ncar auction\nreal estate\ngrant applications\ncredit risks"
]
] | 0.518519 | null | null |
0 | 2202.10688v2 | 15 | [
312.17127482096356,
394.06072998046875,
561.0780445445668,
475.9172668457031
] | \begin{table}[]
\centering
\caption{Datasets}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|l|l|l|l|l|}
\hline
\multicolumn{1}{|c|}{\textbf{Dataset}} & \multicolumn{1}{c|}{\textbf{Nodes}} & \multicolumn{1}{c|}{\textbf{Edges}} & \multicolumn{1}{c|}{\textbf{Features}} & \multicolumn{1}{c|}{\textbf{Tasks}} \\ \hline
Citeseer & 3,312 & 4,732 & 3,703 & 6 \\ \hline
Cora & 2,708 & 5,429 & 1,433 & 7 \\ \hline
OGBN-Arxiv & 169,343 & 1,166,243 & 128 & 40 \\ \hline
OGBN-Product & 2,449,029 & 61,859,140 & 100 & 47 \\ \hline
OGBN-Proteins & 132,534 & 39,561,252 & 8 & 112 \\ \hline
Pubmed & 19,717 & 44,338 & 500 & 3 \\ \hline
Reddit & 232,965 & 11,606,919 & 602 & 41 \\ \hline
\end{tabular}%
}
\end{table} | [
[
"Dataset",
"Nodes",
"Edges",
"Features",
"Tasks"
],
[
"Citeseer",
"3,312",
"4,732",
"3,703",
"6"
],
[
"Cora",
"2,708",
"5,429",
"1,433",
"7"
],
[
"OGBN-Arxiv",
"169,343",
"1,166,243",
"128",
"40"
],
[
"OGBN-Product",
"2,449,029",
"61,859,140",
"100",
"47"
],
[
"OGBN-Proteins",
"132,534",
"39,561,252",
"8",
"112"
],
[
"Pubmed",
"19,717",
"44,338",
"500",
"3"
],
[
"Reddit",
"232,965",
"11,606,919",
"602",
"41"
]
] | 0.948529 | null | null |
0 | 2201.01288v2 | 11 | [
54.93000030517578,
387.5929870605469,
293.07000732421875,
452.7550048828125
] | \begin{table}[h]
\caption{Supported generators in the auto feature engineering module.}
\label{tab:generators}
\centering
\begin{tabular}{l|l}
\toprule
Name & Description \\ \midrule
\texttt{graphlet} & Local graphlet numbers\\
\texttt{eigen} & EigenGNN features. \\
\texttt{pagerank} & PageRank scores. \\
\texttt{PYGLocalDegreeProfile} & Local Degree Profile features \\
\texttt{PYGNormalizeFeatures} & Row-normalize all node features \\
\texttt{PYGOneHotDegree} & One-hot encoding of node degrees. \\
\texttt{onehot} & One-hot encoding of node IDs \\ \bottomrule
\end{tabular}
\end{table} | [
[
"graphlet\neigen\npagerank\nPYGLocalDegreeProfile\nPYGNormalizeFeatures\nPYGOneHotDegree\nonehot",
"Local graphlet numbers\nEigenGNN features.\nPageRank scores.\nLocal Degree Profile features\nRow-normalize all node features\nOne-hot encoding of node degrees.\nOne-hot encoding of node IDs"
]
] | 0.390805 | null | null |
0 | 1905.09849v2 | 6 | [
327.6000061035156,
378.14501953125,
561.5999755859375,
438.5190124511719
] | \begin{table}[h]
\small
\begin{center}
\caption{Test statistics $\hat{m}_j$ and their associated confidence intervals of the first and second-order significant features returned by the SFIT algorithm for $\alpha = 0.05$, $\beta = 10^{-2}$.}
\label{table:1}
\begin{tabularx}{\columnwidth}{ X|X|X }
Significant features or pairs & $\hat{m}_j$ & 95\%-Confidence interval \\
\hline
$X_1$ & 1.13 & $[1.06,1.21]$ \\
$X_3$ & 0.224 & $[0.185,0.265]$ \\
$(X_1,X_2)$ & 0.01 & $[0.004,0.016]$ \\
$(X_4,X_5)$ & 0.048 & $[0.035,0.060]$ \\
\hline
\end{tabularx}
\end{center}
\end{table} | [
[
"Significant fea-\ntures or pairs",
"mˆ\nj",
"95%-Confidence\ninterval"
],
[
"X\n1\nX\n3\n(X , X )\n1 2\n(X , X )\n4 5",
"1.13\n0.224\n0.01\n0.048",
"[1.06, 1.21]\n[0.185, 0.265]\n[0.004, 0.016]\n[0.035, 0.060]"
]
] | 0.405904 | null | null |
1 | 1905.09849v2 | 8 | [
327.7259979248047,
572.1409912109375,
561.4744873046875,
632.5150146484375
] | \begin{table}[h]
\small
\begin{center}
\caption{Predictive performance as measured by AUC and balanced accuracy of the neural network trained on the full set of 75 variables and on the subset of 24 variables selected by SFIT.}
\label{table:5}
\begin{tabularx}{\columnwidth}{ X|X|X }
Metric & Neural network on all variables & Neural network on selected variables\\
\hline
AUC & 0.775 & 0.765\\
Balanced accuracy & 0.707 & 0.701 \\
\hline
\end{tabularx}
\end{center}
\end{table} | [
[
"Metric",
"Neural network\non all variables",
"Neural network\non selected vari-\nables"
],
[
"AUC\nBalanced accu-\nracy",
"0.775\n0.707",
"0.765\n0.701"
]
] | 0.388235 | null | null |
0 | 2112.13790v1 | 4 | [
63.65612459182739,
275.02001953125,
285.32999420166016,
339.37799072265625
] | \begin{table}[tb]
\caption{Statistics of training and test datasets of two subtasks. The third and fourth columns represent the total of examples and the average number of words by example, respectively. The symbols $\$$ represents the sentiment scores. The last columns represent the amount of examples with the sentiment score smaller and bigger (or equal) than zero, respectively.}
