id
int64
0
19
arxiv_id
stringlengths
11
12
page
int64
1
234
bounding_box
sequencelengths
4
4
latex_content
stringlengths
217
28.9k
extracted_content
sequencelengths
1
85
similarity_score
float64
0.36
1
table_image
unknown
page_image
unknown
2
1703.00564v3
48
[ 132.23399353027344, 111.052978515625, 479.76605631510415, 308.31298828125 ]
\begin{table}[H] \small \centering \begin{threeparttable} \caption{Time Profile for Tox21, MUV, QM8 and Lipophilicity(second)} \begin{tabular}{ |c|c|c|c|c| } \hline \textbf{Model} & \textbf{Tox21} & \textbf{MUV} & \textbf{QM8} & \textbf{Lipophilicity} \\ \hline \hline Logreg & 93 & 522 & &\\ \hline KernelSVM & 2574 & 2231 & & \\ \hline KRR & & & 3390/5153* & 24\\ \hline RF & 24273 & & & 186\\ \hline XGBoost & 2082 & 2418 & & 410\\ \hline Multitask/Singletask & 22 & 858 & 275/701* & 21\\ \hline Bypass & 31 & 938 & &\\ \hline IRV & 58 & 2674 & &\\ \hline GC & 246 & 2320 & 512 & 131\\ \hline Weave & 323 & 4593 & & 255\\ \hline DAG & & & & 5142\\ \hline DTNN & & & 940 &\\ \hline MPNN & & & 3383 & 1626\\ \hline \end{tabular} \label{tab:running_time} \begin{tablenotes} \item * ECFP/Coulomb Matrix \end{tablenotes} \end{threeparttable} \end{table}
[ [ "Model", "Tox21", "MUV", "QM8", "Lipophilicity" ], [ "Logreg", "93", "522", "", "" ], [ "KernelSVM", "2574", "2231", "", "" ], [ "KRR", "", "", "3390/5153*", "24" ], [ "RF", "24273", "", "", "186" ], [ "XGBoost", "2082", "2418", "", "410" ], [ "Multitask/Singletask", "22", "858", "275/701*", "21" ], [ "Bypass", "31", "938", "", "" ], [ "IRV", "58", "2674", "", "" ], [ "GC", "246", "2320", "512", "131" ], [ "Weave", "323", "4593", "", "255" ], [ "DAG", "", "", "", "5142" ], [ "DTNN", "", "", "940", "" ], [ "MPNN", "", "", "3383", "1626" ] ]
0.905263
null
null
3
1703.00564v3
51
[ 110.61199951171875, 96.60797119140625, 497.7510070800781, 320.96600341796875 ]
\begin{table}[H] \small \centering \caption{PDBbind Performances (Root-Mean-Square Error)} \begin{tabular}{ |c|c|c|c|c| } \hline \textbf{Model} & \textbf{Model} & \textbf{Training} & \textbf{Validation} & \textbf{Test} \\ \hline \hline \multirow{5}{*}{PDBbind - core} & RF & $0.82\pm0.00$ & $2.02\pm0.02$ & $2.03\pm0.01$ \\\cline{2-5} & RF(grid) & $0.73\pm0.01$ & $1.98\pm0.01$ & $2.27\pm0.01$ \\\cline{2-5} & Multitask & $1.62\pm0.03$ & $\mathbf{1.86\pm0.01}$ & $2.21\pm0.02$ \\\cline{2-5} & Multitask(grid) & $1.51\pm0.05$ & $1.92\pm0.02$ & $2.20\pm0.03$ \\\cline{2-5} & GC & $1.42\pm0.04$ & $2.10\pm0.05$ & $\mathbf{1.92\pm0.07}$ \\\cline{2-5} \hline \hline \multirow{5}{*}{PDBbind - refined} & RF & $0.66\pm0.00$ & $1.48\pm0.00$ & $1.62\pm0.00$ \\\cline{2-5} & RF(grid) & $0.51\pm0.00$ & $\mathbf{1.37\pm0.00}$ & $\mathbf{1.38\pm0.00}$ \\\cline{2-5} & Multitask & $1.09\pm0.01$ & $1.53\pm0.03$ & $1.66\pm0.05$ \\\cline{2-5} & Multitask(grid) & $0.55\pm0.02$ & $1.41\pm0.02$ & $1.46\pm0.05$ \\\cline{2-5} & GC & $1.20\pm0.01$ & $1.55\pm0.05$ & $1.65\pm0.03$ \\\cline{2-5} \hline \hline \multirow{5}{*}{PDBbind - full} & RF & $0.66\pm0.00$ & $1.40\pm0.00$ & $1.31\pm0.00$ \\\cline{2-5} & RF(grid) & $0.51\pm0.00$ & $\mathbf{1.35\pm0.00}$ & $\mathbf{1.25\pm0.00}$ \\\cline{2-5} & Multitask & $1.52\pm0.17$ & $1.42\pm0.05$ & $1.45\pm0.14$ \\\cline{2-5} & Multitask(grid) & $0.39\pm0.01$ & $1.40\pm0.03$ & $1.28\pm0.02$ \\\cline{2-5} & GC & $1.65\pm0.10$ & $1.57\pm0.20$ & $1.44\pm0.12$ \\\cline{2-5} \hline \end{tabular} \label{tab:PDBbind} \end{table}
[ [ "Model", "Model", "Training", "Validation", "Test" ], [ "PDBbind - core", "RF", "0.82 0.00\n±", "2.02 0.02\n±", "2.03 0.01\n±" ], [ null, "RF(grid)", "0.73 0.01\n±", "1.98 0.01\n±", "2.27 0.01\n±" ], [ null, "Multitask", "1.62 0.03\n±", "1.86 0.01\n±", "2.21 0.02\n±" ], [ null, "Multitask(grid)", "1.51 0.05\n±", "1.92 0.02\n±", "2.20 0.03\n±" ], [ null, "GC", "1.42 0.04\n±", "2.10 0.05\n±", "1.92 0.07\n±" ], [ "PDBbind - refined", "RF", "0.66 0.00\n±", "1.48 0.00\n±", "1.62 0.00\n±" ], [ null, "RF(grid)", "0.51 0.00\n±", "1.37 0.00\n±", "1.38 0.00\n±" ], [ null, "Multitask", "1.09 0.01\n±", "1.53 0.03\n±", "1.66 0.05\n±" ], [ null, "Multitask(grid)", "0.55 0.02\n±", "1.41 0.02\n±", "1.46 0.05\n±" ], [ null, "GC", "1.20 0.01\n±", "1.55 0.05\n±", "1.65 0.03\n±" ], [ "PDBbind - full", "RF", "0.66 0.00\n±", "1.40 0.00\n±", "1.31 0.00\n±" ], [ null, "RF(grid)", "0.51 0.00\n±", "1.35 0.00\n±", "1.25 0.00\n±" ], [ null, "Multitask", "1.52 0.17\n±", "1.42 0.05\n±", "1.45 0.14\n±" ], [ null, "Multitask(grid)", "0.39 0.01\n±", "1.40 0.03\n±", "1.28 0.02\n±" ], [ null, "GC", "1.65 0.10\n±", "1.57 0.20\n±", "1.44 0.12\n±" ] ]
0.428481
null
null
4
1703.00564v3
52
[ 72, 485.4490051269531, 557.72998046875, 696.656982421875 ]
\begin{table}[H] \small \centering \caption{QM7b Test Set Performances of All Tasks(Mean Absolute Error)} \begin{tabular}{ |c|c|c|c| } \hline \textbf{Task} & Multitask(CM) & KRR(CM) & DTNN \\ \hline \hline Atomization energy - PBE0 & $36.0$ & $\mathbf{9.3}$ & $21.5$\\ \hline Excitation energy of maximal optimal absorption - ZINDO & $1.31$ & $1.83$ & $\mathbf{1.26}$\\ \hline Highest absorption - ZINDO & $0.086$ & $0.098$ & $\mathbf{0.074}$\\ \hline HOMO - ZINDO & $0.293$ & $0.369$ & $\mathbf{0.192}$\\ \hline LUMO - ZINDO & $0.255$ & $0.361$ & $\mathbf{0.159}$\\ \hline 1st excitation energy - ZINDO & $0.368$ & $0.479$ & $\mathbf{0.296}$\\ \hline Ionization potential - ZINDO & $0.305$ & $0.408$ & $\mathbf{0.214}$\\ \hline Electron Affinity - ZINDO & $0.271$ & $0.404$ & $\mathbf{0.174}$\\ \hline HOMO - KS & $0.247$ & $0.272$ & $\mathbf{0.155}$\\ \hline LUMO - KS & $0.187$ & $0.239$ & $\mathbf{0.129}$\\ \hline HOMO - GW & $0.270$ & $0.294$ & $\mathbf{0.166}$\\ \hline LUMO - GW & $0.172$ & $0.236$ & $\mathbf{0.139}$\\ \hline Polarizability - PBE0 & $0.335$ & $0.225$ & $\mathbf{0.173}$\\ \hline Polarizability - SCS & $0.317$ & $\mathbf{0.116}$ & $0.149$\\ \hline \end{tabular} \label{tab:QM7b} \end{table}
