id
int64
0
19
arxiv_id
stringlengths
11
12
page
int64
1
234
bounding_box
sequencelengths
4
4
latex_content
stringlengths
217
28.9k
extracted_content
sequencelengths
1
85
similarity_score
float64
0.36
1
table_image
unknown
page_image
unknown
3
1904.05961v3
9
[ 78.60390784523703, 180.22633488972983, 157.61173659104568, 252.8696632385254 ]
\begin{table}[tb] % \vspace{-.0em} % \footnotesize % \renewcommand{\arraystretch}{1.3} % \caption{Average Running Time (sec) } \label{tab:time} % \vspace{-.5em} % \centering % \begin{tabular}{r|c|c|c|c} % \hline % algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\ % \hline % farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\ % \hline % nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\ % \hline % uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\ % \hline % RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\ % \hline % RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\ % \hline % \end{tabular} % \vspace{-1em} % \end{table}
[ [ "", "farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian" ], [ null, "" ] ]
0.480769
null
null
4
1904.05961v3
15
[ 71.8550033569336, 85.47900390625, 277.1319885253906, 157.8079833984375 ]
\begin{table}[tb] %\vspace{-.0em} \color{blue} \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Error bound $\epsilon$ for MEB ($z=1$)} \label{tab:epsilon, z=1} %\vspace{-.5em} \centering \begin{tabular}{r|c|c|c} \hline dataset & coreset size & max relative error & $\epsilon$ \\ \hline Fisher's iris & 5 (20) & 0.0041 & 0.4127 \\ \hline Facebook & 20 (80) & 0.0044 & 49.3484 \\ \hline Pendigits & 40 (400) & 0.0027 & 691.345 \\ \hline MNIST & 400 & 8.1756 & 189130 \\ \hline HARS & 400 & & \\ \hline %LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\ %\hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset", "coreset size", "max relative error", "ϵ" ], [ "Fisher’s iris", "20", "0.0053", "0.1073" ], [ "Facebook", "80", "0.0344", "1.18" ], [ "Pendigits", "400", "0.0026", "2.1112" ], [ "MNIST", "400", "0.0024", "10.74" ], [ "HAR", "400", "5.6054e-05", "3.9212" ] ]
0.674938
null
null
5
1904.05961v3
15
[ 71.8550033569336, 199.45510864257812, 277.1319885253906, 273.01202392578125 ]
\begin{table}[tb] %\vspace{-.0em} \color{blue} \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Error bound $\epsilon$ for MEB ($z=2$)} \label{tab:epsilon, z=2} %\vspace{-.5em} \centering \begin{tabular}{r|c|c|c} \hline dataset & coreset size & max relative error & $\epsilon$ \\ \hline Fisher's iris & 5 (20) & 0.0097 & 0.6424 \\ \hline Facebook & 20 (80) & 0.0345 & 7.0248 \\ \hline Pendigits & 40 (400) & 0.0023 & 26.2934 \\ \hline MNIST & 400 & 8.1726 & 434.8897 \\ \hline (new data) & & & \\ \hline %LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\ %\hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset\nFisher’s iris", "coreset size\n20", "max relative error\n1.1896e-05", "ϵ\n0.1093" ], [ "Facebook", "80", "1.9976e-06", "1.3711" ], [ "Pendigits", "400", "4.3876e-05", "2.0257" ], [ "MNIST", "400", "0.0020", "8.53" ], [ "HAR", "400", "4.9972e-07", "3.5612" ] ]
0.49642
null
null
6
1904.05961v3
15
[ 310.60457938058033, 94.44598388671875, 567.0517142159598, 154.719970703125 ]
\begin{table}[t] { %\small \footnotesize %\color{blue} \renewcommand{\arraystretch}{1.3} \caption{Original Machine Learning Performance (cost for MEB, $k$-means, PCA; accuracy for SVM and NN)} \label{tab:original cost} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline problem & Fisher's & Facebook & Pendigits & MNIST & HAR\\ \hline MEB & 2.05 & 7.65 & 18.06 & 90.43 & 60.26 \\ \hline $k$-means & 84.54 & 853.67 & 2.00e+05 & 4.98e+07 & 2.86e+06 \\ \hline PCA & 1.94 & 197.19 & 910.79 & 1.73e+04 & 4.46e+05 \\ \hline SVM/NN\footnotemark & 100\% & 89.36\% & 99.33\% & 87.01\% & 78.01\% \\ %\hline %NN & & & & & \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "problem", "Fisher’s", "Facebook", "Pendigits", "MNIST", "HAR" ], [ "MEB", "2.05", "7.65", "18.06", "90.43", "60.26" ], [ "k-means", "84.54", "853.67", "2.00e+05", "4.98e+07", "2.86e+06" ], [ "PCA", "1.94", "197.19", "910.79", "1.73e+04", "4.46e+05" ], [ "SVM/NN4", "100%", "89.36%", "99.33%", "87.01%", "78.01%" ] ]
0.803738
null
null
7
1904.05961v3
8
[ 465.7950966971261, 163.474755859375, 542.6723248517072, 243.49267578125 ]
\begin{table}[t] { %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\ \hline FP %farthest point & 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\ \hline NS %nonuniform samp. & 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\ \hline US %uniform samp. & 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\ \hline RS %RCC-kmeans & 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\ \hline RN %RCC-kmedian & 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "farthest point\nnonuniform sampling\nuniform sampling", null ], [ "RCC-kmeans\nRCC-kmedian", "" ] ]
0.371585
null
null
8
1904.05961v3
9
[ 203.78987312316895, 285.95184326171875, 279.5675640106201, 359.3156337738037 ]
\begin{table}[tb] % \vspace{-.0em} % \footnotesize % \renewcommand{\arraystretch}{1.3} % \caption{Average Running Time (sec) } \label{tab:time} % \vspace{-.5em} % \centering % \begin{tabular}{r|c|c|c|c} % \hline % algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\ % \hline % farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\ % \hline % nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\ % \hline % uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\ % \hline % RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\ % \hline % RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\ % \hline % \end{tabular} % \vspace{-1em} % \end{table}
[ [ "farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian", null, null ], [ null, "RCC-\nRCC-", "kmeans\nkmedian" ] ]
0.466859
null
null
0
2301.01542v1
31
[ 206.56300354003906, 117.44898986816406, 403.19598388671875, 169.3759765625 ]
\begin{table}[t] \caption{Average test accuracy across clients for different datasets in the settings when $N_{\text{hist}} /N = 50\%$.} \label{tab:ratio_estimation_exp} % \vskip 0.15in \begin{center} \begin{small} \begin{sc} \begin{tabular}{ l | c c c c } \toprule \textbf{Dataset} & $D$ & $G$ & $B$ & $d$ \\ \midrule Synthetic & $1.9$ & $0.4$ & $0.7$ & $21$ \\ CIFAR-10 & $1.0$ & $5.5$ & $2.3$ & $3,353,034$ \\ CIFAR-100 & $1.0$ & $4.7$ & $4.6$ & $3,537,444$ \\ FEMNIST & $5.9$ & $12.9$ & $3.5$ & $867,390$ \\ Shakespeare & $2.6$ & $1.4$ & $6.1$ & $226,180$ \\ \bottomrule \end{tabular} \end{sc} \end{small} \end{center} % \vskip -0.1in \end{table}
[ [ "SYNTHETIC\nCIFAR-10\nCIFAR-100\nFEMNIST\nSHAKESPEARE", "1.9 0.4 0.7 21\n1.0 5.5 2.3 3, 353, 034\n1.0 4.7 4.6 3, 537, 444\n5.9 12.9 3.5 867, 390\n2.6 1.4 6.1 226, 180" ] ]
0.397032
null
null
0
1908.04909v1
1
[ 321.5539855957031, 536.426025390625, 553.4600219726562, 564.52099609375 ]
\begin{table}[h] \begin{center} \begin{tabular}{|l|r|r|r|r|r|r|r|}\hline & TP & FP & FN & TN & ACC & MCC & FPR \\\hline \textbf{model A} & 900 & 500 & 100 & 8500 & 94.0\% & 0.73 & 5.6\% \\\hline \textbf{model B} & 350 & 100 & 650 & 8900 & 92.5\% & 0.49 & 1.1\% \\\hline \end{tabular} \end{center} \caption[Two candidate models]% {Performance of models A and B. TP is true positives; FP is false positives; FN is false negatives; TN is true negatives; ACC is accuracy; FPR is false positive rate. Compared to model B, model A has better MCC, but worse FPR.} \label{ex_data_tab} %\vspace{-20pt} \end{table}
[ [ "", "TP", "FP", "FN", "TN", "ACC", "MCC", "FPR" ], [ "model A", "900", "500", "100", "8500", "94.0%", "0.73", "5.6%" ], [ "model B", "350", "100", "650", "8900", "92.5%", "0.49", "1.1%" ] ]
0.422594
null
null
1
1908.04909v1
8
[ 92.98300170898438, 47.15399169921875, 256.00299072265625, 75.2490234375 ]
\begin{table}[h] \begin{center} \begin{tabular}{ | c |c | c | } \hline \textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline \textbf{False} & 146,956 & 5,562 \\ \hline \textbf{True} & 22,963 & 10,721 \\ \hline \end{tabular} \end{center} \caption{Confusion Matrix - Validation Data - Default Model} \label{donors_tab2} % \vspace{-20pt} \end{table}
[ [ "Target", "Predicted False", "Predicted True" ], [ "False", "147,417", "5,101" ], [ "True", "13,650", "20,034" ] ]