\label{tab:dataset}
\begin{center}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
\textbf{Type} & \textbf{Split} & \textbf{\#Total} & \textbf{Length} & \textbf{$\$<0$} & \textbf{$\$>=0$} \\ \hline
\multirow{2}{*}{StockTwits} & train & 934 & 6.4 & 333 & 601 \\ \cline{2-6}
& test & 429 & 6.5 & 141 & 288 \\\hline
\multirow{2}{*}{Twitter} & train & 766 & 5.7 & 248 & 518\\ \cline{2-6}
& test & 365 & 5.4 & 116 & 249\\\hline
\multirow{2}{1.4cm}{News headline} & train & 1142 & 9.6 & 451 & 691\\ \cline{2-6}
& test & 491 & 9.5 & 203 & 288 \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Type",
"Split",
"#Total",
"Length",
"$ < 0",
"$ >= 0"
],
[
"StockTwits",
"train",
"934",
"6.4",
"333",
"601"
],
[
null,
"test",
"429",
"6.5",
"141",
"288"
],
[
"Twitter",
"train",
"766",
"5.7",
"248",
"518"
],
[
null,
"test",
"365",
"5.4",
"116",
"249"
],
[
"News\nheadline",
"train",
"1142",
"9.6",
"451",
"691"
],
[
null,
"test",
"491",
"9.5",
"203",
"288"
]
] | 0.598608 | null | null |
1 | 2112.13790v1 | 6 | [
108.08212661743164,
274.50201416015625,
240.90399932861328,
339.2590026855469
] | \begin{table}[tb]
\caption{Cosine similarity scores of the version RoBERTa$+5\times$Transf grouped by positive and negative prediction values.}
\begin{center}
\label{tab:results:values} % Give a unique label
\begin{tabular}{|p{3cm}|c|}
\hline
\textbf{Prediction values} & \textbf{Cosine} \\
\hline
\multicolumn{2}{|l|}{\textit{Microblogs}} \\ \hline
positive ($>=0$) & 0.853 \\
negative & 0.815 \\
\hline
\multicolumn{2}{|l|}{\textit{News statements \& headlines}} \\\hline
positive ($>=0$) & 0.860 \\
negative & 0.840 \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Prediction values",
"Cosine"
],
[
"Microblogs",
null
],
[
"positive (>= 0)\nnegative",
"0.853\n0.815"
],
[
"News statements & headlines",
null
],
[
"positive (>= 0)\nnegative",
"0.860\n0.840"
]
] | 0.840278 | null | null |
0 | 1802.08251v1 | 2 | [
91.78199768066406,
508.135009765625,
494.17047119140625,
571.4972534179688
] | \begin{table}[!h]
\caption{Summary of tools inputs and outputs.}
\label{table:tools}
\scalebox{0.75}{
\begin{tabular}{l|l|l}
\hline
Tool & Input &Output \\ \hline
GEOQuery & GEO database ID & Rdata object and .cond file \\
QCNormalization & Raw .CEL affymetrix files and .conf file & Rdata object and plots \\
Import custom data & Expression data in tabular .txt format &Rdata object and plots \\
Limma analysis & Rdata object from GEOQuery or QCNormalization & Rdata Object and HTML report \\
Microarray data meta-analysis & Rdata objects from Limma analyse & HTML report \\
RNA-seq data meta-analysis & Results text files from galaxy deseq2 tool & HTML report \\ \hline
\end{tabular}
}
\end{table} | [
[
"Tool",
"Input",
"Output"
],
[
"GEOQuery\nQCNormalization\nImport custom data\nLimma analysis\nMicroarray data meta-analysis\nRNA-seq data meta-analysis",
"GEO database ID\nRaw .CEL affymetrix files and .conf file\nExpression data in tabular .txt format\nRdata object from GEOQuery or QCNormalization\nRdata objects from Limma analyse\nResults text files from galaxy deseq2 tool",
"Rdata object and .cond file\nRdata object and plots\nRdata object and plots\nRdata Object and HTML report\nHTML report\nHTML report"
]
] | 0.462343 | null | null |
0 | 2308.10194v1 | 11 | [
86.56700134277344,
235.96998596191406,
498.55699666341144,
274.36297607421875
] | \begin{table}[h]
\caption{Observations per center}\label{table:nobservation}
\centering
\begin{tabular}{|c | c | c|}
\toprule
Number of centers & Number of observations in each group & each group total \\
\midrule
3 & 698, 476, 326 & 1500 \\
5 & 492, 368, 276, 208, 156 & 1500 \\
10 & 307, 250, 208, 172, 143, 118, 98, 81, 67, 56 & 1500 \\
\bottomrule
\end{tabular}
\end{table} | [
[
"3\n5\n10",
"698, 476, 326\n492, 368, 276, 208, 156\n307, 250, 208, 172, 143, 118, 98, 81, 67, 56",
"1500\n1500\n1500"
]
] | 0.470284 | null | null |
0 | 2302.11751v1 | 6 | [
93.62699890136719,
411.9599914550781,
255.36000061035156,
498.4360046386719
] | \begin{table}
\caption{Complete inspection on ensemble teams for \textit{EMNIST Balanced} dataset with $m=10, K=6$, \textit{noniid-lds} partition.}
\label{tab:completeInspection}
\begin{tabular}{c|c|c} \hline
Method & Rank & Accuracy (\%) \\ \hline