[ [ "Task", "Multitask(CM)", "KRR(CM)", "DTNN" ], [ "Atomization energy - PBE0", "36.0", "9.3", "21.5" ], [ "Excitation energy of maximal optimal absorption - ZINDO", "1.31", "1.83", "1.26" ], [ "Highest absorption - ZINDO", "0.086", "0.098", "0.074" ], [ "HOMO - ZINDO", "0.293", "0.369", "0.192" ], [ "LUMO - ZINDO", "0.255", "0.361", "0.159" ], [ "1st excitation energy - ZINDO", "0.368", "0.479", "0.296" ], [ "Ionization potential - ZINDO", "0.305", "0.408", "0.214" ], [ "Electron Affinity - ZINDO", "0.271", "0.404", "0.174" ], [ "HOMO - KS", "0.247", "0.272", "0.155" ], [ "LUMO - KS", "0.187", "0.239", "0.129" ], [ "HOMO - GW", "0.270", "0.294", "0.166" ], [ "LUMO - GW", "0.172", "0.236", "0.139" ], [ "Polarizability - PBE0", "0.335", "0.225", "0.173" ], [ "Polarizability - SCS", "0.317", "0.116", "0.149" ] ]
0.992288
null
null
5
1703.00564v3
53
[ 79.86100006103516, 96.60797119140625, 528.5020141601562, 279.91998291015625 ]
\begin{table}[H] \small \centering \caption{QM8 Test Set Performances of All Tasks(Mean Absolute Error)} \begin{tabular}{ |c|c|c|c|c|c|c|c| } \hline \textbf{Task} & Multitask & GC & KRR & Multitask(CM) & KRR(CM) & DTNN & MPNN\\ \hline \hline E1 - CC2 & $0.0088$ & $\mathbf{0.0074}$ & $0.0115$ & $0.0125$ & $0.0137$ & $0.0092$ & $0.0084$\\ \hline E2 - CC2 & $0.0098$ & $\mathbf{0.0085}$ & $0.0116$ & $0.0114$ & $0.0124$ & $0.0092$ & $0.0091$\\ \hline f1 - CC2 & $\mathbf{0.0145}$ & $0.0175$ & $0.0202$ & $0.0186$ & $0.0272$ & $0.0182$ & $0.0151$\\ \hline f2 - CC2 & $0.0320$ & $0.0328$ & $0.0387$ & $0.0358$ & $0.0460$ & $0.0377$ & $\mathbf{0.0314}$\\ \hline E1 - PBE0 & $0.0089$ & $\mathbf{0.0076}$ & $0.0118$ & $0.0126$ & $0.0140$ & $0.0090$ & $0.0083$\\ \hline E2 - PBE0 & $0.0096$ & $\mathbf{0.0083}$ & $0.0117$ & $0.0114$ & $0.0122$ & $0.0086$ & $0.0086$\\ \hline f1 - PBE0 & $\mathbf{0.0121}$ & $0.0125$ & $0.0189$ & $0.0152$ & $0.0258$ & $0.0155$ & $0.0123$\\ \hline f2 - PBE0 & $0.0252$ & $0.0246$ & $0.0319$ & $0.0267$ & $0.0376$ & $0.0281$ & $\mathbf{0.0236}$\\ \hline E1 - CAM & $0.0083$ & $\mathbf{0.0070}$ & $0.0111$ & $0.0119$ & $0.0132$ & $0.0086$ & $0.0079$\\ \hline E2 - CAM & $0.0090$ & $\mathbf{0.0076}$ & $0.0109$ & $0.0106$ & $0.0115$ & $0.0082$ & $0.0082$\\ \hline f1 - CAM & $0.0140$ & $0.0153$ & $0.0208$ & $0.0177$ & $0.0304$ & $0.0180$ & $\mathbf{0.0134}$\\ \hline f2 - CAM & $0.0274$ & $0.0285$ & $0.0345$ & $0.0303$ & $0.0417$ & $0.0322$ & $\mathbf{0.0258}$\\ \hline \end{tabular} \label{tab:QM8} \end{table}
[ [ "Task", "Multitask", "GC", "KRR", "Multitask(CM)", "KRR(CM)", "DTNN", "MPNN" ], [ "E1 - CC2", "0.0088", "0.0074", "0.0115", "0.0125", "0.0137", "0.0092", "0.0084" ], [ "E2 - CC2", "0.0098", "0.0085", "0.0116", "0.0114", "0.0124", "0.0092", "0.0091" ], [ "f1 - CC2", "0.0145", "0.0175", "0.0202", "0.0186", "0.0272", "0.0182", "0.0151" ], [ "f2 - CC2", "0.0320", "0.0328", "0.0387", "0.0358", "0.0460", "0.0377", "0.0314" ], [ "E1 - PBE0", "0.0089", "0.0076", "0.0118", "0.0126", "0.0140", "0.0090", "0.0083" ], [ "E2 - PBE0", "0.0096", "0.0083", "0.0117", "0.0114", "0.0122", "0.0086", "0.0086" ], [ "f1 - PBE0", "0.0121", "0.0125", "0.0189", "0.0152", "0.0258", "0.0155", "0.0123" ], [ "f2 - PBE0", "0.0252", "0.0246", "0.0319", "0.0267", "0.0376", "0.0281", "0.0236" ], [ "E1 - CAM", "0.0083", "0.0070", "0.0111", "0.0119", "0.0132", "0.0086", "0.0079" ], [ "E2 - CAM", "0.0090", "0.0076", "0.0109", "0.0106", "0.0115", "0.0082", "0.0082" ], [ "f1 - CAM", "0.0140", "0.0153", "0.0208", "0.0177", "0.0304", "0.0180", "0.0134" ], [ "f2 - CAM", "0.0274", "0.0285", "0.0345", "0.0303", "0.0417", "0.0322", "0.0258" ] ]
0.994716
null
null
6
1703.00564v3
53
[ 135.3470001220703, 333.6180114746094, 473.0170702253069, 516.9310302734375 ]
\begin{table}[H] \small \centering \caption{QM9 Test Set Performances of All Tasks(Mean Absolute Error)} \begin{tabular}{ |c|c|c|c|c|c| } \hline \textbf{Task} & Multitask & Multitask(CM) & GC & DTNN & MPNN\\ \hline \hline mu & $0.602$ & $0.519$ & $0.583$ & $\mathbf{0.244}$ & $0.358$\\ \hline alpha & $3.10$ & $\mathbf{0.85}$ & $1.37$ & $0.95$ & $0.89$\\ \hline HOMO & $0.00660$ & $0.00506$ & $0.00716$ & $\mathbf{0.00388}$ & $0.00541$\\ \hline LUMO & $0.00854$ & $0.00645$ & $0.00921$ & $\mathbf{0.00513}$ & $0.00623$\\ \hline gap & $0.0100$ & $0.0086$ & $0.0112$ & $\mathbf{0.0066}$ & $0.0082$\\ \hline R2 & $125.7$ & $46.0$ & $35.9$ & $\mathbf{17.0}$ & $28.5$\\ \hline ZPVE & $0.01109$ & $0.00207$ & $0.00299$ & $\mathbf{0.00172}$ & $0.00216$\\ \hline U0 & $15.10$ & $2.27$ & $3.41$ & $2.43$ & $\mathbf{2.05}$\\ \hline U & $15.10$ & $2.27$ & $3.41$ & $2.43$ & $\mathbf{2.00}$\\ \hline H & $15.10$ & $2.27$ & $3.41$ & $2.43$ & $\mathbf{2.02}$\\ \hline G & $15.10$ & $2.27$ & $3.41$ & $2.43$ & $\mathbf{2.02}$\\ \hline Cv & $1.77$ & $0.39$ & $0.65$ & $\mathbf{0.27}$ & $0.42$\\ \hline \end{tabular} \label{tab:QM9} \end{table}
[ [ "Task", "Multitask", "Multitask(CM)", "GC", "DTNN", "MPNN" ], [ "mu", "0.602", "0.519", "0.583", "0.244", "0.358" ], [ "alpha", "3.10", "0.85", "1.37", "0.95", "0.89" ], [ "HOMO", "0.00660", "0.00506", "0.00716", "0.00388", "0.00541" ], [ "LUMO", "0.00854", "0.00645", "0.00921", "0.00513", "0.00623" ], [ "gap", "0.0100", "0.0086", "0.0112", "0.0066", "0.0082" ], [ "R2", "125.7", "46.0", "35.9", "17.0", "28.5" ], [ "ZPVE", "0.01109", "0.00207", "0.00299", "0.00172", "0.00216" ], [ "U0", "15.10", "2.27", "3.41", "2.43", "2.05" ], [ "U", "15.10", "2.27", "3.41", "2.43", "2.00" ], [ "H", "15.10", "2.27", "3.41", "2.43", "2.02" ], [ "G", "15.10", "2.27", "3.41", "2.43", "2.02" ], [ "Cv", "1.77", "0.39", "0.65", "0.27", "0.42" ] ]
0.99117
null
null
7
1703.00564v3
55
[ 87.04499816894531, 96.60797119140625, 524.9550170898438, 585.9810180664062 ]