0.545455
null
null
2
1908.04909v1
9
[ 92.98300170898438, 270.469970703125, 256.00299072265625, 298.5639953613281 ]
\begin{table}[h] \begin{center} \begin{tabular}{ | c | c | c | } \hline \textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline \textbf{False} & 147,417 & 5,101\\ \hline \textbf{True} & 13,650 & 20,034 \\ \hline \end{tabular} \end{center} \caption{Confusion Matrix - Validation Data - "Best" Model} \label{donors_tab3} % \vspace{-20pt} \end{table}
[ [ "Target", "Predicted False", "Predicted True" ], [ "False", "276,482", "1,429" ], [ "True", "4,535", "6,371" ] ]
0.516129
null
null
0
2304.14853v1
4
[ 73.21099853515625, 611.2139892578125, 276.7539173473011, 667.4030151367188 ]
\begin{table}[H] \centering \caption{$p$-values for Sleep States using TDA} \begin{tabular}{| c | c | c | c | c |} \hline \textbf{EEG Band} & NREM1 & NREM2 & NREM3 & REM \\ \hline Delta Band & 0.000 & 0.001 & 0.000 & 0.040 \\ \hline Theta Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Alpha Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Beta Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Gamma Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline \end{tabular} \label{tab:sleep_state_p_value_pl} \end{table}
[ [ "EEG Band", "NREM1", "NREM2", "NREM3", "REM" ], [ "Delta Band", "0.000", "0.001", "0.000", "0.040" ], [ "Theta Band", "0.000", "0.000", "0.000", "0.000" ], [ "Alpha Band", "0.000", "0.000", "0.000", "0.000" ], [ "Beta Band", "0.000", "0.000", "0.000", "0.000" ], [ "Gamma Band", "0.000", "0.000", "0.000", "0.000" ] ]
0.946636
null
null
0
2308.15992v3
8
[ 73.57655270894368, 129.3708038330078, 501.71382904052734, 238.49429321289062 ]
\begin{table}[h] \setlength{\abovecaptionskip}{0cm} \setlength{\belowcaptionskip}{-0.2cm} \caption{Comparison of Existing Surveys on Cryptocurrency and DeFi Fraud. It covers target platforms, classification method, taxonomy through project life cycle, detail on-chain pattern exploration, AI detection models analysis, DeFi vs. CeFi fraud comparison, and discussion of challenges and future opportunities for each paper. For those classifying by detection methods, fraud taxonomy and on-chain patterns are not applicable (N/A) to them.} \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|m{4cm}<{\centering}|m{3.3cm}<{\centering}|m{3cm}<{\centering}|m{1.3cm}<{\centering}|m{1.4cm}<{\centering}|m{1.3cm}<{\centering}|m{1.4cm}<{\centering}|m{1.7cm}<{\centering}|} \hline \textbf{Paper} & \textbf{Platforms} & \textbf{Classification} & \textbf{Project life cycle} & \textbf{On-chain Patterns} & \textbf{AI Methods} & \textbf{Comp. w/ CeFi} & \textbf{Future Opportunities}\\ \hline Badawi and Jourdan (2020) \cite{badawi2020cryptocurrencies} & General cryptocurrencies & By frauds & $\times$ & $\times$ & \checkmark & $\times$& $\times$\\ \hline Li et al. (2020) \cite{li2020survey} & General cryptocurrencies & By detection methods & N/A & N/A & \checkmark & $\times$ &\checkmark \\ \hline Eigelshoven et al. (2021) \cite{eigelshoven2021cryptocurrency} & General cryptocurrencies & By frauds & $\times$ & \checkmark & $\times$ & \checkmark & \checkmark \\ \hline Bartoletti et al. (2021) \cite{bartoletti2021cryptocurrency} & General cryptocurrencies & By frauds & $\times$& \checkmark & $\times$ & $\times$ & \checkmark \\ \hline Trozze et al. (2022) \cite{trozze2022cryptocurrencies} & General cryptocurrencies & By frauds & $\times$ & $\times$ & $\times$ & $\times$ & \checkmark \\ \hline Li (2022) \cite{li2022survey} & Ethereum & By detection methods & N/A & N/A & \checkmark & $\times$ & \checkmark \\ \hline Yan et al. (2022) \cite{yan2022blockchain} & Public and consortium blockchain & By frauds & $\times$ & $\times$ & \checkmark & $\times$ & \checkmark \\ \hline Wu et al. (2023) \cite{wu2023financial} & Web3-metaverse & By frauds & $\times$ & $\times$ & $\times$ & \checkmark & \checkmark \\ \hline Krishnan et al. (2023) \cite{krishnan2023scams} & General cryptocurrencies & By frauds & $\times$ & $\times$ & \checkmark & $\times$ & $\times$ \\ \hline Our Survey & DeFi & By frauds & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark\\ \hline \end{tabular}} \label{table:review-comparison} \end{table}
[ [ "Paper", "Platforms", "Classification", "Project\nlife cycle", "On-chain\nPatterns", "AI\nMethods", "Comp. w/\nCeFi", "Future Op-\nportunities" ], [ "Badawi and Jourdan (2020) [12]", "General cryptocurrencies", "By frauds", "×", "×", "✓", "×", "×" ], [ "Li et al. (2020) [104]", "General cryptocurrencies", "By detection methods", "N/A", "N/A", "✓", "×", "✓" ], [ "Eigelshoven et al. (2021) [52]", "General cryptocurrencies", "By frauds", "×", "✓", "×", "✓", "✓" ], [ "Bartoletti et al. (2021) [14]", "General cryptocurrencies", "By frauds", "×", "✓", "×", "×", "✓" ], [ "Trozze et al. (2022) [152]", "General cryptocurrencies", "By frauds", "×", "×", "×", "×", "✓" ], [ "Li (2022) [106]", "Ethereum", "By detection methods", "N/A", "N/A", "✓", "×", "✓" ], [ "Yan et al. (2022) [183]", "Public and consortium\nblockchain", "By frauds", "×", "×", "✓", "×", "✓" ], [ "Wu et al. (2023) [175]", "Web3-metaverse", "By frauds", "×", "×", "×", "✓", "✓" ], [ "Krishnan et al. (2023) [95]", "General cryptocurrencies", "By frauds", "×", "×", "✓", "×", "×" ], [ "Our Survey", "DeFi", "By frauds", "✓", "✓", "✓", "✓", "✓" ] ]
0.606001
null
null
0
2405.17731v1
5
[ 63.372429438999724, 117.75799560546875, 284.47127859933033, 185.90301513671875 ]
\begin{table}[htbp] \centering \caption{Data Loading times for all databases across the five datasets (time in seconds)} \label{tab:loadtime} \begin{tabular}{|c|c|c|c|c|c|} \hline Databases & SF1 & SF2 & SF3 & SF4 & SF5 \\ \hline PostgreSQL & 37s & 375s & 857s & 1089s & 1481s\\ \hline MongoDB & 90s & 1250s & 1701s & 2275s & 2810s \\ \hline ArangoDB & 295s & 2249s & 3964s & 12169s & 15162s \\ \hline Redis & 1495s & 3245s & 5023s & 7748s & 10289s\\ \hline Apache Kudu & 42s & 95s & 146s & 192s & 240s\\ \hline \end{tabular} \end{table}
[ [ "Databases", "SF1", "SF2", "SF3", "SF4", "SF5" ], [ "PostgreSQL", "37s", "375s", "857s", "1089s", "1481s" ], [ "MongoDB", "90s", "1250s", "1701s", "2275s", "2810s" ], [ "ArangoDB", "295s", "2249s", "3964s", "12169s", "15162s" ], [ "Redis", "1495s", "3245s", "5023s", "7748s", "10289s" ], [ "Apache Kudu", "42s", "95s", "146s", "192s", "240s" ] ]
1
null
null
0
1903.09493v1
5
[ 264.3240051269531, 116.03497314453125, 351.0320129394531, 269.85797119140625 ]
\begin{table}[ht] \centering \begin{tabular}{c|c} \hline \textbf{Reference} & \textbf{Paper} \\ & \textbf{number} \\ \cline{1-2} \cite{Dwork:12} & [1] \\ \cite{Kleinberg:16} & [2] \\ \cite{Berk:17} & [3] \\ \cite{Hardt:16} & [4] \\ \cite{Corbett:17} & [5] \\ \cite{Simoiu:17} & [6] \\ \cite{Chouldechova:16} & [7] \\ \cite{Zafar:17} & [8] \\ \cite{Kusner:18} & [9] \\ \cite{Dieterich:16} & [10] \\ \cite{Zafar2:17} & [11] \\ \cite{Binns:18} & [12] \\ \hline \end{tabular} \caption{References} \label{Table:2} \end{table}
[ [ "Reference", "Paper\nnumber" ], [ "[12]\n[18]\n[2]\n[15]\n[9]\n[24]\n[7]\n[28]\n[19]\n[10]\n[27]\n[4]", "[1]\n[2]\n[3]\n[4]\n[5]\n[6]\n[7]\n[8]\n[9]\n[10]\n[11]\n[12]" ] ]
0.409091
null
null
0
2309.04210v1
5
[ 315.2139892578125, 459.90899658203125, 555.9860229492188, 498.0660095214844 ]
\begin{table} \renewcommand{\arraystretch}{1.3} \caption{Comparison of all three observers, showing the mean and standard deviation of the rms voltage error $\obserrrms$ (in $mV$) across twenty trials.} \label{table:results_full} \centering \begin{tabular}{|c|c|c|c|c|} \hline & Centralized & Distributed & $\numredundant=3$ & $\numredundant=9$\\ \hline\hline Mean & 1.15 & 0.0788 & 0.0280 & 0.0241 \\ \hline Standard Deviation & 0.14 & 0.017 & 0.0056 & 0.0030 \\ \hline \end{tabular} \end{table}
[ [ "", "Centralized", "Distributed", "N = 3", "N = 9" ], [ "Mean", "1.15", "0.0788", "0.0280", "0.0241" ], [ "Standard Deviation", "0.14", "0.017", "0.0056", "0.0030" ] ]
0.87395
null
null
0
1604.02608v1
6
[ 211.61500549316406, 154.77801513671875, 399.63299560546875, 216.5469970703125 ]