\methodName & \textbf{34/1024} & \textbf{84.34} \\ \hline
AS & 114/1024 & 83.39 \\ \hline
CV & 241/1024 & 82.29 \\ \hline
DS & 348/1024 & 80.86 \\ \hline
LD & 608/1024 & 77.77 \\ \hline
RS & 669/1024 & 76.54 \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Rank",
"Accuracy (%)"
],
[
"DeDES",
"34/1024",
"84.34"
],
[
"AS",
"114/1024",
"83.39"
],
[
"CV",
"241/1024",
"82.29"
],
[
"DS",
"348/1024",
"80.86"
],
[
"LD",
"608/1024",
"77.77"
],
[
"RS",
"669/1024",
"76.54"
]
] | 0.948529 | null | null |
1 | 2302.11751v1 | 10 | [
93.62699890136719,
527.2080078125,
255.36000061035156,
613.6840209960938
] | \begin{table}[htbp]
% % \centering
% % \caption{Complete Inspection on ensemble teams for CIFAR100 dataset with M=10}%
% \begin{tabular}{c|c|c}
% \hline
% Method & Rank & Accuracy (\%) \\
% \hline
% \textbf{DeDes} & \textbf{38/1024} & \textbf{84.22} \\
% \hline
% AS & 85/1024 & 83.25 \\
% \hline
% CVS & 215/1024 & 82.15 \\
% \hline
% DS & 658/1024 & 81.26 \\
% \hline
% RS & 798/1024 & 78.85 \\
% \hline
% LD & 54/1024 & 83.45 \\
% \hline
% \end{tabular}%
% \label{tab:completeInspection}%
% % \end{table} | [
[
"Method",
"Rank",
"Accuracy (%)"
],
[
"DeDES",
"214/1024",
"98.34"
],
[
"AS",
"372/1024",
"97.09"
],
[
"DS",
"608/1024",
"89.63"
],
[
"LD",
"675/1024",
"87.86"
],
[
"CV",
"933/1024",
"74.73"
],
[
"RS",
"952/1024",
"72.45"
]
] | 0.496552 | null | null |
0 | 2105.07636v2 | 16 | [
80.1760025024414,
296.8349914550781,
262.4630126953125,
405.4490051269531
] | \begin{table}[h]
\caption{DOC (DA/OE) parameters CIFAR-10.} \label{tab_Binary_DEEPSVM}
\begin{center}
\begin{small}
\begin{sc}
% \tabcolsep = 0.1cm
\begin{tabular}{c|cc}
\toprule
\specialcell{CIFAR-10 \\ (Class)} & $\lambda = \frac{1}{2C} $ & \specialcell{SGD\\Learning Rate} \\ \midrule
Airplane & 1.0 & $5 \times 10^{-3}$ \\
Automobile & 0.01& $5 \times 10^{-4}$ \\
Bird &0.5 & $5 \times 10^{-4}$\\
Cat & 1.0 & $10^{-4}$ \\
Deer & 1.0 & $10^{-4}$ \\
Dog & 0.5 & $10^{-3}$ \\
Frog & 0.5& $5\times 10^{-3}$ \\
Horse & 0.01 & $10^{-3}$ \\
Ship & 1.0 & $10^{-3}$ \\
Truck & 0.01 & $10^{-4}$ \\
\bottomrule
\end{tabular}
\end{sc}
\end{small}
\end{center}
\vskip -0.1in
\end{table} | [
[
"AIRPLANE\nAUTOMOBILE\nBIRD\nCAT\nDEER\nDOG\nFROG\nHORSE\nSHIP\nTRUCK",
"1.0 5 × 10−3\n0.01 5 × 10−4\n0.5 5 × 10−4\n1.0 10−4\n1.0 10−4\n0.5 10−3\n0.5 5 × 10−3\n0.01 10−3\n1.0 10−3\n0.01 10−4"
]
] | 0.382353 | null | null |
1 | 2105.07636v2 | 21 | [
59.73188400268555,
107.25042724609375,
287.40850830078125,
163.63433837890625
] | \begin{table}[h]
\caption{Optimal Model Parameters for the Tabular data sets.}\label{tab_tabularParamDOC3}
\vskip 0.15in
\begin{center}
\resizebox{\columnwidth}{!}{
\begin{small}
% \tabcolsep = 0.1cm
\begin{tabular}{c|ccccc}
\toprule
\specialcell{Class} & $\lambda$ & \specialcell{Learning\\Rate} & $ C_U/C$ & Epoch & Batch Size \\ \midrule
Thyroid & $10^{-6}$ & $10^{-3}$ & 5.0 & 500 & 100 \\
Arrhythmia & 0.01 & $10^{-3}$ & 0.001 & 300 & 100 \\
Abalone & 0.1 & $10^{-3}$ & 0.01& 300 & 100 \\
\bottomrule
\end{tabular}
\end{small}}
\end{center}
\vskip -0.1in
\end{table} | [
[
"Class",
"Learning\nλ CU/C Epoch Batch Size\nRate"
],
[
"Thyroid\nArrhythmia\nAbalone",
"10−6 10−3 5.0 500 100\n0.01 10−3 0.001 300 100\n0.1 10−3 0.01 300 100"
]
] | 0.469345 | null | null |
0 | 1802.07966v2 | 2 | [
102.48799896240234,
134.88899993896484,
498.9739990234375,
201.88751220703125
] | \begin{table}[!t]
\centering
\hspace{-0.6cm}
\begin{tabular}{l|p{120pt}|p{123pt}|p{125pt}}
\hline
&The square is above the rectangle.&The square is below the rectangle. &The square is below the rectangle.\\
$x$&The triangle is to the left of the square.&The triangle is to the right of the square.&The triangle is to the right of the square. \\
&Is the rectangle to the right of the triangle?&Is the rectangle to the right of the triangle?&Is the triangle below the rectangle?\\\hline
$y$&Yes& No & Yes\\\hline
\end{tabular}
\caption{A set of examples taken from the Task $17$ of bAbI question answering dataset.}
\label{table:dataset}
\end{table} | [
[
"x",
"The square is above the rectangle.\nThe triangle is to the left of the\nsquare.\nIs the rectangle to the right of the\ntriangle?",
"The square is below the rectangle.\nThe triangle is to the right of the\nsquare.\nIs the rectangle to the right of the\ntriangle?",
"The square is below the rectangle.\nThe triangle is to the right of the\nsquare.\nIs the triangle below the rectangle?"