\begin{table}[H] \centering \small \caption{DeepChem commands to load MoleculeNet datasets and models} \begin{tabular}{ |c|l| } \hline \textbf{Dataset} & \textbf{Command}\\ \hline QM7 & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_qm7\_from\_mat}\\ \hline QM7b & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_qm7b\_from\_mat}\\ \hline QM8 & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_qm8}\\ \hline QM9 & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_qm9}\\ \hline ESOL & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_delaney}\\ \hline FreeSolv & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_sampl}\\ \hline Lipophilicity & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_lipo}\\ \hline PCBA & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_pcba}\\ \hline MUV & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_muv}\\ \hline HIV & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_hiv}\\ \hline BACE & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_bace\_classification}\\ \hline PDBbind & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_pdbbind\_grid}\\ \hline BBBP & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_bbbp}\\ \hline Tox21 & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_tox21}\\ \hline ToxCast & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_toxcast}\\ \hline SIDER & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_sider}\\ \hline ClinTox & {\fontfamily{pcr}\selectfont deepchem.molnet.load\_clintox}\\ \hline \hline \textbf{Model} & \textbf{Command} \\ \hline Logreg$^a$ & {\fontfamily{pcr}\selectfont sklearn.linear\_model.LogisticRegression} \\ \hline KernelSVM$^a$ & {\fontfamily{pcr}\selectfont sklearn.svm.SVC} \\ \hline KRR$^a$ & {\fontfamily{pcr}\selectfont sklearn.kernel\_ridge.KernelRidge} \\ \hline \multirow{2}{*}{RF$^a$} & {\fontfamily{pcr}\selectfont sklearn.ensemble.RandomForestClassifier} \\ & {\fontfamily{pcr}\selectfont sklearn.ensemble.RandomForestRegressor} \\ \hline XGBoost$^b$ & {\fontfamily{pcr}\selectfont deepchem.models.xgboost\_models.XGBoostModel} \\ \hline \multirow{2}{*}{Multitask/Singletask} & {\fontfamily{pcr}\selectfont deepchem.models.MultitaskClassifier} \\ & {\fontfamily{pcr}\selectfont deepchem.models.MultitaskRegressor} \\ \hline Bypass & {\fontfamily{pcr}\selectfont deepchem.models.RobustMultitaskClassifier} \\ \hline IRV & {\fontfamily{pcr}\selectfont deepchem.models.TensorflowMultitaskIRVClassifier} \\ \hline GC & {\fontfamily{pcr}\selectfont deepchem.models.GraphConvModel}\\ \hline Weave & {\fontfamily{pcr}\selectfont deepchem.models.WeaveModel}\\ \hline DAG & {\fontfamily{pcr}\selectfont deepchem.models.DAGModel}\\ \hline DTNN & {\fontfamily{pcr}\selectfont deepchem.models.DTNNModel}\\ \hline ANI-1 & {\fontfamily{pcr}\selectfont deepchem.models.ANIRegression}\\ \hline MPNN & {\fontfamily{pcr}\selectfont deepchem.models.MPNNModel}\\ \hline \end{tabular} \begin{tablenotes} \item {$^a$} These models are based on scikit-learn package.\cite{sklearn} \item {$^b$} XGBoost is based on xgboost package.\cite{xgb} \end{tablenotes} \label{tab:deepchem_command} \end{table}
[ [ "Dataset", "Command" ], [ "QM7", "deepchem.molnet.load qm7 from mat" ], [ "QM7b", "deepchem.molnet.load qm7b from mat" ], [ "QM8", "deepchem.molnet.load qm8" ], [ "QM9", "deepchem.molnet.load qm9" ], [ "ESOL", "deepchem.molnet.load delaney" ], [ "FreeSolv", "deepchem.molnet.load sampl" ], [ "Lipophilicity", "deepchem.molnet.load lipo" ], [ "PCBA", "deepchem.molnet.load pcba" ], [ "MUV", "deepchem.molnet.load muv" ], [ "HIV", "deepchem.molnet.load hiv" ], [ "BACE", "deepchem.molnet.load bace classification" ], [ "PDBbind", "deepchem.molnet.load pdbbind grid" ], [ "BBBP", "deepchem.molnet.load bbbp" ], [ "Tox21", "deepchem.molnet.load tox21" ], [ "ToxCast", "deepchem.molnet.load toxcast" ], [ "SIDER", "deepchem.molnet.load sider" ], [ "ClinTox", "deepchem.molnet.load clintox" ], [ "Model", "Command" ], [ "Logrega", "sklearn.linear model.LogisticRegression" ], [ "KernelSVMa", "sklearn.svm.SVC" ], [ "KRRa", "sklearn.kernel ridge.KernelRidge" ], [ "RFa", "sklearn.ensemble.RandomForestClassifier\nsklearn.ensemble.RandomForestRegressor" ], [ "XGBoostb", "deepchem.models.xgboost models.XGBoostModel" ], [ "Multitask/Singletask", "deepchem.models.MultitaskClassifier\ndeepchem.models.MultitaskRegressor" ], [ "Bypass", "deepchem.models.RobustMultitaskClassifier" ], [ "IRV", "deepchem.models.TensorflowMultitaskIRVClassifier" ], [ "GC", "deepchem.models.GraphConvModel" ], [ "Weave", "deepchem.models.WeaveModel" ], [ "DAG", "deepchem.models.DAGModel" ], [ "DTNN", "deepchem.models.DTNNModel" ], [ "ANI-1", "deepchem.models.ANIRegression" ], [ "MPNN", "deepchem.models.MPNNModel" ] ]
0.509677
null
null
0
2008.08516v3
6
[ 107.14199829101562, 210.93499755859375, 504.8580017089844, 587.52197265625 ]
\begin{table}[htbp] \centering \caption{Overview of main AutoML methdologies shown in chronological order. Please note that $\alpha-$level methods are not included in this table as they refer to any methodology for fitting a model to a dataset (e.g., least-squares for linear regression). } \label{tab:historical} \footnotesize{ \begin{tabular}{|p{1cm} |p{1cm} | p{1.7cm} | p{0.8cm} | p{3.5cm} |p{3.5cm} |}\hline \textbf{Year}& \textbf{Ref.