\begin{table}[!ht] \caption{Data intensive users supported by the OSDC} \begin{center} \begin{tabular}{|l | r|} \hline \# core hours during month & \# of users \\ \hline % 10,000 & 435 \\ \hline 20,000 & 120 \\ \hline 50,000 & 34 \\ \hline 100,000 & 23 \\ \hline 200,000 & 5 \\ \hline \end{tabular} \end{center} \label{tab:users} \footnotesize{The estimated cost of 100,000 core hours on a commercial cloud service provider like AWS is \$40,000 per month.} \end{table}
[ [ "# core hours during month", "# of users" ], [ "20,000", "120" ], [ "50,000", "34" ], [ "100,000", "23" ], [ "200,000", "5" ] ]
0.543554
null
null
0
2101.04025v2
6
[ 53.79800033569336, 128.71697998046875, 306.6470031738281, 202.739990234375 ]
\begin{table}[h] \renewcommand{\arraystretch}{1.3} \caption{Serverless Fit Times and Costs with 1024 MB Memory and Per-Sample-Split Scaling (Mean, Min \& Max in 100 Runs).} \label{table_timing_example} \centering \begin{tabular}{l || c | c | c} \hline & \bfseries Mean & \bfseries Min & \bfseries Max \\ \hline\hline \bfseries Fit Time (s) & 19.82 & 19.53 & 21.49 \\ \bfseries Billed Duration (GB-s) & 3515.36 & 3492.01 & 3571.42 \\ \bfseries Avg.\ Duration per Invocation (s) & 17.16 & 17.05 & 17.44 \\ \bfseries Total Response Time (s) & 19.09 & 18.81 & 20.76 \\ \hline \end{tabular} \end{table}
[ [ "", "Mean", "Min", "Max" ], [ "Fit Time (s)\nBilled Duration (GB-s)\nAvg. Duration per Invocation (s)\nTotal Response Time (s)", "19.82\n3515.36\n17.16\n19.09", "19.53\n3492.01\n17.05\n18.81", "21.49\n3571.42\n17.44\n20.76" ] ]
0.573427
null
null
0
2005.03197v4
5
[ 68.84456565163352, 320.3421630859375, 282.4513327858665, 400.2100524902344 ]
\begin{table}[htb!] %\fontsize{7}{7}\selectfont \caption{(MFC Results) Vanilla HAC and FHAC (Ours)}\label{table1} \begin{center} \tabcolsep=0.10cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|c|c|c|c|}% \hline \textbf{Dataset} & \textbf{Linkage} & \textbf{$\theta_1$} & \textbf{$\theta_2$} & \textbf{MFC (Vanilla)} & \textbf{MFC (FHAC)}\\ \hline \hline \texttt{census} & Average & 0.001 & 0.001 & \textbf{0.0853} & \textbf{ 0.0853}\\ \hline \texttt{census} & Complete & 0.001 & 0.001 & 0.1806 & \textbf{0.0853}\\ \hline \texttt{census} & Single & 0.001 & 0.65 & 1.248 & \textbf{0.752}\\ \hline \texttt{creditcard} & Average & 0.00005 & 0.005 & 1.2439 & \textbf{1.0}\\ \hline \texttt{creditcard} & Complete & 0.00005 & 0.005 & 0.744 & \textbf{0.60}\\ \hline \texttt{creditcard} & Single & 0.0075 & 0.5 & 1.5 & \textbf{ 0.778}\\ \hline \texttt{bank} & Average & 0.0001 & 0.05 & 1.332 & \textbf{0.6679}\\ \hline \texttt{bank} & Complete & 0.5 & 0.05 & 1.332 & \textbf{0.4457}\\ \hline \texttt{bank} & Single & 0.001 & 0.65 & 1.332 & \textbf{0.6653}\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Linkage", "θ1", "θ2", "MFC (Vanilla)", "MFC (FHAC)" ], [ "census", "Average", "0.001", "0.001", "0.0853", "0.0853" ], [ "census", "Complete", "0.001", "0.001", "0.1806", "0.0853" ], [ "census", "Single", "0.001", "0.65", "1.248", "0.752" ], [ "creditcard", "Average", "0.00005", "0.005", "1.2439", "1.0" ], [ "creditcard", "Complete", "0.00005", "0.005", "0.744", "0.60" ], [ "creditcard", "Single", "0.0075", "0.5", "1.5", "0.778" ], [ "bank", "Average", "0.0001", "0.05", "1.332", "0.6679" ], [ "bank", "Complete", "0.5", "0.05", "1.332", "0.4457" ], [ "bank", "Single", "0.001", "0.65", "1.332", "0.6653" ] ]
0.980392
null
null
1
2005.03197v4
5
[ 68.84456565163352, 436.6025695800781, 282.4513327858665, 515.1467895507812 ]
\begin{table}[htb!] \caption{(Balance Results) Vanilla HAC and FHAC (Ours)}\label{table2} \begin{center} \tabcolsep=0.09cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|c|c|} \hline \textbf{Dataset} & \textbf{Linkage} & $\theta_1$ & $\theta_2$ & \textbf{Balance(Vanilla)} & \textbf{Balance(FHAC)}\\ \hline \hline \texttt{census} & Average & 0.001 & 0.001 & \textbf{0.8865} & \textbf{0.8865}\\ \hline \texttt{census} & Complete & 0.001 & 0.001 & 0.7599 & \textbf{0.8865}\\ \hline \texttt{census} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.9385}\\ \hline \texttt{creditcard} & Average & 0.05 & 0.1 & 0.0 & \textbf{0.427}\\ \hline \texttt{creditcard} & Complete & 0.0005 & 1.0 & 0.0 & \textbf{0.7105}\\ \hline \texttt{creditcard} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.7959}\\ \hline \texttt{bank} & Average & 0.045 & 0.09 & 0.0 & \textbf{0.5567}\\ \hline \texttt{bank} & Complete & 0.5 & 0.05 & 0.0 & \textbf{0.3327}\\ \hline \texttt{bank} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.8099}\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Linkage", "θ1", "θ2", "Balance(Vanilla)", "Balance(FHAC)" ], [ "census", "Average", "0.001", "0.001", "0.8865", "0.8865" ], [ "census", "Complete", "0.001", "0.001", "0.7599", "0.8865" ], [ "census", "Single", "0.0005", "1.0", "0.0", "0.9385" ], [ "creditcard", "Average", "0.05", "0.1", "0.0", "0.427" ], [ "creditcard", "Complete", "0.0005", "1.0", "0.0", "0.7105" ], [ "creditcard", "Single", "0.0005", "1.0", "0.0", "0.7959" ], [ "bank", "Average", "0.045", "0.09", "0.0", "0.5567" ], [ "bank", "Complete", "0.5", "0.05", "0.0", "0.3327" ], [ "bank", "Single", "0.0005", "1.0", "0.0", "0.8099" ] ]
0.979899
null
null
2
2005.03197v4
5
[ 331.9150848388672, 178.67807006835938, 545.4621948242187, 213.11260986328125 ]
\begin{table}[htbp] \caption{(MFC Results) FHAC, AFHAC-R, and AFHAC-V}\label{table3} \begin{center} %\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|} \tabcolsep=0.10cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|} \hline \textbf{Dataset} & \textbf{MFC (FHAC)} & \textbf{MFC (AFHAC-V)} & \textbf{MFC (AFHAC-R)}\\ \hline \hline \texttt{creditcard} & \textbf{1.0} & 2.8505 & 1.5825 \\ \hline \texttt{census} & \textbf{0.0853} & 4.0 & 4.0 \\ \hline \texttt{bank} & 0.6679 & \textbf{0.03648} & 2.0027\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "MFC (FHAC)", "MFC (AFHAC-V)", "MFC (AFHAC-R)" ], [ "creditcard", "1.0", "2.8505", "1.5825" ], [ "census", "0.0853", "4.0", "4.0" ], [ "bank", "0.6679", "0.03648", "2.0027" ] ]
1
null
null
3
2005.03197v4
5
[ 331.9150848388672, 407.85089111328125, 545.4621948242187, 440.2733459472656 ]
\begin{table}[htbp] \caption{(Balance Results) FHAC, AFHAC-R, AFHAC-V}\label{table4} \begin{center} %\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|} \tabcolsep=0.09cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|} \hline \textbf{Dataset} & \textbf{Balance(FHAC)} & \textbf{Balance(AFHAC-V)} & \textbf{Balance(AFHAC-R)}\\ \hline \hline \texttt{creditcard} & \textbf{0.427} & 0.0 & 0.416 \\ \hline \texttt{census} & \textbf{0.8865} & 0.2 & 0.0 \\ \hline \texttt{bank} & 0.5567 & \textbf{0.9474} & 0.0\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Balance(FHAC)", "Balance(AFHAC-V)", "Balance(AFHAC-R)" ], [ "creditcard", "0.427", "0.0", "0.416" ], [ "census", "0.8865", "0.2", "0.0" ], [ "bank", "0.5567", "0.9474", "0.0" ] ]
1
null
null
0
2211.00948v2
13
[ 246.5290069580078, 592.0690307617188, 362.9800109863281, 693.6380004882812 ]
\begin{table} \centering \begin{tabular}{c|c} & \textbf{Huber loss} \\ \hline \textbf{$0_th$ Round} & 3.91E+01 \\ \hline \textbf{$1_st$ Round} & 3.68E+01 \\ \hline \textbf{$2_nd$ Round} & 3.44E+01 \\ \hline \textbf{$3_rd$ Round} & 2.49E+01 \\ \hline \textbf{$4_th$ Round} & 1.66E+01 \\ \hline \textbf{$5_th$ Round} & 1.42E+01 \\ \hline \textbf{$6_th$ Round} & 2.99E+01 \\ \hline \textbf{$7_th$ Round} & 3.22E+01 \\ \hline \end{tabular} \caption{Loss Values In Different Rounds} \label{tab:store-sizec} \vspace{4mm} \end{table}
[ [ "", "Huber loss" ], [ "0 h Round\nt", "3.91E+01" ], [ "1 t Round\ns", "3.68E+01" ], [ "2 d Round\nn", "3.44E+01" ], [ "3 d Round\nr", "2.49E+01" ], [ "4 h Round\nt", "1.66E+01" ], [ "5 h Round\nt", "1.42E+01" ], [ "6 h Round\nt", "2.99E+01" ], [ "7 h Round\nt", "3.22E+01" ] ]
0.750656
null
null
1
2211.00948v2
14
[ 165.6510009765625, 428.6319885253906, 443.8580017089844, 451.0480041503906 ]
\begin{table}[H] \centering \begin{tabular}{@{}c|ccc@{}} & \textbf{Without Risk-Neutral} & \textbf{With Risk-Neutral} \\ \hline \textbf{Loss } &$1.18E+02$($1000_{th}$iteration) &$2.37E+02$($253_{th}$iteration) \\ \hline \end{tabular} \caption{Loss of two jump-diffusion models} \label{tab:5 assets loss} \vspace{-4mm} \end{table}
[ [ "", "Without Risk-Neutral With Risk-Neutral" ], [ "Loss", "1.18E + 02(1000 iteration) 2.37E + 02(253 iteration)\nth th" ] ]
0.504673
null
null
0
1907.07305v1
20