],
[
"y",
"Yes",
"No",
"Yes"
]
] | 0.410317 | null | null |
0 | 1107.1445v1 | 35 | [
189.86535862513952,
317.08099365234375,
419.6570129394531,
482.8590087890625
] | \begin{table}[htbp]
\centering
\begin{tabular}{|c|c|}
\hline
{\bf Strategy} & {\bf Sequence} \\
\hline
\multicolumn{2}{|c|}{Repeated measurements not allowed} \\
\hline
ME Sampling & $10~~1~~9~~2~~3~~8~~5~~7~~4~~6$ \\
\hline
IM Sampling & $~1~10~~9~~2~~3~~8~~7~~4~~6~~5$ \\
\hline
RND Sampling & $~6~10~~3~~1~~5~~9~~8~~2~~4~~7$ \\
\hline
\multicolumn{2}{|c|}{Repeated measurements allowed} \\
\hline
ME Sampling & $10~~1~10~~1~~1~10~10~~1~~1~~1$ \\
\hline
IM Sampling & $~1~10~~1~10~10~~1~10~10~~1~~1$ \\
\hline
\end{tabular}
\caption{Results for example $1$, the additive noise case. Design sequences yielded by the three strategies for one particular Monte Carlo run}
\label{tab:ex1_add_seq}
\end{table} | [
[
"Strategy",
"Sequence"
],
[
"Repeated measurements not allowed",
null
],
[
"ME Sampling",
"10 1 9 2 3 8 5 7 4 6"
],
[
"IM Sampling",
"1 10 9 2 3 8 7 4 6 5"
],
[
"RND Sampling",
"6 10 3 1 5 9 8 2 4 7"
],
[
"Repeated measurements allowed",
null
],
[
"ME Sampling",
"10 1 10 1 1 10 10 1 1 1"
],
[
"IM Sampling",
"1 10 1 10 10 1 10 10 1 1"
]
] | 0.49162 | null | null |
1 | 1107.1445v1 | 36 | [
191.50399780273438,
149.093994140625,
418.74798583984375,
314.87298583984375
] | \begin{table}[htbp]
\centering
\begin{tabular}{|c|c|}
\hline
{\bf Strategy} & {\bf Sequence} \\
\hline
\multicolumn{2}{|c|}{Repeated measurements not allowed} \\
\hline
ME Sampling & $~5~~6~~7~~4~~1~~3~~8~~9~~2~10$ \\
\hline
IM Sampling & $~1~10~~9~~7~~2~~8~~4~~3~~5~~6$ \\
\hline
RND Sampling & $~6~~1~~8~~5~10~~9~~4~~2~~3~~7$ \\
\hline
\multicolumn{2}{|c|}{Repeated measurements allowed} \\
\hline
ME Sampling & $~5~~6~~6~~5~~5~~5~~6~~5~~6~~5$ \\
\hline
IM Sampling & $~1~10~~1~10~10~~1~~1~~1~~1~10$ \\
\hline
\end{tabular}
\caption{Results for example $1$, the multiplicative noise case. Design sequences yielded by the three strategies for one particular Monte Carlo run}
\label{tab:ex1_mult_seq}
\end{table} | [
[
"Strategy",
"Sequence"
],
[
"Repeated measurements not allowed",
null
],
[
"ME Sampling",
"5 6 7 4 1 3 8 9 2 10"
],
[
"IM Sampling",
"1 10 9 7 2 8 4 3 5 6"
],
[
"RND Sampling",
"6 1 8 5 10 9 4 2 3 7"
],
[
"Repeated measurements allowed",
null
],
[
"ME Sampling",
"5 6 6 5 5 5 6 5 6 5"
],
[
"IM Sampling",
"1 10 1 10 10 1 1 1 1 10"
]
] | 0.470752 | null | null |
0 | 1711.10420v1 | 4 | [
129.06700134277344,
105.38397216796875,
351.19598388671875,
183.10198974609375
] | \begin{table}
\centering
\caption{Direction cosines between axes before and after rotation}\label{tab1}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
\multicolumn{2}{c|}{\ } & \multicolumn{3}{|c}{Axes before rotation} \\ \cline{3-5}
\multicolumn{2}{c|}{\ } & $X_1$ & \ldots & $X_n$ \\ \hline \hline
Axes & $X_1'$ & $cos(X_1',X_1)$ & \ldots & $cos(X_1',X_n)$ \\ \cline{2-5}
after & \vdots & \vdots & \vdots & \vdots \\ \cline{2-5}
rotation & $X_n'$ & $cos(X_n',X_1)$ & \ldots & $cos(X_n',X_n)$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
null,
"Axes before rotation",
null,
null
],
[
null,
null,
"X\n1",
"...",
"X\nn"
],
[
"Axes\nafter\nrotation",
"X′\n1",
"cos(X′, X )\n1 1",
"...",
"cos(X′, X )\n1 n"
],
[
null,
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n."
],
[
null,
"X′\nn",
"cos(X′, X )\nn 1",
"...",
"cos(X′, X )\nn n"
]
] | 0.405556 | null | null |
1 | 1711.10420v1 | 5 | [
73.34100341796875,
105.35699462890625,
409.7569885253906,
192.62899780273438
] | \begin{table}
\centering
\caption{Transformation of tensors in matrix notation}\label{tab2}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c} \hline
Rank & New components & Old components & \multirow{2}{*}{Note} \\
of tensor & expressed by old & expressed by new & \\ \hline \hline
0 & $\varphi '=\varphi$ & $\varphi =\varphi '$ & $\varphi$, $\varphi '$ $-$ scalar \\ \hline
{1} & {$v'=R v$} & {$v=R^T v'$} & {$v$, $v'$ $-$ vector} \\ \hline
\multirow{2}{*}{2} & \multirow{2}{*}{$C'=R C R^T$} & \multirow{2}{*}{$C=R^T C' R$} & $C$, $C'$ $-$ second rank tensor \\
& & & expressed as a square matrix\\ \hline
\end{tabular}}
\end{table} | [
[
"Rank\nof tensor",
"New components\nexpressed by old",
"Old components\nexpressed by new",
"Note"
],
[
"0",
"ϕ′ = ϕ",
"ϕ = ϕ′",
"ϕ, ϕ′ −scalar"
],
[
"1",
"v′ = Rv",
"v = RT v′",
"v, v′ −vector"
],
[
"2",
"C′ = RCRT",
"C = RT C′R",
"C, C′ −second rank tensor\nexpressed as a square matrix"
]
] | 0.427105 | null | null |
2 | 1711.10420v1 | 8 | [
73.0989990234375,
107.593017578125,
407.1629943847656,
356.6889953613281
] | \begin{table}
\centering
\caption{The data for analysis (in centimeters)}\label{tab3}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
Sepal Length & Sepal Width & Petal Length & Petal Width & Class \\ \hline \hline
$5.1$ & $3.5$ & $1.4$ & $0.2$ & Iris-setosa \\ \hline
$4.9$ & $3$ & $1.4$ & $0.2$ & $\ldots$ \\ \hline
$4.7$ & $3.2$ & $1.3$ & $0.2$ & $\ldots$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline
$6.4$ & $3.2$ & $4.5$ & $1.5$ & Iris-versicolor \\ \hline
$6.9$ & $3.1$ & $4.9$ & $1.5$ & $\ldots$ \\ \hline
$5.5$ & $2.3$ & $4$ & $1.3$ & $\ldots$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline
$6.3$ & $3.3$ & $6$ & $2.5$ & Iris-virginica \\ \hline
$5.8$ & $2.7$ & $5.1$ & $1.9$ & $\ldots$ \\ \hline
$7.1$ & $3$ & $5.9$ & $2.1$ & $\ldots$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline \hline
$5.845$ & $3.121$ & $3.770$ & $1.199$ & Average \\ \hline
$0.833$ & $0.480$ & $1.773$ & $0.763$ & Standard deviation \\ \hline
$0.693$ & $0.230$ & $3.143$ & $0.582$ & Variance \\ \hline
\end{tabular}}
\end{table} | [
[
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width",
"Class"
],
[
"5.1",
"3.5",
"1.4",
"0.2",
"Iris-setosa"
],
[
"4.9",
"3",
"1.4",
"0.2",
". . ."
],
[
"4.7",
"3.2",
"1.3",
"0.2",
". . ."