}& \textbf{Method} & \textbf{Type} & \textbf{Description} & \textbf{Innovative aspects} \\\hline 2006&\cite{psms06,Escalante:2009:PSM:1577069.1577084}& PSMS& $\beta$& Vectorial representation of solutions, PSO used as optimizer, subsampling, CV&Formulation of the full model selection task\\\hline 2007&\cite{DBLP:conf/cec/GorissenTCD08,DBLP:journals/jmlr/GorissenDT09}&Heterogeneous surrogate evolution&$\beta$&Parallel co evolution of models, ensemble generation& Returned ensemble of solutions, large and heterogenous space of models\\\hline 2010&\cite{DBLP:conf/ijcnn/EscalanteMS10}&Ensemble PSMS&$\beta$&Enhanced PSMS with ensemble of solutions& Returned an ensemble of solutions as output\\\hline 2012&\cite{10.1145/2330784.2331014}&GPS: GA-PSO-FMS& $\beta$ & GAs were used to search for a model template, PSO was used for hyperparameter optimization&Separation of template search and hyperparameter optimization\\\hline 2013&\cite{ThoHutHooLey13-AutoWEKA}&Auto-WEKA&$\gamma$&SMBO with SMAC, approached the CASH problem&Definition of the combined algorithm selection and hyperparameter optimization problem\\\hline 2014&\cite{DBLP:journals/ijon/Rosales-PerezGCEG14}&Multi-objective surrogate-based FMS&$\gamma$&Multi objective (complexity/performance) evolutionary method, surrogates were used to approximate the fitness function&Among the first methods using a meta-learner for AutoML, multi-objective formulation\\\hline 2015&\cite{Feurer2019}& AutoSkLearn & $\gamma$ & SMBO, warm starting with a classifier, ensemble generation & AutoML definition, warm-starting with meta-learner, winner of AutoML challenge\\\hline 2016&\cite{DBLP:conf/icml/OlsonM16,tpot}&TPOT&$\beta$&Genetic programming / NSGA-II selwection, cross validation, data sampling& Models naturally codified as GP trees \\\hline %\textcolor{red}{2016}& \cite{DBLP:conf/aistats/JamiesonT16,10.5555/3122009.3242042}& \textcolor{red}{Hyperband}& $\beta$& \textcolor{red}{Random search with successive halving}&\textcolor{red}{Introduction of successive halving}\\\hline 2017-2020&\cite{DBLP:journals/corr/ZophL16,autokeras,10.5555/3305890.3305981,elsken2018neural,Elsken2019}&Neural Architecture search &$\gamma$&Reinforcement Learning, Evolutionary Algorithms, SMBO for Neural Architecture search&Novel codifications for architectures, comparison of architectures, \emph{ad-hoc} NAS surrogates\\\hline %\cite{Feurer2019}& AutoSklearn & SMBO / warmstarting with a classifier& Predictor to estimate performance of candidate models & Ensemble generation\\\hline %\cite{Escalante:2009:PSM:1577069.1577084,DBLP:conf/ijcnn/EscalanteMS10}&PSMS - EPSMS& Particle swarm optimizer& NA&Cross validation, subsampling, ensemble generation\\\hline %\cite{tpot}&TPOT&Genetic programming / NSGA-II&NA&Cross validation, data sampling\\\hline %\cite{smac}&SMAC&SMBO&Random forest&\\\hline %&GTOP&&&\\\hline %\cite{DBLP:journals/jmlr/GorissenDT09}&SUMO&Evolutionary algorithms&Regressor of performance&Ensemble generation\\\hline %&AutoWEKA&&&\\\hline %&AutoKeras&&&\\\hline %&SMAC&&&\\\hline \end{tabular}} \end{table}
[ [ "Year", "Ref.", "Method", "Type", "Description", "Innovative aspects" ], [ "2006", "[11, 12]", "PSMS", "β", "Vectorial representation of\nsolutions, PSO used as op-\ntimizer, subsampling, CV", "Formulation of the full\nmodel selection task" ], [ "2007", "[19, 18]", "Heterogeneous\nsurrogate\nevolution", "β", "Parallel co evolution of\nmodels, ensemble genera-\ntion", "Returned ensemble of so-\nlutions, large and heteroge-\nnous space of models" ], [ "2010", "[14]", "Ensemble\nPSMS", "β", "Enhanced PSMS with en-\nsemble of solutions", "Returned an ensemble of\nsolutions as output" ], [ "2012", "[63]", "GPS: GA-\nPSO-FMS", "β", "GAs were used to search\nfor a model template, PSO\nwas used for hyperparame-\nter optimization", "Separation of template\nsearch and hyperparameter\noptimization" ], [ "2013", "[65]", "Auto-WEKA", "γ", "SMBO with SMAC, ap-\nproached the CASH prob-\nlem", "Definition of the combined\nalgorithm selection and hy-\nperparameter optimization\nproblem" ], [ "2014", "[59]", "Multi-\nobjective\nsurrogate-\nbased FMS", "γ", "Multi objective (com-\nplexity/performance)\nevolutionary method,\nsurrogates were used to\napproximate the fitness\nfunction", "Among the first methods\nusing a meta-learner for\nAutoML, multi-objective\nformulation" ], [ "2015", "[17]", "AutoSkLearn", "γ", "SMBO, warm starting with\na classifier, ensemble gen-\neration", "AutoML definition, warm-\nstarting with meta-learner,\nwinner of AutoML chal-\nlenge" ], [ "2016", "[52, 53]", "TPOT", "β", "Genetic programming /\nNSGA-II selwection, cross\nvalidation, data sampling", "Models naturally codified\nas GP trees" ], [ "2017-\n2020", "[74, 35,\n55, 9,\n10]", "Neural Ar-\nchitecture\nsearch", "γ", "Reinforcement Learning,\nEvolutionary Algorithms,\nSMBO for Neural Archi-\ntecture search", "Novel codifications for ar-\nchitectures, comparison of\narchitectures, ad-hoc NAS\nsurrogates" ] ]
0.627841
null
null
0
2108.13581v1
5
[ 56.839515686035156, 584.7576904296875, 291.6911315917969, 638.843017578125 ]
\begin{table}[h] \centering \resizebox{0.47\textwidth}{!}{ \begin{tabular}{c|c|c|c|c} \textit{Dataset} & \textit{records} & \textit{features} & \textit{after VIF} & \textit{outcome} \\ \hline Synthetic & $5,000$ & $1$ & $1$ & Y \\ Metropolitan & $1,677$ & $42$ & $6$ & Valence \\ Wine Quality & $6,497$ & $11$ & $5$ & Quality \\ NYC & $36,805$ & $7$ & $4$ & Sale Price\\ Stack Overflow & $372,321$ & $13$ & $5$ & Answer Length \\%Words \\ \hline \end{tabular}} \caption{Data sets and their characteristics. \label{tab:info}} \end{table}
[ [ "Dataset", "records", "features", "after VIF", "outcome" ], [ "Synthetic\nMetropolitan\nWine Quality\nNYC\nStack Overflow", "5, 000\n1, 677\n6, 497\n36, 805\n372, 321", "1\n42\n11\n7\n13", "1\n6\n5\n4\n5", "Y\nValence\nQuality\nSale Price\nAnswer Length" ] ]
0.379562
null
null
0
2006.02986v1
6
[ 97.11199951171875, 417.0679931640625, 249.0850067138672, 499.6449890136719 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|c|} \hline Hyperparameter & Q-Network & EQLM \\ \hline $\alpha$ & 0.0065 & - \\ $\bar{\gamma}$ & - & 1.827e-5 \\ $\Tilde{N}$ & 29 & 25 \\ $\epsilon_i$ & 0.670 & 0.559 \\ $N_{\epsilon}$ & 400 & 360 \\ $\gamma$ & 0.99 & 0.93 \\ $k$ & 26 & 2 \\ $C$ & 70 & 48 \\ \hline \end{tabular} \vspace{5pt} \caption{Hyperparameters used for each agent in the cart-pole task} \label{tab:params_cartpole} \end{table}
[ [ "Hyperparameter", "Q-Network", "EQLM" ], [ "α\nγ¯\nN˜\nϵi\nNϵ\nγ\nk\nC", "0.0065\n-\n29\n0.670\n400\n0.99\n26\n70", "-\n1.827e-5\n25\n0.559\n360\n0.93\n2\n48" ] ]
0.441791