[ 151.3139991760254, 359.5298018022017, 473.27100372314453, 387.2619934082031 ]
\begin{table}[!htb] \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \rowcolor[rgb]{0,1,1} $S$ & $r$ & $q$ & $T_{max}$ & $K_{\max}$ & Call/Put & $N_u$ & $N_v$ & $R_c$ \\ \hline 100.00 & 0.05 & 0.01 & 1.00 & 400.00 & Call & 200 & 100 & 20 \\ \hline \end{tabular} \caption{Parameters of the test.} \label{inputs} \end{center} \end{table}
[ [ "S", "r", "q", "T\nmax", "K\nmax", "Call/Put", "N\nu", "N\nv", "R\nc" ], [ "100.00", "0.05", "0.01", "1.00", "400.00", "Call", "200", "100", "20" ] ]
0.739336
null
null
1
1907.07305v1
24
[ 166.64599778917102, 65.93869018554688, 457.9391038682726, 163.44000244140625 ]
\begin{table}[!htb] \begin{center} \begin{tabular}{|r|r|r|r|} \hline \rowcolor[rgb]{0,1,1} Step in time & Iterations per step & $\varepsilon \ \ $ & $t$ elapsed, secs \\ \hline 1 & 20 & 1.5e-4 & 16 \\ \hline 2 & 3 & 2.3e-6 & 2.7 \\ \hline 3 & 3 & 1.9e-6 & 2.8 \\ \hline 5 & 3 & 1.4e-6 & 2.8 \\ \hline 10 & 3 & 8.3e-7 & 2.8 \\ \hline 20 & 3 & 3.8e-7 & 2.8 \\ \hline \end{tabular} \caption{Convergence of the Picard iterations for various steps in time $T$. The time step $\Delta T$ = 0.01.} \label{conv} \end{center} \end{table}
[ [ "Step in time", "Iterations per step", "ε", "t elapsed, secs" ], [ "1", "20", "1.5e-4", "16" ], [ "2", "3", "2.3e-6", "2.7" ], [ "3", "3", "1.9e-6", "2.8" ], [ "5", "3", "1.4e-6", "2.8" ], [ "10", "3", "8.3e-7", "2.8" ], [ "20", "3", "3.8e-7", "2.8" ] ]
0.682809
null
null
0
2110.07519v1
21
[ 36.68600082397461, 208.1970418294271, 279.2229919433594, 248.8449910481771 ]
\begin{table}[tb] \centering \caption{Index expansion rate (index size as a percentage of the original data size).}\label{table5} \hspace*{-0.3cm} \begin{tabular}{|c|c|c|c|} \hline &Synthetic&Seismic&SALD\\ & {100GB} & {100GB} & {100GB} \\ & {100M series} & {100M series} & {200M series} \\ \hline index expansion rate&5.7\%& 5.1\%& 10.5\%\\ \hline \end{tabular} \end{table}
[ [ "", "Synthetic\n100GB\n100M series", "Seismic\n100GB\n100M series", "SALD\n100GB\n200M series" ], [ "index expansion rate", "5.7%", "5.1%", "10.5%" ] ]
0.762332
null
null
1
2110.07519v1
21
[ 131.4929962158203, 107.9210205078125, 439.4949951171875, 159.72698974609375 ]
\begin{table}[tb] % \centering % \scriptsize % \caption{Query answering algorithms comparison: number of times an operation is executed (average over 100 queries). }\label{table4} % \begin{tabular}{|c|c|c|c|c|c|} % \hline % & {\bf ParIS} & {\bf ParIS-TS} & {\bf ParIS-TS-LB} & {\bf MESSI-sq} & {\bf MESSI-mq} \\ % \hline % Insert node &n/a&69K& 69K& 15K& 15K\\ % \hline % Delete node&n/a&20K &20K& 11K& 11K\\ % \hline % LBD calculation &100M& 69K &9M& 9M &9M\\ % \hline % RD calculation &112K &9M &52K &54K &54K\\ % \hline % \end{tabular} %\end{table}
[ [ "", "ParIS+", "ParIS+TS", "ParIS+TS-LB", "MESSI-sq", "MESSI-mq" ], [ "PQ ins. node", "n/a", "69,117", "69,134", "14,620", "14,611" ], [ "PQ del. node", "n/a", "20,051", "20,111", "11,152", "10,747" ], [ "LBD calcul.", "100 M", "69,117", "9,173,401", "9,175,400", "9,170,162" ], [ "RD calcul.", "112,321", "9,183,312", "52,139", "54,207", "53,919" ] ]
0.444444
null
null
2
2110.07519v1
21
[ 308.25, 198.322021484375, 519.970100402832, 269.62767537434894 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (Euclidean distance).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&11.97&20.92&45.58&258.04\\ updates/query&11.9&20.9&45.6&258.1\\ \hline BSF update time& & & &\\ %$\mu$sec/query&0.51&5.07&19.12&186.47\\ $\mu$sec/query&0.5&5.1&19.1&186.5\\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \% &0.001\% & 0.01\% & 0.04\% & 0.3\% \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{table2} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "11.9", "20.9", "45.6", "258.1" ], [ "BSF update time\nµsec/query", "0.5", "5.1", "19.1", "186.5" ], [ "BSF update time\nquery time %", "0.001%", "0.01%", "0.04%", "0.3%" ] ]
0.617424
null
null
3
2110.07519v1
23
[ 51.75600051879883, 286.10198974609375, 265.49737548828125, 357.4350280761719 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 5\% warping).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&22.71& 83.94& 160.2& 672.35\\ updates/query&22.7& 83.9& 160.2& 672.4\\ \hline BSF update time& & & &\\ %$\mu$sec/query&4.92&19.95& 50.21&473.27 $\mu$sec/query&4.9&19.9& 50.2&473.3 \\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \textperthousand % &0.0072\textperthousand % &0.027\textperthousand % &0.062\textperthousand % &0.54\textperthousand &0.007\textperthousand &0.03\textperthousand &0.06\textperthousand &0.5\textperthousand \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{tabledtw5} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "22.7", "83.9", "160.2", "672.4" ], [ "BSF update time\nµsec/query", "4.9", "19.9", "50.2", "473.3" ], [ "BSF update time\nquery time ‰", "0.007‰", "0.03‰", "0.06‰", "0.5‰" ] ]
0.471264
null
null
4
2110.07519v1
23
[ 47.63600158691406, 401.4490051269531, 270.5639885796441, 472.7820129394531 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 10\% warping).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&45.83& 124.73& 221.36& 854.04\\ updates/query&45.8& 124.7& 221.4& 854.1\\ \hline BSF update time& & & &\\ %$\mu$sec/query&11.91 &31.46&72.51&574.22 $\mu$sec/query&11.9 &31.5&72.5&574.2 \\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \textperthousand % &0.0031\textperthousand& % 0.0076\textperthousand& % 0.0016\textperthousand& % 0.12\textperthousand &0.003\textperthousand& 0.008\textperthousand& 0.002\textperthousand& 0.1\textperthousand \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{tabledtw10} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "45.8", "124.7", "221.4", "854.1" ], [ "BSF update time\nµsec/query", "11.9", "31.5", "72.5", "574.2" ], [ "BSF update time\nquery time ‰", "0.003‰", "0.008‰", "0.002‰", "0.1‰" ] ]
0.476056
null
null
0
1811.01315v2
4
[ 163.9600067138672, 133.2239990234375, 427.41400146484375, 385.5770263671875 ]
\begin{table}[!h] \centering \caption{List of Abbreviations and Acronyms.} \begin{tabular}{c|c} \hline MNL & Multinomial logit \\ \hline NB & Naive Bayes \\ \hline CART & Classification and regression trees \\ \hline RF & Random forest \\\hline BOOST & Boosting trees \\\hline BAG & Bagging trees \\\hline SVM & Support vector machines \\\hline NN & Neural networks \\\hline AIC & Akaike information criterion \\\hline BIC & Bayesian information criterion \\\hline Min & Minimum \\\hline Max & Maximum \\\hline SD & Standard deviation \\\hline SP & Stated-preference \\\hline RP & Revealed-preference \\\hline IIA & Independence of irrelevant alternatives \\ \hline PT & Public transit \\ \hline \end{tabular} \label{tab:acy} \end{table}
[ [ "MNL", "Multinomial logit" ], [ "NB", "Naive Bayes" ], [ "CART", "Classification and regression trees" ], [ "RF", "Random forest" ], [ "BOOST", "Boosting trees" ], [ "BAG", "Bagging trees" ], [ "SVM", "Support vector machines" ], [ "NN", "Neural networks" ], [ "AIC", "Akaike information criterion" ], [ "BIC", "Bayesian information criterion" ], [ "Min", "Minimum" ], [ "Max", "Maximum" ], [ "SD", "Standard deviation" ], [ "SP", "Stated-preference" ], [ "RP", "Revealed-preference" ], [ "IIA", "Independence of irrelevant alternatives" ], [ "PT", "Public transit" ] ]
0.990099
null
null
1
1811.01315v2
6
[ 65.09200286865234, 133.2239990234375, 526.8619995117188, 547.7470092773438 ]