],
[
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n."
],
[
"6.4",
"3.2",
"4.5",
"1.5",
"Iris-versicolor"
],
[
"6.9",
"3.1",
"4.9",
"1.5",
". . ."
],
[
"5.5",
"2.3",
"4",
"1.3",
". . ."
],
[
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n."
],
[
"6.3",
"3.3",
"6",
"2.5",
"Iris-virginica"
],
[
"5.8",
"2.7",
"5.1",
"1.9",
". . ."
],
[
"7.1",
"3",
"5.9",
"2.1",
". . ."
],
[
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n."
],
[
"5.845",
"3.121",
"3.770",
"1.199",
"Average"
],
[
"0.833",
"0.480",
"1.773",
"0.763",
"Standard deviation"
],
[
"0.693",
"0.230",
"3.143",
"0.582",
"Variance"
]
] | 0.643162 | null | null |
3 | 1711.10420v1 | 9 | [
85.45999908447266,
122.5419921875,
397.6369934082031,
196.26498413085938
] | \begin{table}
\centering
\caption{The matrix of correlation coefficient (cosines)}\label{tab4}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
& Sepal Length & Sepal Width & Petal Length & Petal Width \\ \hline \hline
Sepal Length & $1$ & $-0.063$ & $0.866$ & $0.816$ \\ \hline
Sepal Width & $-0.063$ & $1$ & $-0.321$ & $-0.300$ \\ \hline
Petal Length & $0.866$ & $-0.321$ & $1$ & $0.959$ \\ \hline
Petal Width & $0.816$ & $-0.300$ & $0.959$ & $1$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"Sepal Length",
"1",
"0.063\n−",
"0.866",
"0.816"
],
[
"Sepal Width",
"0.063\n−",
"1",
"0.321\n−",
"0.300\n−"
],
[
"Petal Length",
"0.866",
"0.321\n−",
"1",
"0.959"
],
[
"Petal Width",
"0.816",
"0.300\n−",
"0.959",
"1"
]
] | 0.952128 | null | null |
4 | 1711.10420v1 | 9 | [
85.45999908447266,
256.14398193359375,
397.6369934082031,
329.86700439453125
] | \begin{table}
\centering
\caption{The matrix of significance levels}\label{tab5}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
& Sepal Length & Sepal Width & Petal Length & Petal Width \\ \hline \hline
Sepal Length & $0$ & $0.446$ & $0.000$ & $0.000$ \\ \hline
Sepal Width & $0.446$ & $0$ & $0.000$ & $0.000$ \\ \hline
Petal Length & $0.000$ & $0.000$ & $0$ & $0.000$ \\ \hline
Petal Width & $0.000$ & $0.000$ & $0.000$ & $0$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"Sepal Length",
"0",
"0.446",
"0.000",
"0.000"
],
[
"Sepal Width",
"0.446",
"0",
"0.000",
"0.000"
],
[
"Petal Length",
"0.000",
"0.000",
"0",
"0.000"
],
[
"Petal Width",
"0.000",
"0.000",
"0.000",
"0"
]
] | 1 | null | null |
5 | 1711.10420v1 | 9 | [
85.45999908447266,
389.7449951171875,
397.6369934082031,
463.468994140625
] | \begin{table}
\centering
\caption{The matrix of angles given in degrees}\label{tab6}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
& Sepal Length & Sepal Width & Petal Length & Petal Width \\ \hline \hline
Sepal Length & $0$ & $93.59$ & $30.05$ & $35.29$ \\ \hline
Sepal Width & $93.59$ & $0$ & $108.74$ & $107.47$ \\ \hline
Petal Length & $30.05$ & $108.74$ & $0$ & $16.44$ \\ \hline
Petal Width & $35.29$ & $107.47$ & $16.44$ & $0$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"Sepal Length",
"0",
"93.59",
"30.05",
"35.29"
],
[
"Sepal Width",
"93.59",
"0",
"108.74",
"107.47"
],
[
"Petal Length",
"30.05",
"108.74",
"0",
"16.44"
],
[
"Petal Width",
"35.29",
"107.47",
"16.44",
"0"
]
] | 1 | null | null |
6 | 1711.10420v1 | 9 | [
85.45999908447266,
521.1109619140625,
397.6369934082031,
594.833984375
] | \begin{table}
\centering
\caption{The matrix of determination coefficients}\label{tab7}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
& Sepal Length & Sepal Width & Petal Length & Petal Width \\ \hline \hline
Sepal Length & $100.00\%$ & $0.39\%$ & $74.93\%$ & $66.63\%$ \\ \hline
Sepal Width & $0.39\%$ & $100.00\%$ & $10.32\%$ & $9.01\%$ \\ \hline
Petal Length & $74.93\%$ & $10.32\%$ & $100.00\%$ & $91.99\%$ \\ \hline
Petal Width & $66.63\%$ & $9.01\%$ & $91.99\%$ & $100.00\%$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"Sepal Length",
"100.00%",
"0.39%",
"74.93%",
"66.63%"
],
[
"Sepal Width",
"0.39%",
"100.00%",
"10.32%",
"9.01%"
],
[
"Petal Length",
"74.93%",
"10.32%",
"100.00%",
"91.99%"
],
[
"Petal Width",
"66.63%",
"9.01%",
"91.99%",
"100.00%"
]
] | 0.522167 | null | null |
7 | 1711.10420v1 | 11 | [
160.6300048828125,
107.593017578125,
322.468017578125,
164.97796630859375
] | \begin{table}
\centering
\caption{Eigenvectors in columns}\label{tab8}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c} \hline
$0.534$ & $0.317$ & $0.757$ & $0.203$ \\ \hline
$-0.213$ & $0.948$ & $-0.229$ & $-0.066$ \\ \hline
$0.584$ & $0.026$ & $-0.212$ & $-0.783$ \\ \hline
$0.573$ & $0.030$ & $-0.574$ & $0.584$ \\ \hline
\end{tabular}}
\end{table} | [
[
"0.534",
"0.317",
"0.757",
"0.203"
],
[
"0.213\n−",
"0.948",
"0.229\n−",
"0.066\n−"
],
[
"0.584",
"0.026",
"0.212\n−",
"0.783\n−"
],
[
"0.573",
"0.030",
"0.574\n−",
"0.584"
]
] | 0.913462 | null | null |
8 | 1711.10420v1 | 11 | [
117.28299713134766,
197.87399291992188,
365.81500244140625,
321.8190002441406
] | \begin{table}
\centering
\caption{Several objects in the principal components space}\label{tab9}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
No. & $p_{c1}$ & $p_{c2}$ & $p_{c3}$ & $p_{c4}$ \\ \hline \hline
$1$ & $-2.184$ & $0.393$ & $-0.176$ & $0.048$ \\ \hline
$2$ & $-2.091$ & $-0.674$ & $-0.233$ & $0.068$ \\ \hline
$3$ & $-2.341$ & $-0.356$ & $0.033$ & $0.036$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline \hline
Average & $0.000$ & $0.000$ & $0.000$ & $0.000$ \\ \hline
Standard deviation & $1.694$ & $0.984$ & $0.398$ & $0.181$ \\ \hline
Variance & $2.868$ & $0.967$ & $0.159$ & $0.033$ \\ \hline
\end{tabular}}
\end{table} | [
[
"No.",
"p\nc1",
"p\nc2",
"p\nc3",
"p\nc4"
],
[
"1",
"2.184\n−",
"0.393",
"0.176\n−",
"0.048"
],
[
"2",
"2.091\n−",
"0.674\n−",
"0.233\n−",
"0.068"
],
[
"3",
"2.341\n−",
"0.356\n−",
"0.033",
"0.036"
],
[
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n.",
".\n.\n."