null
null
1
2006.02986v1
6
[ 318.885009765625, 261.28497314453125, 553.3389892578125, 307.31201171875 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|c|c|} \hline \multicolumn{2}{|c|}{Measure} & Q-Network & EQLM \\ \hline \multirow{2}{*}{reward} & mean & 160.0 (147.5, 173.7) & 166.9 (160.7, 173.3) \\ & std & 47.0 (35.1, 62.2) & 23.1 (20.3, 26.7) \\ \hline \multirow{2}{*}{auc ($*10^3$)} & mean & 84.1 (81.0 87.4) & 83.3 (80.4, 86.2) \\ & std & 11.7 (9.1, 14.7) & 10.6 (9.3, 12.4) \\ \hline \end{tabular} \vspace{5pt} \caption{Performance of each algorithm in the cart-pole task} \label{tab:results_cartpole} \end{table}
[ [ "Measure", null, "Q-Network", "EQLM" ], [ "reward", "mean\nstd", "160.0 (147.5, 173.7)\n47.0 (35.1, 62.2)", "166.9 (160.7, 173.3)\n23.1 (20.3, 26.7)" ], [ "auc (∗103)", "mean\nstd", "84.1 (81.0 87.4)\n11.7 (9.1, 14.7)", "83.3 (80.4, 86.2)\n10.6 (9.3, 12.4)" ] ]
0.368737
null
null
0
2308.13645v1
7
[ 307.6118106842041, 109.23602294921875, 517.3661117553711, 146.2969970703125 ]
\begin{table}[!h] \centering \begin{tabular}{ |c|c|c|c|c|c| } \hline \multirow{2}{*}{Sampling strategy} & \multicolumn{5}{|c|}{Number CRPs in training set} \\ \cline{2-6} &$200$&$350$ & $550$ & $750$ & $1000$\\ \hline Random &$14.6$&$8.8$&$5.6$&$4.0$&$3.2$\\\hline Active &$9.0$&$3.0$&$1.4$&$1.00$&$0.6$\\\hline \end{tabular} \caption{Active / fast learning, no noise, prediction error (\%) using Algorithm ``Active learning'' with $k=0$} \label{table:us-nonoise} \end{table}
[ [ "Sampling strategy", "Number CRPs in training set", null, null, null, null ], [ null, "200", "350", "550", "750", "1000" ], [ "Random", "14.6", "8.8", "5.6", "4.0", "3.2" ], [ "Active", "9.0", "3.0", "1.4", "1.00", "0.6" ] ]
0.622785
null
null
1
2308.13645v1
7
[ 307.6118106842041, 216.08697509765625, 517.3661117553711, 262.51300048828125 ]
\begin{table}[!h] \centering \begin{tabular}{ |c|c|c|c|c|c| } \hline \multirow{2}{*}{Sampling strategy} & \multicolumn{5}{|c|}{Number CRPs in training set} \\ \cline{2-6} &$350$&$550$ & $1250$ & $1750$ & $6000$\\ \hline Random &$11.5$&$8.10$&$6.12$&$5.90$&$4.30$\\\hline EQB &$9.35$&$5.90$&$4.75$&$4.33$&$4.20$\\\hline Error rate-based &$7.28$&$5.52$&$4.07$&$3.43$&$2.70$\\ \hline \end{tabular} \caption{Active / fast learning, work by \cite{active-PUF}: $3.5\%$ noise, prediction error $(\%)$} \label{table:others-noise} \end{table}
[ [ "Sampling strategy", "Number CRPs in training set", null, null, null, null ], [ null, "350", "550", "1250", "1750", "6000" ], [ "Random", "11.5", "8.10", "6.12", "5.90", "4.30" ], [ "EQB", "9.35", "5.90", "4.75", "4.33", "4.20" ], [ "Error rate-based", "7.28", "5.52", "4.07", "3.43", "2.70" ] ]
0.724211
null
null
2
2308.13645v1
7
[ 307.6118106842041, 334.19500732421875, 517.3661117553711, 371.2560119628906 ]
\begin{table}[!h] \centering \begin{tabular}{ |c|c|c|c|c|c| } \hline \multirow{2}{*}{Sampling strategy} & \multicolumn{5}{|c|}{Number CRPs in training set} \\ \cline{2-6} &$200$&$350$ & $550$ & $750$ & $1000$\\ \hline Random &$15.9$&$10.0$&$7.37$&$6.46$&$5.6$\\\hline Active &$10.4$&$5.4$&$3.9$&$3.6$&$3.5$\\\hline \end{tabular} \caption{Active / fast learning, $3.5\%$ noise, prediction error (\%) using Algorithm ``Active learning'' with $k=0$} \label{table:us-noise} \end{table}
[ [ "Sampling strategy", "Number CRPs in training set", null, null, null, null ], [ null, "200", "350", "550", "750", "1000" ], [ "Random", "15.9", "10.0", "7.37", "6.46", "5.6" ], [ "Active", "10.4", "5.4", "3.9", "3.6", "3.5" ] ]
0.63
null
null
3
2308.13645v1
8
[ 95.28056989397321, 133.69500732421875, 267.74158150809154, 179.46955827353656 ]
\begin{table}[!h] \centering \begin{tabular}{ |c|c|c|c|c| } \hline \multirow{2}{*}{ML method} & \multicolumn{4}{|c|}{Number CRPs in training set} \\ \cline{2-5} &$1000$&$3000$ & $5000$& $10000$\\ \hline LR &$63$&$63$&$63$&$64$\\\hline SVM &$67$&$68$&$68$&$68$\\\hline Nnet &$67$&$68$&$68$&$68$\\ \hline Adaboost &$66$&$67$&$67$&$67$\\ \hline \end{tabular} \caption{Adversarial / slow learning, no noise, accuracy (\%) using Algorithm ``Active learning'' with $k=5$, $|S|=40$.} \label{table:adversarial} \end{table}
[ [ "ML method", "Number CRPs in training set", null, null, null ], [ "LR", "100\n63", "0 3000\n63", "5000\n63", "10000\n64" ], [ "SVM\nNnet", "67\n67", "68\n68", "68\n68", "68\n68" ] ]
0.455497
null
null
0
2312.09352v1
8
[ 224.83799743652344, 428.33099365234375, 387.3526611328125, 482.62701416015625 ]
\begin{table}[h!] \label{tbl:ablation_study} \centering \caption{Average accuracy of different methods on\datasetTwo dataset with task size 20} \begin{tabular}{*{3}{|c}|} \hline \bfseries Method & \bfseries \datasetTwo \\ \hline baseline & 44.54 \\ \hline \pbesShort w/o KeepAugment & 63.56 \\ \hline baseline w/ KeepAugment & 61.28 \\ \hline \pbesShort w/ KeepAugment & 68.27 \\ \hline \end{tabular} \end{table}
[ [ "Method", "Sports100" ], [ "baseline", "44.54" ], [ "PBES w/o KeepAugment", "63.56" ], [ "baseline w/ KeepAugment", "61.28" ], [ "PBES w/ KeepAugment", "68.27" ] ]
0.77821
null
null
1
2312.09352v1
8
[ 221.1280059814453, 664.051025390625, 387.3526611328125, 685.7689819335938 ]
\begin{table}[ht] % % \centering % \caption{Influence of Exemplars Size for (a)\datasetOne dataset \& (b)\datasetTwo dataset} % \begin{subtable}[t]{0.50 \textwidth} % \centering % \caption{} % \begin{tabular}{ |c|c|c|c| } % % \centering % \hline % $M$=550 & $M$=700 & $M$=850 & $M$=1000 \\ \hline % 68.27 & 71.43 & 75.1 & 78.3 \\ \hline % \end{tabular} % \label{tbl:exemplars_effect_tbl1}% % \end{subtable} % \begin{subtable}[t]{0.50 \textwidth} % \centering % \caption{} % \begin{tabular}{ |c|c|c|c| } % \hline % $M$=800 & $M$=1000 & $M$=1200 & $M$=1400 \\ \hline % 63.97 & 66.4 & 69.2 & 72.23 \\ \hline % \end{tabular} % \label{tbl:exemplars_effect_tbl2}% % \end{subtable} % \end{table}
[ [ "M=800", "M=1000", "M=1200", "M=1400" ], [ "63.97", "66.4", "69.2", "72.23" ] ]