\begin{table}[!t] \centering \caption{List of Symbols and Notations Used in the Paper} \footnotesize \begin{tabular}{c|c} \hline \bf{} Symbols & \bf{} Description \\ \hline $K$ & Total number of alternatives \\ \hline $N$ & Total number of observations \\ \hline $P$ & Total number of features\\ \hline $\boldsymbol{X}$ & Input data for logit models containing $P$ features with $N$ observations for $K$ alternatives \\ \hline $\boldsymbol X_{k,p}$ & Feature $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\ \hline $\boldsymbol{X}_{k,-p}$ & All the features except $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\ \hline $\boldsymbol{X}_{ik}$ & A row-vector for the $i$th observation for alternative $k, k = 1, ..., K$ \\ \hline $\boldsymbol{X}_k$ & Input data for alternative $k$, $\boldsymbol{X}_k = [\boldsymbol{X}_{.k1}; ...; \boldsymbol{X}_{.kP}]$ where $\boldsymbol{X}_{.kp} = [X_{1kp}, ..., X_{Nkp}]$\\ \hline $\boldsymbol{X}_i$ & The $i$th observation of $\boldsymbol{X}$, $\boldsymbol{X}_i = [\boldsymbol{X}_{i.1}, ..., \boldsymbol{X}_{i.P}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$ \\ \hline $\boldsymbol{X}_p$ & The feature $p$ of $\boldsymbol{X}$, $\boldsymbol{X}_p = [\boldsymbol{X}_{1.p}, ..., \boldsymbol{X}_{N.p}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$\\ \hline $\boldsymbol{Z}$ & Input data for machine-learning models containing $P$ features and $N$ observations\\ \hline $\boldsymbol Z_{p}$ & Feature $p$ of $\boldsymbol{Z}$\\ \hline $\boldsymbol Z_{-p}$ & All the features except $p$ of $\boldsymbol{Z}$\\ \hline $\boldsymbol{Z}_i$ & $i$th observation of $\boldsymbol{Z}, \boldsymbol{Z}_i = [Z_{i1}, ..., Z_{iP}$]\\ \hline $U_k(\boldsymbol{X}_k|\boldsymbol{\beta}_k)$ & Utility function for mode $k$ \\ \hline $\boldsymbol{\beta}_k$ & Parameter vector for alternative $k$ of MNL model\\ \hline $\boldsymbol{\beta}$ & Parameter matrix of MNL model, $\boldsymbol{\beta} = [\boldsymbol{\beta}_1,..., \boldsymbol{\beta}_K]$ \\ \hline $\hat{\boldsymbol{\beta}}$ & Estimated parameter matrix of MNL model \\ \hline $\boldsymbol{\varepsilon}_{k}$ & Random error for alternative $k$ of MNL model \\ \hline $\boldsymbol{Y}$ & Output mode choice data \\ \hline $\hat{Y}_i$ & Estimated mode choice for observation $i$ \\ \hline $\boldsymbol{\theta}$ & Parameter or hyperparameter vector for machine-learning models\\ \hline $\hat{\boldsymbol{\theta}}$ & Estimated parameter or hyperparameter vector\\ \hline $f(\boldsymbol{Z}|\boldsymbol{\theta})$ & Machine-learning models based on $\boldsymbol{Z}$ and $\boldsymbol{\theta}$ \\ \hline $p_{ik}$ & Probability of choosing alternative $k$ of observation $i$ \\ \hline $\hat{p}_{ik}$ & Predicted probability for choosing alternative $k$ of observation $i$\\ \hline $I_k(\hat{Y}_i)$ & Indicator function that equals to 1 if $\hat{Y}_i = k$ \\ \hline $P_k(\boldsymbol{X}|\hat{ \boldsymbol{\beta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{X}$ and $\hat{ \boldsymbol{\beta}}$ for logit models\\ \hline $Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{Z}$ and $\hat{ \boldsymbol{\theta}}$ for machine-learning models\\ \hline $E_k(\cdot)$ & Arc elasticity for alternative $k$\\ \hline $M_k(\cdot)$ & Marginal effect for alternative $k$\\ \hline $\Delta$ & Constant\\ \hline \end{tabular} \label{tab:symbol_des} \end{table}
[ [ "Symbols", "Description" ], [ "K", "Total number of alternatives" ], [ "N", "Total number of observations" ], [ "P", "Total number of features" ], [ "X", "Input data for logit models containing P features with N observations for K alternatives" ], [ "X\nk,p", "Feature p for alternative k, k = 1, ..., K of X" ], [ "X\nk,−p", "All the features except p for alternative k, k = 1, ..., K of X" ], [ "X\nik", "A row-vector for the ith observation for alternative k, k = 1, ..., K" ], [ "X\nk", "Input data for alternative k, X = [X .k1; ...; X ] where X = [X 1kp, ..., X Nkp]\nk .kP .kp" ], [ "X\ni", "The ith observation of X, X = [X i.1, ..., X ] where X = [X i1p; ...; X iKp]\ni i.P i.p" ], [ "X\np", "The feature p of X, X = [X 1.p, ..., X N.p] where X = [X i1p; ...; X iKp]\np i.p" ], [ "Z", "Input data for machine-learning models containing P features and N observations" ], [ "Z\np", "Feature p of Z" ], [ "Z\n−p", "All the features except p of Z" ], [ "Z\ni", "ith observation of Z, Z = [Z i1, ..., Z ]\ni iP" ], [ "U (X β )\nk k| k", "Utility function for mode k" ], [ "β\nk", "Parameter vector for alternative k of MNL model" ], [ "β", "Parameter matrix of MNL model, β = [β , ..., β ]\n1 K" ], [ "βˆ", "Estimated parameter matrix of MNL model" ], [ "ε\nk", "Random error for alternative k of MNL model" ], [ "Y", "Output mode choice data" ], [ "Yˆ\ni", "Estimated mode choice for observation i" ], [ "θ", "Parameter or hyperparameter vector for machine-learning models" ], [ "θˆ", "Estimated parameter or hyperparameter vector" ], [ "f(Z θ)\n|", "Machine-learning models based on Z and θ" ], [ "p\nik", "Probability of choosing alternative k of observation i" ], [ "pˆ\nik", "Predicted probability for choosing alternative k of observation i" ], [ "I ( Yˆ)\nk i", "Indicator function that equals to 1 if Yˆ = k\ni" ], [ "P (X βˆ)\nk |", "Aggregate level prediction for mode k based on X and βˆ for logit models" ], [ "Q (Z θˆ)\nk |", "Aggregate level prediction for mode k based on Z and θˆ for machine-learning models" ], [ "E ()\nk ·", "Arc elasticity for alternative k" ], [ "M ()\nk ·", "Marginal effect for alternative k" ], [ "∆", "Constant" ] ]
0.590507
null
null
2
1811.01315v2
7
[ 64.51399993896484, 276.370849609375, 528.147216796875, 586.4410400390625 ]
\begin{table}[!] \caption{Comparison Between Logit and Machine-Learning Models} \footnotesize \resizebox{1\textwidth}{!}{% <------ Don't forget this % \begin{tabular}{p{3.2cm}|p{8.8cm}|p{7.5cm}} \hline \textbf{} & \textbf{Logit Models} & \textbf{Machine-Learning Models} \Tstrut\Bstrut \\ \hline \multirow{3}{*}{\textbf{Model formulation}} & $U_{k}(\boldsymbol{X}_k|\boldsymbol{\beta}_k) = \boldsymbol{\beta}_k^T \boldsymbol{X}_{k} + \boldsymbol{\varepsilon}_{k}$ & $\boldsymbol{Y} = f(\boldsymbol{Z}|\boldsymbol{\theta}), \boldsymbol{Y} \in \{1, …, K\}$ \Tstrut \\ & $p_{ik} = \frac{\exp {(\boldsymbol{\beta}}_k^T \boldsymbol{X}_{ik})}{\sum_{p=1}^K \exp {(\boldsymbol{\beta}}_p^T \boldsymbol{X}_{ik})}, k \in \{1, ..., K\}$ \Tstrut & \\ \hline \textbf{Commonly used model type} & MNL, mixed logit, nested MNL, generalized MNL & NB, CART, BAG, BOOST, RF, SVM, NN \Tstrut\Bstrut \\ \hline \textbf{Prediction type} & Class probability: $p_{i1}, …, p_{iK}$ & Classification: $k, k \in \{1, ..., K\}$ \Tstrut\Bstrut \\ \hline \textbf{Input data} & $\boldsymbol{X}$ & $\boldsymbol{Z}$ \\ \hline \textbf{Model topology} & Layer structure & Layer structure, tree structure, case-based reasoning, etc. \Tstrut\Bstrut \\ \hline \textbf{Optimization method} & Maximum likelihood estimation, simulated maximum likelihood & Back propagation, gradient descent, recursive partitioning, structural risk minimization, maximum likelihood, etc. \\ \hline \textbf{Evaluation criteria} & (Adjusted) McFadden's pseudo $R^2$, AIC, BIC & Resampling-based measures, e.g., cross validation \Tstrut\Bstrut \\ \hline \textbf{Individual-level mode prediction} & $\argmax_k (\hat{p}_{i1}, ..., \hat{p}_{iK})$ & $\hat{Y}_i$ \Tstrut\Bstrut \\ \hline \textbf{Aggregate-level mode share prediction} & $P_k(\boldsymbol{X}_k|\hat{ \boldsymbol{\beta}}_k) = \sum_i^N \hat{p}_{ik}/N$ & $Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}}) = \sum_i^N \hat{p}_{ik}/N$ \Tstrut \\ \hline \textbf{Variable importance} & Standardized Beta coefficients & Variable importance, computed by using Gini index, out-of-bag error, and many others \Tstrut\Bstrut \\ \hline \textbf{Variable effects} & Sign and magnitude of Beta coefficients & Partial dependence plots \Tstrut\Bstrut \\ \hline \textbf{Arc elasticity of feature $p$ for alternative $k$} & $E_k(\boldsymbol{X}_{k,p}) = \frac{[P_k(\boldsymbol{X}_{k,-p}, \boldsymbol X_{k,p} \cdot (1+\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)]/P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut & $E_k(\boldsymbol{Z}_{p}) = \frac{[Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} \cdot (1+\Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)]/Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut \\ \hline \textbf{Marginal effects of feature $p$ for alternative $k$} & $M_k(\boldsymbol{X}_{k,p}) = \frac{P_k(\boldsymbol{X}_{k,-p}, \boldsymbol{X}_{k,p} +\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut & $M_k(\boldsymbol{Z}_{p}) = \frac{Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} + \Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut \\ \hline \end{tabular} } \label{tab:comparison} \end{table}