],
[
"Average",
"0.000",
"0.000",
"0.000",
"0.000"
],
[
"Standard deviation",
"1.694",
"0.984",
"0.398",
"0.181"
],
[
"Variance",
"2.868",
"0.967",
"0.159",
"0.033"
]
] | 0.529293 | null | null |
9 | 1711.10420v1 | 12 | [
67.43000030517578,
326.6470031738281,
412.8320007324219,
414.3190002441406
] | \begin{table}
\centering
\caption{The percentage of variance explained by the successive principal components (in brief: PC)}\label{tab10}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c|c|c} \hline
\multirow{2}{*}{No.} & \multirow{2}{*}{Eigenvalue} & Cumulative & Percentage of variance & Cumulative \\
& & eigenvalues & explained by each PC & percentage of variance \\ \hline \hline
$1$ & $2.849$ & $2.849$ & $71.22\%$ & $71.22\%$ \\ \hline
$2$ & $0.961$ & $3.810$ & $24.02\%$ & $95.24\%$ \\ \hline
$3$ & $0.158$ & $3.967$ & $3.94\%$ & $99.19\%$ \\ \hline
$4$ & $0.033$ & $4.000$ & $0.81\%$ & $100.00\%$ \\ \hline
\end{tabular}}
\end{table} | [
[
"No.",
"Eigenvalue",
"Cumulative\neigenvalues",
"Percentage of variance\nexplained by each PC",
"Cumulative\npercentage of variance"
],
[
"1",
"2.849",
"2.849",
"71.22%",
"71.22%"
],
[
"2",
"0.961",
"3.810",
"24.02%",
"95.24%"
],
[
"3",
"0.158",
"3.967",
"3.94%",
"99.19%"
],
[
"4",
"0.033",
"4.000",
"0.81%",
"100.00%"
]
] | 0.727679 | null | null |
10 | 1711.10420v1 | 13 | [
104.36900329589844,
107.593017578125,
378.72900390625,
181.31597900390625
] | \begin{table}
\centering
\caption{Correlation coefficients between primary variables and principal components}\label{tab11}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c||c|c|c|c} \hline
& Sepal Length & Sepal Width & Petal Length & Petal Width \\ \hline \hline
$p_{c1}$ & $0.901$ & $-0.359$ & $0.986$ & $0.968$ \\ \hline
$p_{c2}$ & $0.311$ & $0.929$ & $0.025$ & $0.030$ \\ \hline
$p_{c3}$ & $-0.301$ & $0.091$ & $0.084$ & $0.228$ \\ \hline
$p_{c4}$ & $0.037$ & $-0.012$ & $-0.141$ & $0.105$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"p\nc1",
"0.901",
"0.359\n−",
"0.986",
"0.968"
],
[
"p\nc2",
"0.311",
"0.929",
"0.025",
"0.030"
],
[
"p\nc3",
"0.301\n−",
"0.091",
"0.084",
"0.228"
],
[
"p\nc4",
"0.037",
"0.012\n−",
"0.141\n−",
"0.105"
]
] | 0.952663 | null | null |
11 | 1711.10420v1 | 13 | [
86.0479965209961,
225.74298095703125,
397.04901123046875,
315.8059997558594
] | \begin{table}
\centering
\caption{Determination coefficients between primary variables and principal components}\label{tab12}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c||c|c|c|c||c} \hline
&Sepal Length&Sepal Width&Petal Length&Petal Width & $\Sigma $ \\ \hline \hline
$p_{c1} $ & $0.812$ & $0.129$ & $0.972$ & $0.936$ & $2.849$ \\ \hline
$p_{c2} $ & $0.097$ & $0.863$ & $0.001$ & $0.001$ & $0.961$ \\ \hline
$p_{c3} $ & $0.090$ & $0.008$ & $0.007$ & $0.052$ & $0.158 $\\ \hline
$p_{c4} $ & $0.001$ & $0.000$ & $0.020$ & $0.011$ & $0.033 $ \\ \hline \hline
$\Sigma$ & $1.000$ & $1.000$ & $1.000$ & $1.000$ & $4.000$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width",
"Σ"
],
[
"p\nc1",
"0.812",
"0.129",
"0.972",
"0.936",
"2.849"
],
[
"p\nc2",
"0.097",
"0.863",
"0.001",
"0.001",
"0.961"
],
[
"p\nc3",
"0.090",
"0.008",
"0.007",
"0.052",
"0.158"
],
[
"p\nc4",
"0.001",
"0.000",
"0.020",
"0.011",
"0.033"
],
[
"Σ",
"1.000",
"1.000",
"1.000",
"1.000",
"4.000"
]
] | 0.955556 | null | null |
12 | 1711.10420v1 | 17 | [
66.97899627685547,
107.593017578125,
416.1180114746094,
168.96298217773438
] | \begin{table}
\centering
\caption{Level of reconstruction of primary variables}\label{tab13}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c||c|c|c|c||c} \hline
&Sepal Length&Sepal Width&Petal Length&Petal Width & Average in row \\ \hline \hline
$p_{c1} $ & $81.17\%$ & $12.88\%$ & $97.23\%$ & $93.61\%$ & $71.22\%$ \\ \hline
$p_{c2} $ & $9.65\%$ & $86.28\%$ & $0.06\%$ & $0.09\%$ & $24.02\%$ \\ \hline \hline
$\Sigma$ & $90.82\%$ & $99.16\%$ & $97.29\%$ & $93.70\%$ & $95.24\%$ \\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width",
"Average in row"
],
[
"p\nc1",
"81.17%",
"12.88%",
"97.23%",
"93.61%",
"71.22%"
],
[
"p\nc2",
"9.65%",
"86.28%",
"0.06%",
"0.09%",
"24.02%"
],
[
"Σ",
"90.82%",
"99.16%",
"97.29%",
"93.70%",
"95.24%"