0.502618
null
null
0
2209.07657v1
11
[ 211.6790008544922, 606.6939697265625, 400.3210144042969, 685.447998046875 ]
\begin{table}[!ht] \centering \caption{Slopes for Small and Large Saccades} \label{tab:slopes} \begin{tabular}{|c|c|c|c|c|} \hline Filter & Mean & SD & Mean & SD \\ & Small & Small & Large & Large \\ \hline No Filter & 0.673 & 0.089 & 0.438 & 0.117 \\ \hline STD & 0.670 & 0.086 & 0.445 & 0.115 \\ \hline EXTRA & 0.638 & 0.084 & 0.445 & 0.111 \\ \hline Z-LP100 & 0.686 & 0.101 & 0.439 & 0.122 \\ \hline Z-LP50 & 0.780 & 0.092 & 0.456 & 0.108 \\ \hline \end{tabular} \end{table}
[ [ "Filter", "Mean\nSmall", "SD\nSmall", "Mean\nLarge", "SD\nLarge" ], [ "No Filter", "0.673", "0.089", "0.438", "0.117" ], [ "STD", "0.670", "0.086", "0.445", "0.115" ], [ "EXTRA", "0.638", "0.084", "0.445", "0.111" ], [ "Z-LP100", "0.686", "0.101", "0.439", "0.122" ], [ "Z-LP50", "0.780", "0.092", "0.456", "0.108" ] ]
0.910448
null
null
1
2209.07657v1
12
[ 191.6739959716797, 532.2559814453125, 420.32598876953125, 611.010986328125 ]
\begin{table}[!ht] \centering \caption{Saccade Amplitudes and Peak Velocities for Very Large Saccades} \label{tab:HOR} \begin{tabular}{|c|c|c|c|c|c|} \hline FiltGrp & Count & Mean & SD & Mean & SD \\ & & Ampl & Ampl & PkVel & PkVel \\ \hline No Filt & 1059 & 28.26 & 2.09 & 531.15 & 77.01 \\ \hline STD & 1069 & 28.26 & 2.10 & 530.82 & 77.50 \\ \hline EXTRA & 1084 & 28.24 & 2.09 & 530.46 & 77.50 \\ \hline Z-LP100 & 1084 & 28.27 & 2.10 & 523.21 & 78.14 \\ \hline Z-LP50 & 1049 & 28.28 & 2.11 & 515.08 & 77.05 \\ \hline \end{tabular} \end{table}
[ [ "FiltGrp", "Count", "Mean\nAmpl", "SD\nAmpl", "Mean\nPkVel", "SD\nPkVel" ], [ "No Filt", "1059", "28.26", "2.09", "531.15", "77.01" ], [ "STD", "1069", "28.26", "2.10", "530.82", "77.50" ], [ "EXTRA", "1084", "28.24", "2.09", "530.46", "77.50" ], [ "Z-LP100", "1084", "28.27", "2.10", "523.21", "78.14" ], [ "Z-LP50", "1049", "28.28", "2.11", "515.08", "77.05" ] ]
0.951965
null
null
0
2002.10269v1
15
[ 151.9080047607422, 560.3189697265625, 443.3680114746094, 659.1480102539062 ]
\begin{table}[h] \centering \footnotesize \begin{tabular}{|c|c|} \hline Quantities& number \\ \hline $|Q|$ number of sequences $\equiv$ drives &224265\\ \hline $|C|$ number of distinct cycles &3767\\ \hline $|P|$ number of simple paths &7438\\ \hline $c_e = c_v$ total number of edges or vertices in cycles &16077\\ \hline $p_e = p_v -1$ total number of edges or vertices in paths &25736\\ \hline $V$ number of vertices in FSA $\equiv$ states &124\\ \hline $E$ number of edges in FSA $\equiv$ transits &1691\\ \hline \end{tabular} \caption{Overview of the statistics for the prototyped subset.} \label{tab:problem} \end{table}
[ [ "Quantities", "number" ], [ "Q number of sequences drives\n| | ≡", "224265" ], [ "C number of distinct cycles\n| |", "3767" ], [ "P number of simple paths\n| |", "7438" ], [ "c = c total number of edges or vertices in cycles\ne v", "16077" ], [ "p = p −1 total number of edges or vertices in paths\ne v", "25736" ], [ "V number of vertices in FSA states\n≡", "124" ], [ "E number of edges in FSA transits\n≡", "1691" ] ]
0.777174
null
null
1
2002.10269v1
16
[ 100.97200012207031, 72.19903564453125, 494.3030090332031, 146.321044921875 ]
\begin{table}[h] \centering \footnotesize \begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \multicolumn{5}{|c}{}& \multicolumn{2}{|c|}{Seq. Components}& \multicolumn{2}{c|}{}\\ \hline &Vehicle &Drove &Drive &Has &Circles &Paths &State &Transit\\ \hline NodesV2 &85975 &- &224265 &- &- &- &49375&-\\ \hline EdgesV2 &- &224265 &- &1570774 &16077 &25736 &-&-\\ \hline NodesV3 &85975 &- &224265 &- &3767 &7438 &-&1691\\ \hline EdgesV3 &- & 224265 &- &1570774 &16077 &25736 &-&-\\ \hline \end{tabular} \caption{Model Variant 2 compared with Model Variant 3} \label{tab:models} \end{table}
[ [ "", null, null, null, null, "Seq. Components", null, "", null ], [ "", "Vehicle", "Drove", "Drive", "Has", "Circles", "Paths", "State", "Transit" ], [ "NodesV2", "85975", "-", "224265", "-", "-", "-", "49375", "-" ], [ "EdgesV2", "-", "224265", "-", "1570774", "16077", "25736", "-", "-" ], [ "NodesV3", "85975", "-", "224265", "-", "3767", "7438", "-", "1691" ], [ "EdgesV3", "-", "224265", "-", "1570774", "16077", "25736", "-", "-" ] ]
0.827709
null
null
0
2005.01138v1
13
[ 150.04600524902344, 591.3250122070312, 459.4630126953125, 693.093017578125 ]
\begin{table}[h!] \centering \begin{tabular}{|l|c|r|} \hline Environment & Avg returns over seed 0-9 & Temperature parameter\\ \hline HalfCheetah-v2 & 11083 & fixed 0.2 \\ \hline Ant-v2 & 4294 & learned \\ \hline Hopper-v2 & 3544 & fixed 0.2 \\ \hline Walker2d-v2 & 4490 & fixed 0.2\\ \hline CustomAnt-v0 & 2430 & fixed 0.2 \\ \hline DisabledAnt-v0 & 1089 & learned \\ \hline PointMazeLeft-v0 & -7.37 & learned \\ \hline PointMazeRight-v0 & -7.33 & learned \\ \hline \end{tabular} \caption{Expert Average Performance over 0-9 seed after $1e^6$ iterations.} \label{expert_performance} \end{table}
[ [ "Environment", "Avg returns over seed 0-9", "Temperature parameter" ], [ "HalfCheetah-v2", "11083", "fixed 0.2" ], [ "Ant-v2", "4294", "learned" ], [ "Hopper-v2", "3544", "fixed 0.2" ], [ "Walker2d-v2", "4490", "fixed 0.2" ], [ "CustomAnt-v0", "2430", "fixed 0.2" ], [ "DisabledAnt-v0", "1089", "learned" ], [ "PointMazeLeft-v0", "-7.37", "learned" ], [ "PointMazeRight-v0", "-7.33", "learned" ] ]
0.874028
null
null
0
0909.3691v1
3
[ 51.2728328704834, 82.6710205078125, 294.9151560465495, 151.70098876953125 ]
\begin{table}[!t] \caption{Genotype-Phenotype Connections in Genetic Disorders} \centering \begin{tabular}{ | c || p{2.2cm} || p{1.4cm} || p{2.2cm} | }% \hline \bf{Alleles} & \bf{Genotype} & \bf{Dominant Disorder} & \bf{Recessive Disorder} \\[1ex] \hline &&&\\ \bf{AA} & Homozygous WT & Normal & Normal \\[1ex] \bf{Aa} & Heterozygous & Affected & Carrier \\[1ex] \bf{aa} & Homozygous mut. & Affected & Affected \\[1ex] \hline \multicolumn{3}{l} {A - normal allele, a - mutant allele} \end{tabular} \label{table_genotype_phentype} \end{table}