[ [ "", "Logit Models", "Machine-Learning Models" ], [ "Model formulation", "Uk(Xk|β k) = βT Xk + εk\nk\npik = pe =x 1p ( xβ pT k X pi k X) ik), k ∈{1, ..., K}\nPK e ( βT", "Y = f(Z|θ), Y ∈{1, . . . , K}" ], [ "Commonly used\nmodel type", "MNL, mixed logit, nested MNL, generalized MNL", "NB, CART, BAG, BOOST, RF, SVM, NN" ], [ "Prediction type", "Class probability: pi1, . . . , piK", "Classification: k, k ∈{1, ..., K}" ], [ "Input data", "X", "Z" ], [ "Model topology", "Layer structure", "Layer structure, tree structure, case-based rea-\nsoning, etc." ], [ "Optimization\nmethod", "Maximum likelihood estimation, simulated maximum like-\nlihood", "Back propagation, gradient descent, recursive\npartitioning, structural risk minimization, max-\nimum likelihood, etc." ], [ "Evaluation crite-\nria", "(Adjusted) McFadden’s pseudo R2, AIC, BIC", "Resampling-based measures, e.g., cross validation" ], [ "Individual-level\nmode prediction", "arg max k(pˆi1, ..., pˆiK)", "Yˆ\ni" ], [ "Aggregate-level\nmode share pre-\ndiction", "Pk(Xk|βˆ k) = PN pˆik/N\ni", "Qk(Z|θˆ) = PN pˆik/N\ni" ], [ "Variable impor-\ntance", "Standardized Beta coefficients", "Variable importance, computed by using Gini in-\ndex, out-of-bag error, and many others" ], [ "Variable effects", "Sign and magnitude of Beta coefficients", "Partial dependence plots" ], [ "Arc elasticity of\nfeature p for alter-\nnative k", "Ek(Xk,p) = [Pk(Xk,−p,Xk,p·(1+∆)|βˆ |k ∆) |−Pk(Xk|βˆ k)]/Pk(Xk|βˆ k),\nk ∈{1, ..., K}", "Ek(Zp) = [Qk(Z −p,Zp·(1+∆)|θˆ k |∆)− |Qk(Z|θˆ k)]/Qk(Z|θˆ k),\nk ∈{1, ..., K}" ], [ "Marginal effects\nof feature p for\nalternative k", "Mk(Xk,p) = Pk(Xk,−p,Xk,p+ |∆ ∆) ||βˆ k)−Pk(Xk|βˆ k), k ∈\n{1, ..., K}", "Mk(Zp) = Qk(Z −p,Zp+∆ |∆)| |θˆ k)−Qk(Z|θˆ k), k ∈\n{1, ..., K}" ] ]
0.590293
null
null
3
1811.01315v2
23
[ 144.75999450683594, 133.2239990234375, 446.61297607421875, 394.0460205078125 ]
\begin{table}[!t] \caption{Ranking of Variable Importance for RF, NN, MNL, and Mixed Logit} \begin{tabular}{c|cccc} \hline \textbf{Variable} & \textbf{RF} & \textbf{NN} & \textbf{MNL} & \textbf{Mixed logit} \\ \hline TT\_Walk & 1 & 16 & 2 & 2 \\ TT\_Drive & 2 & 14 & 4 & 5 \\ TT\_Bike & 3 & 13 & 1 & 1 \\ TT\_PT & 4 & 11 & 3 & 3 \\ Current\_Mode\_Bike & 5 & 2 & 5 & 10 \\ PT\_Access & 6 & 8 & 13 & 16 \\ Bike\_Walkability & 7 & 6 & 16 & 13 \\ Income & 8 & 10 & 14 & 15 \\ CarPerCap & 9 & 7 & 11 & 14 \\ Current\_Mode\_Walk & 10 & 1 & 6 & 12 \\ Rideshare & 11 & 9 & 9 & 9 \\ Transfer & 12 & 5 & 8 & 8 \\ Wait\_Time & 13 & 15 & 10 & 11 \\ Female & 14 & 3 & 15 & 17 \\ Parking\_Cost & 15 & 12 & 12 & 4 \\ Current\_Mode\_Car & 16 & 4 & 7 & 6 \\ Current\_Mode\_PT & / & / & 17 & 7 \\ \hline \end{tabular} \label{tab:VarImp} \end{table}
[ [ "Variable", "RF NN MNL Mixed logit" ], [ "TT Walk\nTT Drive\nTT Bike\nTT PT\nCurrent Mode Bike\nPT Access\nBike Walkability\nIncome\nCarPerCap\nCurrent Mode Walk\nRideshare\nTransfer\nWait Time\nFemale\nParking Cost\nCurrent Mode Car\nCurrent Mode PT", "1 16 2 2\n2 14 4 5\n3 13 1 1\n4 11 3 3\n5 2 5 10\n6 8 13 16\n7 6 16 13\n8 10 14 15\n9 7 11 14\n10 1 6 12\n11 9 9 9\n12 5 8 8\n13 15 10 11\n14 3 15 17\n15 12 12 4\n16 4 7 6\n/ / 17 7" ] ]
0.388098
null
null
0
1612.03079v2
4
[ 315.16583760579425, 72.198974609375, 544.1151428222656, 127.791015625 ]
\begin{table}[t] \centering \small % \subfloat[Benchmark Datasets]{ \begin{tabular}[b]{ | l | l | l | c | c | c | } \hline \textbf{Dataset} & \textbf{Type} & \textbf{Size} & \textbf{Features} & \textbf{Labels} \\ \hline MNIST \cite{mnist} & Image & 70K & 28x28 & 10 \\ CIFAR \cite{cifardata} & Image & 60k & 32x32x3 & 10 \\ ImageNet \cite{imagenet} & Image & ~1.26M & 299x299x3 & 1000 \\ Speech \cite{timit} & Sound & 6300 & 5 sec. & 39 \\ \hline \end{tabular} \vspace{-4mm} \caption{\small \textbf{Datasets.} The collection of real-world benchmark datasets used in the experiments.} \vspace{-5mm} \label{tab:datasets} \end{table}
[ [ "Dataset", "Type", "Size", "Features", "Labels" ], [ "MNIST [35]\nCIFAR [32]\nImageNet [49]\nSpeech [24]", "Image\nImage\nImage\nSound", "70K\n60k\n1.26M\n6300", "28x28\n32x32x3\n299x299x3\n5 sec.", "10\n10\n1000\n39" ] ]
0.397436
null
null
0
1109.6846v2
12
[ 151.30999755859375, 85.44000244140625, 460.69014630998885, 171.51702880859375 ]
\begin{table} \label{table:sham} \begin{center} \begin{tabular}{|c||c|c|} \hline observed degree & \# predicted ($E[N_{\delta,\rho^*}]$) & \# actual ($N_{\delta,\rho^*}$) \\ \hline $d_i\geq \delta =1$ & 8531 & 8492 \\ \hline $d_i\geq \delta =2$ & 1697 & 1635 \\ \hline $d_i\geq \delta =3$ & 234 & 229 \\ \hline $d_i\geq \delta =4$ & 24 & 28 \\ \hline $d_i\geq \delta =5$ & 2 & 4 \\ \hline \end{tabular} \caption{Fidelity of the predicted (mean) number of false positives and the observed number of false positives in the realization of the sham NKI dataset experiment shown in Fig. \ref{fig:pv1}}. \end{center} \end{table}
[ [ "observed degree", "# predicted (E[N ])\nδ,ρ∗", "# actual (N )\nδ,ρ∗" ], [ "d δ = 1\ni ≥", "8531", "8492" ], [ "d δ = 2\ni ≥", "1697", "1635" ], [ "d δ = 3\ni ≥", "234", "229" ], [ "d δ = 4\ni ≥", "24", "28" ], [ "d δ = 5\ni ≥", "2", "4" ] ]
0.44316
null
null
0
2305.02029v1
18
[ 110.85399627685547, 142.59100341796875, 534.9630126953125, 623.68701171875 ]
\begin{table}[!htbp] \begin{tabular}{|p{0.88\textwidth}|p{0.15\textwidth}|} \hline High Probability Words & Suggested topic\\ \hline 0.018*"quote" + 0.013*"ebay" + 0.010*"finance" + 0.009*"premium" + 0.009*"level" + 0.008*"performance" + 0.007*"new\_car" + 0.007*"expensive" + 0.007*"struggle" + 0.006*"advance" & package\\ \hline 0.019*"data" + 0.015*"flag" + 0.013*"meet" + 0.011*"retail\_check" + 0.010*"price\_indicator" + 0.010*"spec" + 0.008*"sit" + 0.008*"valuations" + 0.007*"group" + 0.007*"price\_flags" & price indicator flags\\ \hline 0.012*"request" + 0.012*"admin\_fees" + 0.011*"video" + 0.007*"find" + 0.007*"image" + 0.006*"actually" + 0.006*"query" + 0.006*"frustrate" + 0.005*"spec" + 0.005*"unhappy" & unhappy\\ \hline 0.017*"image" + 0.013*"rat" + 0.012*"new\_car" + 0.010*"highly" + 0.009*"upload" + 0.008*"reply" + 0.008*"award" + 0.007*"consumers" + 0.006*"info" + 0.006*"message" & live chat\\ \hline 0.012*"text" + 0.011*"valuations" + 0.011*"product" + 0.010*"chat" + 0.009*"lose" + 0.007*"tech" + 0.007*"margin" + 0.006*"platform" + 0.006*"retail" + 0.006*"higher" & valuations\\ \hline 0.010*"retract" + 0.008*"close" + 0.008*"open" + 0.007*"watch" + 0.007*"webinar" + 0.006*"book" + 0.006*"phone" + 0.006*"process" + 0.006*"answer" + 0.006*"charge" & process related\\ \hline 0.011*"staff" + 0.010*"coronavirus" + 0.010*"reduce" + 0.010*"lockdown" + 0.009*"canx" + 0.009*"plan" + 0.008*"struggle" + 0.008*"online" + 0.008*"june" + 0.008*"continue" & coronavirus\\ \hline 0.016*"lockdown" + 0.010*"june" + 0.010*"collect" + 0.008*"open" + 0.008*"retract" + 0.007*"confuse" + 0.007*"follow" + 0.007*"aware" + 0.007*"extend" + 0.007*"appreciate" & lockdown extensions\\ \hline 0.061*"xxxemailxxx" + 0.023*"subject" + 0.015*"group" + 0.013*"kind" + 0.009*"xxxtelephonexxx" + 0.008*"sit" + 0.008*"retail" + 0.007*"lead" + 0.007*"manheim" + 0.006*"option" & no recognised subject\\ \hline 0.027*"year" + 0.016*"experian" + 0.008*"car\_gurus" + 0.007*"ebay" + 0.006*"meet" + 0.006*"zuto" + 0.006*"july" + 0.005*"achieve" + 0.005*"award" + 0.005*"normal" & rival valuation products\\ \hline \end{tabular} \caption{Topic modelling results from the AutoTrader note corpus, with sector expert led topic naming suggestions.} \label{table:1} \end{table}
[ [ "High Probability Words", "Suggested\ntopic" ], [ "0.018*”quote” + 0.013*”ebay” + 0.010*”finance” + 0.009*”pre-\nmium” + 0.009*”level” + 0.008*”performance” + 0.007*”new car”\n+ 0.007*”expensive” + 0.007*”struggle” + 0.006*”advance”", "package" ], [ "0.019*”data” + 0.015*”flag” + 0.013*”meet” + 0.011*”re-\ntail check” + 0.010*”price indicator” + 0.010*”spec” + 0.008*”sit”\n+ 0.008*”valuations” + 0.007*”group” + 0.007*”price flags”", "price indi-\ncator flags" ], [ "0.012*”request” + 0.012*”admin fees” + 0.011*”video” +\n0.007*”find” + 0.007*”image” + 0.006*”actually” + 0.006*”query”\n+ 0.006*”frustrate” + 0.005*”spec” + 0.005*”unhappy”", "unhappy" ], [ "0.017*”image” + 0.013*”rat” + 0.012*”new car” + 0.010*”highly”\n+ 0.009*”upload” + 0.008*”reply” + 0.008*”award” + 0.007*”con-\nsumers” + 0.006*”info” + 0.006*”message”", "live chat" ], [ "0.012*”text” + 0.011*”valuations” + 0.011*”product” +\n0.010*”chat” + 0.009*”lose” + 0.007*”tech” + 0.007*”mar-\ngin” + 0.006*”platform” + 0.006*”retail” + 0.006*”higher”", "valuations" ], [ "0.010*”retract” + 0.008*”close” + 0.008*”open” + 0.007*”watch”\n+ 0.007*”webinar” + 0.006*”book” + 0.006*”phone” +\n0.006*”process” + 0.006*”answer” + 0.006*”charge”", "process re-\nlated" ], [ "0.011*”staff” + 0.010*”coronavirus” + 0.010*”reduce” +\n0.010*”lockdown” + 0.009*”canx” + 0.009*”plan” + 0.008*”strug-\ngle” + 0.008*”online” + 0.008*”june” + 0.008*”continue”", "coronavirus" ], [ "0.016*”lockdown” + 0.010*”june” + 0.010*”collect” +\n0.008*”open” + 0.008*”retract” + 0.007*”confuse” + 0.007*”fol-\nlow” + 0.007*”aware” + 0.007*”extend” + 0.007*”appreciate”", "lockdown\nextensions" ], [ "0.061*”xxxemailxxx” + 0.023*”subject” + 0.015*”group” +\n0.013*”kind” + 0.009*”xxxtelephonexxx” + 0.008*”sit” +\n0.008*”retail” + 0.007*”lead” + 0.007*”manheim” + 0.006*”op-\ntion”", "no recog-\nnised\nsubject" ], [ "0.027*”year” + 0.016*”experian” + 0.008*”car gurus” +\n0.007*”ebay” + 0.006*”meet” + 0.006*”zuto” + 0.006*”july”\n+ 0.005*”achieve” + 0.005*”award” + 0.005*”normal”", "rival valua-\ntion prod-\nucts" ] ]