]
] | 0.932945 | null | null |
13 | 1711.10420v1 | 18 | [
76.65499877929688,
361.09197998046875,
403.60699462890625,
406.12298583984375
] | \begin{table}
\centering
\caption{The similarity of the primary variables and selected principal components measured by the coefficient of determination
}\label{tab14}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c||c|c|c|c} \hline
&Sepal Length&Sepal Width&Petal Length&Petal Width \\ \hline \hline
Similarity to $p_{c1}$ & $0.812$ & $0.129$ & $0.972$ & $0.936$\\ \hline
Similarity to $p_{c2}$ & $0.097$ & $0.863$ & $0.001$ & $0.001$\\ \hline
\end{tabular}}
\end{table} | [
[
"",
"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width"
],
[
"Similarity to p\nc1",
"0.812",
"0.129",
"0.972",
"0.936"
],
[
"Similarity to p\nc2",
"0.097",
"0.863",
"0.001",
"0.001"
]
] | 0.992537 | null | null |
14 | 1711.10420v1 | 18 | [
83.01200103759766,
447.21600341796875,
397.25,
604.2269897460938
] | \begin{table}
\centering
\caption{Operations on tensors}\label{tab15}
\fontsize{10}{14}\selectfont{
\begin{tabular}{c|c|c} \hline
Transition &Back &\multirow{3}{*}{Note} \\
to the new& to the old&\\
coordinate system&coordinate system & \\ \hline\hline
\multirow{3}{*}{$A'=RA$} & \multirow{3}{*}{$A=R^T A'$} & Standardized primary variables \\
& & are represented as vectors \\
& & (columns in matrices $A$ and $A'$)\\ \hline
\multirow{3}{*}{$P'=RP$} & \multirow{3}{*}{$P=R^T P'$} & Principal components \\
& & are represented as vectors \\
& & (columns in matrices $P$ and $P'$)\\ \hline
\multirow{2}{*}{$C'=RCR^T $} &\multirow{2}{*}{$C=R^T C' R$} & The correlation coefficient matrix \\
& & ($C$, $C'$) is a tensor of rank two \\ \hline
\end{tabular}}
\end{table} | [
[
"Transition\nto the new\ncoordinate system",
"Back\nto the old\ncoordinate system",
"Note"
],
[
"A′ = RA",
"A = RT A′",
"Standardized primary variables\nare represented as vectors\n(columns in matrices A and A′)"
],
[
"P′ = RP",
"P = RT P′",
"Principal components\nare represented as vectors\n(columns in matrices P and P′)"
],
[
"C′ = RCRT",
"C = RT C′R",
"The correlation coefficient matrix\n(C, C′) is a tensor of rank two"
]
] | 0.635262 | null | null |
0 | 2205.01168v1 | 11 | [
314.68212509155273,
304.25299072265625,
533.3160095214844,
365.2239990234375
] | \begin{table}
\scriptsize
\centering
\caption{
Performance summary and data statistics of the largest end-to-end runs for concatenating the ND and FD files.
With the tuned chunk size, the compression ratio is significantly improved over the sum of the input files, as shown in Table \ref{table:statistics}.
The overall metadata size is also reduced.
}
\begin{tabular}{|c||c|c|} \hline
Data & 165 ND files & 6,400 FD files \\ \hline \hline
Number of processes (nodes) & 165 (42) & 1600 (400) \\ \hline
Timing & 279.4 sec & 611.8 sec \\ \hline
Data size before compression & 1 {\bf TB} & 16.9 {\bf TB} \\ \hline
Output file size & 15.1 GB & 77.9 GB \\ \hline
Metadata size & 57.7 MB & 93.8 MB \\ \hline
Raw data size & 15.0 GB & 77.4 GB \\ \hline
\end{tabular}
\label{table:summary1}
\end{table} | [
[
"Data",
"165 ND files",
"6,400 FD files"
],
[
"Number of processes (nodes)",
"165 (42)",
"1600 (400)"
],
[
"Timing",
"279.4 sec",
"611.8 sec"
],
[
"Data size before compression",
"1 TB",
"16.9 TB"
],
[
"Output file size",
"15.1 GB",
"77.9 GB"
],
[
"Metadata size",
"57.7 MB",
"93.8 MB"
],
[
"Raw data size",
"15.0 GB",
"77.4 GB"
]
] | 0.958416 | null | null |
1 | 2205.01168v1 | 2 | [
57.27588907877604,
85.60797119140625,
280.1271226671007,
156.14300537109375
] | \begin{table}
\scriptsize
\centering
\caption{NOvA data table organization with one entry per slice.}
\begin{tabular}{|r|r|r|r|r|r|} \hline
Run & Subrun & Event & Sub- & distallpngtop & ... 35 more \\
& & & event & & ... \\ \hline \hline
433 & 61 & 6124 & 35 & nan & \\ \hline
433 & 61 & 6124 & 36 & -0.7401 & \\ \hline
433 & 61 & 6124 & 37 & nan & \\ \hline
433 & 61 & 6125 & 1 & nan & \\ \hline
433 & 61 & 6125 & 2 & 423.633 & \\ \hline
433 & 61 & 6125 & 3 & -2.8498 & \\ \hline \hline
\end{tabular}
\label{table:slice}
\end{table} | [
[
"Run",
"Subrun",
"Event",
"Sub-\nevent",
"distallpngtop",
"... 35 more\n..."