[ [ "Alleles", "Genotype", "Dominant\nDisorder", "Recessive\nDisorder" ], [ "AA\nAa\naa", "Homozygous WT\nHeterozygous\nHomozygous mut.", "Normal\nAffected\nAffected", "Normal\nCarrier\nAffected" ] ]
0.654822
null
null
0
2202.07254v1
7
[ 72.05662727355957, 290.0570068359375, 198.6992530822754, 338.5416666666667 ]
\begin{table}[thb] \vspace{.1in} \caption{Relative interaction importance on a node level (left) and on a feature level (right). Gray shadings indicate how $intImp_j$ is calculated from $intImp(\mathcal{N}_P)$. The parameters $d$ and $P$ indicate the tree depth and the index of the parent node, respectively.} \vspace{.1in} \label{tab:intImportanceExample} \begin{center} \begin{tabular}{cc} \begin{tabular}{|c|c|c|c|} \hline d & P & $\xv_j$ & $intImp(\mathcal{N}_P)$ \\\hline \rowcolor[gray]{.9} 0 & 1 & $\xv_3$ & 0.835 \\ \rowcolor[gray]{.6} 1 & 2 & $\xv_1$ & 0.074\\ 1 & 3 & $\xv_1$ & 0.066\\\hline \end{tabular}\hspace*{0.5cm} \begin{tabular}{|c|c|} \hline $\xv_j$ & $intImp_j$ \\\hline \rowcolor[gray]{.9} $\xv_3$ & 0.835 \\ \rowcolor[gray]{.6} $\xv_1$ & 0.14\\\hline \end{tabular} \end{tabular} \end{center} \end{table}
[ [ "d", "P", "x\nj", "intImp( )\nNP" ], [ "0", "1", "x\n3", "0.835" ], [ "1", "2", "x\n1", "0.074" ], [ "1", "3", "x\n1", "0.066" ] ]
0.470085
null
null
1
2202.07254v1
20
[ 73.30899963378906, 515.0479736328125, 538.6907958984375, 599.531005859375 ]
\begin{table}[thb] \vspace{.1in} \caption{Summary table of settings and key results of the simulation study in Section \ref{sec:sim_weak}. The column ``Setting'' refers to the setting number in Section \ref{sec:sim_weak}. The second column refers to the adjustments made in the setting compared to the initial setting. The other four columns show if the average ranks (r) of the feature interactions with the feature of interest ($\xv_2$) are correct (meaning that the ranks are the same as the ranks of the underlying data-generating process and fitted linear model) or if they are wrong (different from the ranks in the data-generating process and fitted linear model).} \vspace{.1in} \label{tab:simSummary} \begin{center} \begin{tabular}{|p{1cm}|p{4cm}|p{2.2cm}|p{2.2cm}|p{2.2cm}|p{2.2cm}|} \hline Setting & Adjustment & REPID & H-Statistic & Greenwell & Shapley \\\hline (2) & $\beta_1 = 0.1$ (initial: 1) & \textbf{correct} $r(x_1) = r(x_3)$ & \textbf{wrong} $r(x_1) > r(x_3)$ & \textbf{wrong} $r(x_1) < r(x_3)$ & \textbf{correct}\\ (2) & $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0.1$ and $\beta_{12} = 2$ (initial: 1) & \textbf{correct} $r(x_1) > r(x_3)$ & \textbf{wrong} $r(x_1) = r(x_3)$ & \textbf{correct} & \textbf{correct}\\ (3) & $\rho_{12}$ = 0.9 (initial: 0) & \textbf{correct} $r(x_1) = r(x_3)$ & \textbf{wrong} $r(x_1) < r(x_3)$ & \textbf{correct} & \textbf{wrong} $r(x_1) > r(x_3)$\\ \hline \end{tabular} \end{center} \end{table}
[ [ "Setting", "Adjustment", "REPID", "H-Statistic", "Greenwell", "Shapley" ], [ "(2)\n(2)\n(3)", "β = 0.1 (initial: 1)\n1\nβ = β = β = β = 0.1\n1 2 3 4\nand β = 2 (initial: 1)\n12\nρ = 0.9 (initial: 0)\n12", "correct\nr(x ) = r(x )\n1 3\ncorrect\nr(x ) > r(x )\n1 3\ncorrect\nr(x ) = r(x )\n1 3", "wrong\nr(x ) > r(x )\n1 3\nwrong\nr(x ) = r(x )\n1 3\nwrong\nr(x ) < r(x )\n1 3", "wrong\nr(x ) < r(x )\n1 3\ncorrect\ncorrect", "correct\ncorrect\nwrong\nr(x ) > r(x )\n1 3" ] ]
0.366452
null
null
0
1709.06990v1
5
[ 87.80099678039551, 159.333984375, 261.1857604980469, 231.86199951171875 ]
\begin{table} \protect\caption{The lower (LCB) and upper (UCB) compression bound constrain the algorithm by ensuring that the compression rate for each compressor is between the two values respectively. The table presents the LCB and UCB values (\%) along with the minimum and maximum number of rules used in the experiments. These set compression rates were enforced and the performance of \textit{PARSEC} was measured on several datasets. The values for the minimum and maximum number of rules were determined by additional trial runs. It was observed that a greater number of rules were needed to achieve higher compression rates.} \label{table:ratesAndRules} \begin{centering} \begin{tabular}{|c|c|p{1.6cm}|p{1.6cm}|} \hline \textbf{LCB} & \textbf{UCB} & \textbf{$compression \allowbreak Rules_{min}$} & \textbf{$compression \allowbreak Rules_{max}$}\tabularnewline \hline 10 & 13 & 5 & 50\tabularnewline 15 & 18 & 10 & 70\tabularnewline 20 & 13 & 20 & 90\tabularnewline 25 & 28 & 40 & 120\tabularnewline 30 & 33 & 90 & 150\tabularnewline 50 & 53 & 350 & 500\tabularnewline \hline \end{tabular} \par\end{centering} \end{table}
[ [ "LCB", "UCB", "compression\nRulesmin", "compression\nRulesmax" ], [ "10\n15\n20\n25\n30\n50", "13\n18\n13\n28\n33\n53", "5\n10\n20\n40\n90\n350", "50\n70\n90\n120\n150\n500" ] ]
0.446237
null
null
1
1709.06990v1
6
[ 64.14266904195149, 243.218017578125, 284.84417215983075, 297.81298828125 ]
\begin{table}[!h] \protect\caption{Average change in test accuracy (\%) across all the data sets when PARSEC models were created for 75\% compression rate. } \label{table:75Rate} \begin{centering} \begin{tabular}{|l|c|c|c|} \hline \textbf{Algorithm} & \vtop{\hbox{\strut \textbf{Change in}}\hbox{\strut \textbf{Test Accuracy}}} & \vtop{\hbox{\strut \textbf{Original}}\hbox{\strut \textbf{Accuracy}}}& \vtop{\hbox{\strut \textbf{Compressed}}\hbox{\strut \textbf{Accuracy}}} \tabularnewline \hline LingPipe & -3.2 & 79.7 & 76.4\tabularnewline MeaningCloud & -4.2 & 62.5 & 58.2\tabularnewline SentiStrength & -6.9 & 67.8 & 60.8\tabularnewline uClassify & -6.4 & 80.7 & 74.3\tabularnewline \hline \end{tabular} \par\end{centering} \end{table}