0.484109
null
null
1
2305.02029v1
30
[ 240.21800231933594, 414.81500244140625, 370.03299289279516, 533.5689697265625 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|} \hline Clean & Baseline\\ \hline Valuation &0.97 \\ \hline Price &0.76 \\ \hline Package &0.78 \\ \hline Cancellation &0.63 \\ \hline Stock &0.68 \\ \hline Tech &0.86 \\ \hline Billing &0.56 \\ \hline \end{tabular} \caption{ Baseline NDCG evaluations for the clean data. } \label{table:2} \end{table}
[ [ "Clean", "Baseline" ], [ "Valuation", "0.97" ], [ "Price", "0.76" ], [ "Package", "0.78" ], [ "Cancellation", "0.63" ], [ "Stock", "0.68" ], [ "Tech", "0.86" ], [ "Billing", "0.56" ] ]
0.795455
null
null
2
2305.02029v1
31
[ 236.98399353027344, 125.99700927734375, 373.26800537109375, 244.75201416015625 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|} \hline Pre-processed & Baseline\\ \hline Valuation &0.97 \\ \hline Price &0.76 \\ \hline Package &0.78 \\ \hline Cancellation &0.63 \\ \hline Stock &0.68 \\ \hline Tech &0.86 \\ \hline Billing &0.57 \\ \hline \end{tabular} \caption{ Baseline NDCG evaluations for the pre-processed data. } \label{table:3} \end{table}
[ [ "Pre-processed", "Baseline" ], [ "Valuation", "0.97" ], [ "Price", "0.76" ], [ "Package", "0.78" ], [ "Cancellation", "0.63" ], [ "Stock", "0.68" ], [ "Tech", "0.86" ], [ "Billing", "0.57" ] ]
0.784722
null
null
3
2305.02029v1
31
[ 180.26300048828125, 465.95098876953125, 429.9880065917969, 584.7059936523438 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.96 & -0.01\\ \hline Price &0.72 & -0.04\\ \hline Package &0.74 & -0.04\\ \hline Cancellation &0.60 & -0.03\\ \hline Stock &0.67 & -0.01\\ \hline Tech &0.92 & +0.06\\ \hline Billing &0.55 & -0.02\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``tech issue" on the pre-processed data.} \label{table:4} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.96", "-0.01" ], [ "Price", "0.72", "-0.04" ], [ "Package", "0.74", "-0.04" ], [ "Cancellation", "0.60", "-0.03" ], [ "Stock", "0.67", "-0.01" ], [ "Tech", "0.92", "+0.06" ], [ "Billing", "0.55", "-0.02" ] ]
0.808612
null
null
4
2305.02029v1
32
[ 180.26300048828125, 125.99700927734375, 429.9880065917969, 244.75201416015625 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.97 & 0.00\\ \hline Price &0.86 & +0.10\\ \hline Package &0.79 & +0.01\\ \hline Cancellation &0.66 & +0.03\\ \hline Stock &0.68 & 0.00\\ \hline Tech &0.82 & -0.04\\ \hline Billing &0.54 & -0.03\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``too expensive" on the pre-processed data.} \label{table:5} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.97", "0.00" ], [ "Price", "0.86", "+0.10" ], [ "Package", "0.79", "+0.01" ], [ "Cancellation", "0.66", "+0.03" ], [ "Stock", "0.68", "0.00" ], [ "Tech", "0.82", "-0.04" ], [ "Billing", "0.54", "-0.03" ] ]
0.800959
null
null
5
2305.02029v1
32
[ 180.26300048828125, 399.7929992675781, 429.9880065917969, 518.5469970703125 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.96 & -0.01\\ \hline Price &0.75 & -0.01\\ \hline Package &0.74 & -0.04\\ \hline Cancellation &0.65 & -0.02\\ \hline Stock &0.64 & -0.04\\ \hline Tech &0.84 & -0.02\\ \hline Billing &0.68 & +0.11\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``send money" on the pre-processed data.} \label{table:6} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.96", "-0.01" ], [ "Price", "0.75", "-0.01" ], [ "Package", "0.74", "-0.04" ], [ "Cancellation", "0.65", "-0.02" ], [ "Stock", "0.64", "-0.04" ], [ "Tech", "0.84", "-0.02" ], [ "Billing", "0.68", "+0.11" ] ]
0.808612
null
null
0
1807.08372v1
7
[ 319.5, 455.5369873046875, 562.2869873046875, 560.343994140625 ]
\begin{table}[h!] \begin{smallermathTable} \scriptsize{ \centering \begin{tabular}[t]{p{1.52cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{0.98cm}<{\centering}} \hline TBox Axi.: 541 & Concept Ast. Ent.: 1824 &Role Ast. Ent.: 4528 & Individual: 1159 & Ext. Axi.: $\sim21$ K \\\hline \hline Parameters ($\sigma, \kappa, \tau$) & Root Concept Ast. Ent.& Root Role Ast. Ent. & Root Individual & External Axioms\\\hline P1:($.90, 1, .40$) & $1105$ ($61\%$) & $3805$ ($84\%$) & $1103$ ($95\%$) & $\sim$ $20$ K \\\hline P2:($.93, 1, .43$) & $990$ ($54\%$) & $3459$ ($76\%$) & $1080$ ($93\%$) & $\sim$ $19$ K \\\hline P3:($.96, 1, .46$) & $540$ ($30\%$) & $1816$ ($40\%$)& $872$ ($75\%$) & $\sim$ $16$ K \\\hline P4:($.99, 1, .49$) & $305$ ($17\%$) &$980$ ($22\%$) &$510$ ($44\%$) & $6271$ \\\hline P5:($.99, 2, .49$) & $157$ ($8.6\%$) & $402$ ($8.9\%$)& $108$ ($9.3\%$) & $615$ \\\hline \end{tabular} \vspace{-0.25cm} \caption{\label{res:count} Average Number of Root Entailments, Root Individuals and External Axioms per Learning Domain.} } \end{smallermathTable} \end{table}
[ [ "TBox Axi.:\n541", "Concept Ast.\nEnt.: 1824", "Role Ast.\nEnt.: 4528", "Individual:\n1159", "Ext. Axi.:\n∼21 K" ], [ "Parameters\n(σ, κ, τ)", "Root\nConcept Ast.\nEnt.", "Root Role\nAst. Ent.", "Root\nIndividual", "External\nAxioms" ], [ "P1:(.90, 1, .40)", "1105 (61%)", "3805 (84%)", "1103 (95%)", "∼20 K" ], [ "P2:(.93, 1, .43)", "990 (54%)", "3459 (76%)", "1080 (93%)", "∼19 K" ], [ "P3:(.96, 1, .46)", "540 (30%)", "1816 (40%)", "872 (75%)", "∼16 K" ], [ "P4:(.99, 1, .49)", "305 (17%)", "980 (22%)", "510 (44%)", "6271" ], [ "P5:(.99, 2, .49)", "157 (8.6%)", "402 (8.9%)", "108 (9.3%)", "615" ] ]
0.563758
null
null
0
2210.09619v1
3
[ 194.56675720214844, 125.03375244140625, 413.3579406738281, 322.7275695800781 ]
\begin{table}[ht] \centering \resizebox{0.65\textwidth}{!}{ \begin{tabular}{|c|c|c|c|c|} \hline \cline{1-3} \textbf{Symbol} & \textbf{Sector} & \textbf{$\#$ of stocks}\\ \hline AU & Auto & 15 \\ \hline BM & Basic Materials & 189 \\ \hline BX & Bankex & 10 \\ \hline CD & Consumer Durables & 12 \\ \hline CDGS & Consumer Discretionary Goods \& Services & 297 \\ \hline CG & Capital Goods & 25 \\ \hline CPSE & CPSE & 52 \\ \hline EG & Energy & 27 \\ \hline FMCG & Fast Moving Consumer Goods & 81 \\ \hline FN & Financials & 139 \\ \hline HC & Healthcare & 96 \\ \hline ID & Industrials & 203 \\ \hline II & India Infrastructure & 30 \\ \hline IT & Information Technology & 62 \\ \hline MT & Metal & 10 \\ \hline ONG & Oil \& Gas & 10 \\ \hline PSU & PSU & 56 \\ \hline PWR & Power & 11 \\ \hline RE & Realty & 10 \\ \hline TC & Telecom & 17 \\ \hline Teck & Teck & 28 \\ \hline UT & Utilities & 24 \\ \hline \end{tabular} } \caption{Details of Bombay stock exchange (S\&P BSE) sectors considered for the analysis are given here. The first column consists of the symbol of the sectors followed by the name of the corresponding sectors in the second column. The third column shows the total number of available stocks in each sector during the time period considered for analysis. For the rest of the paper, we are going to refer the sectors by their corresponding symbol name provided here.} \label{table:stocksdetails1} \end{table}