],
[
"433",
"61",
"6124",
"35",
"nan",
""
],
[
"433",
"61",
"6124",
"36",
"-0.7401",
""
],
[
"433",
"61",
"6124",
"37",
"nan",
""
],
[
"433",
"61",
"6125",
"1",
"nan",
""
],
[
"433",
"61",
"6125",
"2",
"423.633",
""
],
[
"433",
"61",
"6125",
"3",
"-2.8498",
""
]
] | 0.935484 | null | null |
2 | 2205.01168v1 | 2 | [
309.3487786187066,
85.60797119140625,
538.6491224500868,
156.14300537109375
] | \begin{table}
\centering
\scriptsize
\caption{NOvA data table organization with one entry per vertex.}
\begin{tabular}{|r|r|r|r|r|r|r|} \hline
Run & Subrun & Event & Sub- & vtxid & npng3d & ... 6 more \\
& & & event & & & ... \\ \hline \hline
433 & 61 & 6124 & 35 & 0 & 0 & \\ \hline
433 & 61 & 6124 & 36 & 0 & 1 & \\ \hline
433 & 61 & 6124 & 36 & 1 & 1 & \\ \hline
433 & 61 & 6124 & 36 & 2 & 5 & \\ \hline
433 & 61 & 6125 & 1 & 0 & 1 & \\ \hline
433 & 61 & 6125 & 3 & 0 & 0 & \\ \hline \hline
\end{tabular}
\label{table:vertex}
\end{table} | [
[
"Run",
"Subrun",
"Event",
"Sub-\nevent",
"vtxid",
"npng3d",
"... 6 more\n..."
],
[
"433",
"61",
"6124",
"35",
"0",
"0",
""
],
[
"433",
"61",
"6124",
"36",
"0",
"1",
""
],
[
"433",
"61",
"6124",
"36",
"1",
"1",
""
],
[
"433",
"61",
"6124",
"36",
"2",
"5",
""
],
[
"433",
"61",
"6125",
"1",
"0",
"1",
""
],
[
"433",
"61",
"6125",
"3",
"0",
"0",
""
]
] | 0.927954 | null | null |
3 | 2205.01168v1 | 3 | [
51.49494489034017,
83.864990234375,
291.6840599907769,
233.30401611328125
] | \begin{table}
\scriptsize
\centering
\caption{Statistics of NOvA ND and FD data files.}
\begin{tabular}{|r||r|r|} \hline
& ND data files & FD data files \\ \hline \hline
\# of files & 165 & 6,400 \\ \hline
\# of groups per file & 999 & 701 \\ \hline
\# of 1D datasets per file & 15,965 & 12,925 \\ \hline
\# of 2D datasets per file & 8 & 6 \\ \hline
\# of empty datasets & 13,396 & 9,374 \\ \hline \hline
Compression & GZIP-level 6 & GZIP-level 6 \\ \hline
Chunk size & 128-element based & 128-element based \\ \hline
1D dsets before compr. & 97.9 GB & 413.3 GB \\ \hline
1D dsets after compr. & 21.4 GB & 69.8 GB \\ \hline
2D dsets before compr. & 903.2 GB & 16.6 \textbf{\textit{TB}} \\ \hline
2D dsets after compr. & 2.1 GB & 32.1 GB \\ \hline
Overall before compr. & 1001.1 GB & 17.0 \textbf{\textit{TB}} \\ \hline
Overall after compr. & 23.5 GB & 101.9 GB \\ \hline \hline
Total file size & 35.2 GB & 212.5 GB \\ \hline
Metadata size & 11.7 GB & 104.1 GB\\ \hline
Raw data size & 23.5 GB & 108.1 GB \\ \hline
\end{tabular}
\label{table:statistics}
\end{table} | [
[
"",
"ND data files",
"FD data files"
],
[
"# of files",
"165",
"6,400"
],
[
"# of groups per file",
"999",
"701"
],
[
"# of 1D datasets per file",
"15,965",
"12,925"
],
[
"# of 2D datasets per file",
"8",
"6"
],
[
"# of empty datasets",
"13,396",
"9,374"
],
[
"Compression",
"GZIP-level 6",
"GZIP-level 6"
],
[
"Chunk size",
"128-element based",
"128-element based"
],
[
"1D dsets before compr.",
"97.9 GB",
"413.3 GB"
],
[
"1D dsets after compr.",
"21.4 GB",
"69.8 GB"
],
[
"2D dsets before compr.",
"903.2 GB",
"16.6 TB"
],
[
"2D dsets after compr.",
"2.1 GB",
"32.1 GB"
],
[
"Overall before compr.",
"1001.1 GB",
"17.0 TB"
],
[
"Overall after compr.",
"23.5 GB",
"101.9 GB"
],
[
"Total file size",
"35.2 GB",
"212.5 GB"
],
[
"Metadata size",
"11.7 GB",
"104.1 GB"
],
[
"Raw data size",
"23.5 GB",
"108.1 GB"
]
] | 0.976132 | null | null |
4 | 2205.01168v1 | 11 | [
53.84357288905552,
151.3609619140625,
283.531005859375,
273.7279052734375
] | \begin{table}
\scriptsize
\centering
\caption{
Maximum number of rounds of reads and writes among all the datasets for different I/O buffer sizes.
The total number of MPI processes and input ND files is fixed at 128, while the number of processes per node varies between 4 and 32.
The I/O buffer size allocated in each process is 8 GB when running 4 processes per node, and it proportionally decreases as the number of processes run on each node increases.
}
\begin{tabular}{|r|r|r|r|r|r|r|r|} \hline
\multicolumn{2}{|r|}{Number of processes} & \multirow{2}{*}{4} & \multirow{2}{*}{8} & \multirow{2}{*}{16} & \multirow{2}{*}{32} & \multirow{2}{*}{64} & \multirow{2}{*}{128} \\ \cline{1-2}
procs per node & I/O buffer & & & & & & \\ \hline \hline
4 & 8 GB & 24 & 12 & 6 & 4 & 2 & 1 \\ \hline
8 & 4 GB & - & 24 & 12 & 7 & 4 & 2 \\ \hline
16 & 2 GB & - & - & 24 & 13 & 7 & 4 \\ \hline
32 & 1 GB & - & - & - & 25 & 13 & 7 \\ \hline
\end{tabular}
\label{table:nproc}
\end{table} | [
[
"Number of processes",
null,
"4",
"8",
"16",
"32",
"",
"64",
"128"
],
[
"procs per node",
"I/O buffer",
null,
null,
null,
null,
null,
null,
null
],
[
"4",
"8 GB",
"24",
"12",
"6",
"4",
"",
"2",
"1"
],
[
"8",
"4 GB",
"-",
"24",
"12",
"7",
"",
"4",
"2"
],
[
"16",
"2 GB",
"-",
"-",
"24",
"13",
"",
"7",
"4"
],
[
"32",
"1 GB",
"-",
"-",
"-",
"25",
"",
"13",
"7"
],
[
"mong all datasets for different I/O buffer si\nnderstanding of the impact of the I/O buff\nerformance, we set the numbers of files an\nhe power of 2. While keeping the total numbe",
null,
null,
null,
null,
null,
null,
null,
null
]
] | 0.509402 | null | null |