[ [ "Algorithm", "Change in\nTest Accuracy", "Original\nAccuracy", "Compressed\nAccuracy" ], [ "LingPipe\nMeaningCloud\nSentiStrength\nuClassify", "-3.2\n-4.2\n-6.9\n-6.4", "79.7\n62.5\n67.8\n80.7", "76.4\n58.2\n60.8\n74.3" ] ]
0.517647
null
null
2
1709.06990v1
7
[ 312.1637349446615, 47.15399169921875, 587.075341796875, 241.0269775390625 ]
\begin{table}[!h] \begin{centering} \begin{tabular}{|>{\centering}p{1.2cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|c|} \hline & \textbf{IN} & \textbf{LP} & \textbf{MC} & \textbf{S140} & \textbf{SS} & \textbf{ST} & \textbf{uC} & \textbf{V}\\ \hline {AIV} & -0.9 & -0.0 & 0.4 & -2.1 & -0.3 & -3.0 & -1.9 & -0.9\tabularnewline\hline {MI} & 0.1 & 0.3 & -0.7 & -1.9 & -0.4 & 0.5 & -0.4 & -1.4\tabularnewline\hline {Digital Music} & -1.0 & 0.2 & -0.3 & -2.5 & -0.1 & -1.9 & -0.4 & -2.0\tabularnewline\hline {Baby} & 0.0 & 0.4 & -0.2 & -2.7 & 0.0 & -1.2 & 0.3 & 0.2\tabularnewline\hline {Patio \& Garden} & -0.1 & 0.4 & -0.2 & -2.1 & -0.2 & -0.7 & 0.9 & -0.9\tabularnewline\hline {Automotive} & -1.1 & 0.4 & -0.5 & -2.1 & 0.0 & -1.1 & 0.7 & -0.9\tabularnewline\hline {Pet Supplies} & -1.2 & 0.3 & -0.4 & -2.9 & -0.4 & 0.3 & 0.0 & -1.6\tabularnewline\hline {Apps for Android} & -1.4 & 0.0 & -0.5 & -2.5 & -0.3 & -3.5 & 0.0 & -1.6\tabularnewline\hline {Beauty} & -0.5 & 0.0 & 0.2 & -1.2 & 0.0 & -0.5 & -0.7 & -0.4\tabularnewline\hline {Tools \& Home} & 0.8 & -0.1 & -1.0 & -2.3 & -0.6 & -1.7 & 0.5 & 0.0\tabularnewline\hline {Toys \& Games} & -0.5 & 0.0 & -1.5 & -1.8 & 0.2 & -3.1 & -0.1 & -1.4\tabularnewline\hline {Health \& Personal} & 0.4 & 0.1 & -0.4 & -1.6 & -0.3 & -1.4 & 0.5 & -0.4\tabularnewline\hline \textbf{Average} & -0.4 & 0.1 & -0.4 & -2.1 & -0.2 & -1.4 & 0.0 & -0.9 \tabularnewline \hline \end{tabular} \par\end{centering} \protect\caption{Difference between the compressed and original test accuracy when a compression rate between 10\% and 13\% was imposed.} \label{table:compression10} \end{table}
[ [ "", "IN", "LP", "MC", "S140", "SS", "ST", "uC", "V" ], [ "AIV", "-0.9", "-0.0", "0.4", "-2.1", "-0.3", "-3.0", "-1.9", "-0.9" ], [ "MI", "0.1", "0.3", "-0.7", "-1.9", "-0.4", "0.5", "-0.4", "-1.4" ], [ "Digital\nMusic", "-1.0", "0.2", "-0.3", "-2.5", "-0.1", "-1.9", "-0.4", "-2.0" ], [ "Baby", "0.0", "0.4", "-0.2", "-2.7", "0.0", "-1.2", "0.3", "0.2" ], [ "Patio &\nGarden", "-0.1", "0.4", "-0.2", "-2.1", "-0.2", "-0.7", "0.9", "-0.9" ], [ "Automotive", "-1.1", "0.4", "-0.5", "-2.1", "0.0", "-1.1", "0.7", "-0.9" ], [ "Pet\nSupplies", "-1.2", "0.3", "-0.4", "-2.9", "-0.4", "0.3", "0.0", "-1.6" ], [ "Apps for\nAndroid", "-1.4", "0.0", "-0.5", "-2.5", "-0.3", "-3.5", "0.0", "-1.6" ], [ "Beauty", "-0.5", "0.0", "0.2", "-1.2", "0.0", "-0.5", "-0.7", "-0.4" ], [ "Tools &\nHome", "0.8", "-0.1", "-1.0", "-2.3", "-0.6", "-1.7", "0.5", "0.0" ], [ "Toys &\nGames", "-0.5", "0.0", "-1.5", "-1.8", "0.2", "-3.1", "-0.1", "-1.4" ], [ "Health &\nPersonal", "0.4", "0.1", "-0.4", "-1.6", "-0.3", "-1.4", "0.5", "-0.4" ], [ "Average", "-0.4", "0.1", "-0.4", "-2.1", "-0.2", "-1.4", "0.0", "-0.9" ] ]
0.792128
null
null
3
1709.06990v1
7
[ 312.1637349446615, 304.5329895019531, 587.075341796875, 498.406005859375 ]
\begin{table} [!h] \begin{centering} \begin{tabular}{|>{\centering}p{1.2cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|>{\centering}p{0.59cm}|c|} \hline & \textbf{IN} & \textbf{LP} & \textbf{MC} & \textbf{S140} & \textbf{SS} & \textbf{ST} & \textbf{uC} & \textbf{V}\\ \hline {AIV} & -1.1 & -1.1 & -0.2 & -2.7 & 0.1 & -3.2 & -2.0 & -0.6\tabularnewline\hline {MI} & 1.1 & 0.5 & -0.8 & -2.9 & -0.8 & 0.0 & -1.3 & -0.8\tabularnewline\hline {Digital Music} & -1.6 & 0.4 & -0.7 & -3.6 & -0.5 & -2.3 & -1.2 & -2.1\tabularnewline\hline {Baby} & 0.0 & -0.9 & -0.5 & -2.4 & 0.2 & -2.0 & 0.6 & -0.1\tabularnewline\hline {Patio \& Garden} & -0.3 & -0.4 & -0.3 & -3.5 & -0.6 & -1.2 & 0.5 & -1.0\tabularnewline\hline {Automotive} & -1.4 & 0.6 & -1.0 & -2.8 & -0.3 & -2.2 & 0.9 & -0.8\tabularnewline\hline {Pet Supplies} & -1.1 & 0.6 & -0.2 & -3.8 & -0.6 & -1.3 & 0.2 & -2.9\tabularnewline\hline {Apps for Android} & -1.7 & -0.3 & -0.9 & -4.2 & -0.5 & -3.4 & -1.0 & -3.2\tabularnewline\hline {Beauty} & -0.9 & -0.3 & -0.7 & -3.5 & -0.2 & -1.3 & -1.8 & -1.2\tabularnewline\hline {Tools \& Home} & -0.2 & 0.0 & 0.0 & -3.0 & -0.3 & -1.7 & 1.2 & 0.7\tabularnewline\hline {Toys \& Games} & -1.3 & -0.2 & -1.2 & -1.6 & -0.1 & -1.1 & -0.8 & -1.8\tabularnewline\hline {Health \& Personal} & 0.1 & 0.0 & -0.6 & -2.8 & -0.5 & -2.6 & 0.2 & -0.4\tabularnewline\hline \textbf{Average} & -0.7 & 0.0 & -0.6 & -3.0 & -0.3 & -1.8 & -0.3 & -1.2 \tabularnewline \hline \end{tabular} \par\end{centering} \protect\caption{Difference between the compressed and original test accuracy when a compression rate between 15\% and 18\% was imposed. } \label{table:compression15} \end{table}
[ [ "", "IN", "LP", "MC", "S140", "SS", "ST", "uC", "V" ], [ "AIV", "-1.1", "-1.1", "-0.2", "-2.7", "0.1", "-3.2", "-2.0", "-0.6" ], [ "MI", "1.1", "0.5", "-0.8", "-2.9", "-0.8", "0.0", "-1.3", "-0.8" ], [ "Digital\nMusic", "-1.6", "0.4", "-0.7", "-3.6", "-0.5", "-2.3", "-1.2", "-2.1" ], [ "Baby", "0.0", "-0.9", "-0.5", "-2.4", "0.2", "-2.0", "0.6", "-0.1" ], [ "Patio &\nGarden", "-0.3", "-0.4", "-0.3", "-3.5", "-0.6", "-1.2", "0.5", "-1.0" ], [ "Automotive", "-1.4", "0.6", "-1.0", "-2.8", "-0.3", "-2.2", "0.9", "-0.8" ], [ "Pet\nSupplies", "-1.1", "0.6", "-0.2", "-3.8", "-0.6", "-1.3", "0.2", "-2.9" ], [ "Apps for\nAndroid", "-1.7", "-0.3", "-0.9", "-4.2", "-0.5", "-3.4", "-1.0", "-3.2" ], [ "Beauty", "-0.9", "-0.3", "-0.7", "-3.5", "-0.2", "-1.3", "-1.8", "-1.2" ], [ "Tools &\nHome", "-0.2", "0.0", "0.0", "-3.0", "-0.3", "-1.7", "1.2", "0.7" ], [ "Toys &\nGames", "-1.3", "-0.2", "-1.2", "-1.6", "-0.1", "-1.1", "-0.8", "-1.8" ], [ "Health &\nPersonal", "0.1", "0.0", "-0.6", "-2.8", "-0.5", "-2.6", "0.2", "-0.4" ], [ "Average", "-0.7", "0.0", "-0.6", "-3.0", "-0.3", "-1.8", "-0.3", "-1.2" ] ]
0.795152
null
null