[ [ "Symbol", "Sector", "# of stocks" ], [ "AU", "Auto", "15" ], [ "BM", "Basic Materials", "189" ], [ "BX", "Bankex", "10" ], [ "CD", "Consumer Durables", "12" ], [ "CDGS", "Consumer Discretionary Goods & Services", "297" ], [ "CG", "Capital Goods", "25" ], [ "CPSE", "CPSE", "52" ], [ "EG", "Energy", "27" ], [ "FMCG", "Fast Moving Consumer Goods", "81" ], [ "FN", "Financials", "139" ], [ "HC", "Healthcare", "96" ], [ "ID", "Industrials", "203" ], [ "II", "India Infrastructure", "30" ], [ "IT", "Information Technology", "62" ], [ "MT", "Metal", "10" ], [ "ONG", "Oil & Gas", "10" ], [ "PSU", "PSU", "56" ], [ "PWR", "Power", "11" ], [ "RE", "Realty", "10" ], [ "TC", "Telecom", "17" ], [ "Teck", "Teck", "28" ], [ "UT", "Utilities", "24" ] ]
0.645208
null
null
1
2210.09619v1
10
[ 192.25999450683594, 124.97065734863281, 415.66802978515625, 366.2751159667969 ]
\begin{table}[ht] \centering \resizebox{0.65\textwidth}{!}{% \begin{tabular}{|l|l|l|l|l|l|l|l|} \hline Sectors & $\Delta \alpha$ & $\alpha_{max}$ & $\alpha_{0}$ & $\alpha_{min}$ & $H_2$ & dH & B \\ \hline AU & 1.71 & 1.92 & 0.99 & 0.21 & 0.72 & 1.38 & -0.09 \\ \hline BM & 0.64 & 0.69 & 0.4 & 0.05 & 0.33 & 0.46 &\ 0.09 \\ \hline BX & 1.07 & 1.54 & 0.97 & 0.47 & 0.86 & 0.75 & -0.08 \\ \hline CD & 1.21 & 1.37 & 0.59 & 0.16 & 0.47 & 0.93 & -0.29 \\ \hline CDGS & 0.46 & 0.83 & 0.73 & 0.37 & 0.66 & 0.3 &\ 0.57 \\ \hline CG & 1.55 & 1.51 & 0.75 & -0.04 & 0.5 & 1.15 & -0.02 \\ \hline CPSE & 1.4 & 1.61 & 0.92 & 0.21 & 0.71 & 1.09 & \ 0.02 \\ \hline EG & 0.58 & 1.07 & 0.82 & 0.49 & 0.82 & 0.35 &\ 0.13 \\ \hline FMCG & 1.27 & 1.49 & 0.85 & 0.22 & 0.67 & 0.98 &\ 0.0 \\ \hline FN & 0.71 & 0.86 & 0.54 & 0.15 & 0.44 & 0.55 &\ 0.11 \\ \hline HC & 0.85 & 1.16 & 0.83 & 0.31 & 0.75 & 0.55 &\ 0.23 \\ \hline ID & 0.71 & 1.01 & 0.51 & 0.3 & 0.47 & 0.48 & -0.42 \\ \hline II & 0.87 & 1.33 & 1 & 0.46 & 0.87 & 0.65 &\ 0.26 \\ \hline IT & 0.4 & 0.76 & 0.67 & 0.36 & 0.62 & 0.26 &\ 0.51 \\ \hline MT & 0.89 & 0.59 & 0.32 & -0.29 & 0.18 & 0.65 &\ 0.37 \\ \hline ONG & 1.04 & 1.23 & 0.52 & 0.19 & 0.45 & 0.68 & -0.36 \\ \hline PSU & 1.65 & 1.6 & 0.71 & -0.04 & 0.47 & 1.25 & -0.08 \\ \hline PWR & 1.01 & 1.43 & 0.87 & 0.42 & 0.8 & 0.7 & -0.11 \\ \hline RE & 0.41 & 0.86 & 0.71 & 0.45 & 0.84 & 0.22 &\ 0.23 \\ \hline TC & 1.51 & 1.75 & 0.84 & 0.23 & 0.67 & 1.12 & -0.19 \\ \hline Teck & 0.82 & 1.2 & 1.01 & 0.38 & 0.84 & 0.63 & \ 0.54 \\ \hline UT & 0.66 & 1.2 & 1.03 & 0.54 & 0.91 & 0.44 &\ 0.50 \\ \hline \end{tabular}% } \caption{Sector-wise values of width of singularity spectrum ($\Delta \alpha$, column 2), Hurst exponents ($H_2$, column 6), spread in Hurst exponent ($dH$, column 7), and asymmetry ratio ($B$, column 8)} \label{table2} \end{table}
[ [ "Sectors", "∆α", "α\nmax", "α\n0", "α\nmin", "H\n2", "dH", "B" ], [ "AU", "1.71", "1.92", "0.99", "0.21", "0.72", "1.38", "-0.09" ], [ "BM", "0.64", "0.69", "0.4", "0.05", "0.33", "0.46", "0.09" ], [ "BX", "1.07", "1.54", "0.97", "0.47", "0.86", "0.75", "-0.08" ], [ "CD", "1.21", "1.37", "0.59", "0.16", "0.47", "0.93", "-0.29" ], [ "CDGS", "0.46", "0.83", "0.73", "0.37", "0.66", "0.3", "0.57" ], [ "CG", "1.55", "1.51", "0.75", "-0.04", "0.5", "1.15", "-0.02" ], [ "CPSE", "1.4", "1.61", "0.92", "0.21", "0.71", "1.09", "0.02" ], [ "EG", "0.58", "1.07", "0.82", "0.49", "0.82", "0.35", "0.13" ], [ "FMCG", "1.27", "1.49", "0.85", "0.22", "0.67", "0.98", "0.0" ], [ "FN", "0.71", "0.86", "0.54", "0.15", "0.44", "0.55", "0.11" ], [ "HC", "0.85", "1.16", "0.83", "0.31", "0.75", "0.55", "0.23" ], [ "ID", "0.71", "1.01", "0.51", "0.3", "0.47", "0.48", "-0.42" ], [ "II", "0.87", "1.33", "1", "0.46", "0.87", "0.65", "0.26" ], [ "IT", "0.4", "0.76", "0.67", "0.36", "0.62", "0.26", "0.51" ], [ "MT", "0.89", "0.59", "0.32", "-0.29", "0.18", "0.65", "0.37" ], [ "ONG", "1.04", "1.23", "0.52", "0.19", "0.45", "0.68", "-0.36" ], [ "PSU", "1.65", "1.6", "0.71", "-0.04", "0.47", "1.25", "-0.08" ], [ "PWR", "1.01", "1.43", "0.87", "0.42", "0.8", "0.7", "-0.11" ], [ "RE", "0.41", "0.86", "0.71", "0.45", "0.84", "0.22", "0.23" ], [ "TC", "1.51", "1.75", "0.84", "0.23", "0.67", "1.12", "-0.19" ], [ "Teck", "0.82", "1.2", "1.01", "0.38", "0.84", "0.63", "0.54" ], [ "UT", "0.66", "1.2", "1.03", "0.54", "0.91", "0.44", "0.50" ] ]
0.881994
null
null
0
2406.18112v1
6
[ 175.6929931640625, 476.9800109863281, 439.6631202697754, 558.0750122070312 ]
\begin{table} \caption{Averaged compute time of time steps in milliseconds for different parts of the in transit and hybrid analysis.}\label{tab-benchmark} \centering \begin{tabular}{|l|l|l|l|l|} \hline & \multicolumn{2}{c|}{\emph{Slice} Pipeline} & \multicolumn{2}{c|}{\emph{Resampling} Pipeline} \\ \cline{2-5} & In Transit & Hybrid & In Transit & Hybrid \\ \hline Simulation Time (ms) & 15860 & 15835 & 33539 & 31677\\ \hline Reduction Time (ms) & 0 & 319 & 0 & 2905\\ \hline Data Transfer Time (ms)& 3415 & 6.56 & 10957 & 48.7 \\ \hline \hline Total Time (ms)& 19275 & 16161 & 44497 & 34632 \\ \hline Total Gain & \multicolumn{2}{c|}{16.16\%} & \multicolumn{2}{c|}{22.17\%}\\ \hline \end{tabular} \end{table}
[ [ "", "Slice Pipeline", null, "Resampling Pipeline", null ], [ null, "In Transit", "Hybrid", "In Transit", "Hybrid" ], [ "Simulation Time (ms)", "15860", "15835", "33539", "31677" ], [ "Reduction Time (ms)", "0", "319", "0", "2905" ], [ "Data Transfer Time (ms)", "3415", "6.56", "10957", "48.7" ], [ "Total Time (ms)", "19275", "16161", "44497", "34632" ], [ "Total Gain", "16.16%", null, "22.17%", null ] ]
0.875676
null
null
0
1906.03507v1
8
[ 109.00212478637695, 65.56700439453125, 529.9821243286133, 149.093994140625 ]
\begin{table}[!htb] \begin{center} \begin{tabular}{|c|c|c|r|r|r|r|r|} \hline \rowcolor{cyan} $\lambda_1$ & $\lambda_2$ & $\lambda_3$ & \mbox{In-sample} & \mbox{MSE, bps} & \mbox{Mean \% error} & \mbox{Out-of sample} & \mbox{MSE, bps} \\ \hline 0 & 0 & 0 & 1008550 & 6.50 & 0.091 & 248432 & 6.48\\ \hline 1 & 1 & 1 & 421 & 10.32 & 0.115 & 101 & 10.38 \\ \hline 10 & 10 & 10 & 105 & 11.95 & 0.124 & 25 & 12.15\\ \hline 50 & 50 & 50 & 36 & 12.17 & 0.125 & 9 & 12.34 \\ \hline 100 & 100 & 100 & 25 & 11.26 & 0.120 & 6 & 11.43 \\ \hline \end{tabular} \caption{Penalty term ${\mathcal P}_{1,0}$ when predicting Call option prices using the ANN with soft constraints.} \label{arbTab} \end{center} \end{table}
[ [ "λ\n1", "λ\n2", "λ\n3", "In-sample", "MSE, bps", "Mean % error", "Out-of sample", "MSE, bps" ], [ "0", "0", "0", "1008550", "6.50", "0.091", "248432", "6.48" ], [ "1", "1", "1", "421", "10.32", "0.115", "101", "10.38" ], [ "10", "10", "10", "105", "11.95", "0.124", "25", "12.15" ], [ "50", "50", "50", "36", "12.17", "0.125", "9", "12.34" ], [ "100", "100", "100", "25", "11.26", "0.120", "6", "11.43" ] ]
0.756757
null
null
0
1710.09593v2
11
[ 172.50189039442273, 134.217041015625, 442.85411241319446, 284.2540283203125 ]
\begin{table}[!htb] \centering \caption{The characteristics of the used Machines} \label{capa} \begin{tabular}{|c|c|c|c|} \hline \textbf{Machine's name} & \textbf{Operating System} & \textbf{Processor} & \textbf{Memory} \\\hline Dell-XPS L421X& \pbox{50cm}{Ubuntu \\ (V.14.04 LTS) }& \pbox{50cm}{1.8GHz*4 \\ Intel Core i5} & 8 GB \\ \hline Dell-Inspiron-3721 & \pbox{50cm}{Ubuntu \\ (V.14.04 LTS)} & \pbox{50cm}{2.00GHz*4 \\Intel Core i5 }& 4 GB \\\hline Dell-Inspiron-3521 & \pbox{50cm}{ Ubuntu \\(V.16.04 LTS)} &\pbox{50cm}{ 1.8 GHz*4 \\Intel Core i5 } & 6 GB \\\hline iMac-Early 2010 & \pbox{50cm}{cinux Mint \\ (V.17.1 Rebecca) }& \pbox{50cm}{3.06GHz*2} & 4 GB \\ \hline Dell-Inspiron-5559 & \pbox{50cm}{Ubuntu \\ (V.16.04 LTS) }& \pbox{50cm}{2.30GHz*4 \\ Intel Core i5} & 8 GB \\\hline iMac-Early 2009 & \pbox{50cm}{OS X El Capitan \\(V.10.11.6)} &\pbox{50cm}{ 2.93 *2 GHz \\Intel Core Due}& 8 GB \\\hline MacBook Air & \pbox{50cm}{OS X El Capitan \\(V.10.11.3)} &\pbox{50cm}{ 1.6 *2 GHz \\Intel Core i5 }& 8 GB \\\hline \end{tabular} \end{table}
[ [ "Machine’s name", "Operating System", "Processor", "Memory" ], [ "Dell-XPS L421X", "Ubuntu\n(V.14.04 LTS)", "1.8GHz*4\nIntel Core i5", "8 GB" ], [ "Dell-Inspiron-3721", "Ubuntu\n(V.14.04 LTS)", "2.00GHz*4\nIntel Core i5", "4 GB" ], [ "Dell-Inspiron-3521", "Ubuntu\n(V.16.04 LTS)", "1.8 GHz*4\nIntel Core i5", "6 GB" ], [ "iMac-Early 2010", "cinux Mint\n(V.17.1 Rebecca)", "3.06GHz*2", "4 GB" ], [ "Dell-Inspiron-5559", "Ubuntu\n(V.16.04 LTS)", "2.30GHz*4\nIntel Core i5", "8 GB" ], [ "iMac-Early 2009", "OS X El Capitan\n(V.10.11.6)", "2.93 *2 GHz\nIntel Core Due", "8 GB" ], [ "MacBook Air", "OS X El Capitan\n(V.10.11.3)", "1.6 *2 GHz\nIntel Core i5", "8 GB" ] ]
0.944043
null
null
1
1710.09593v2
11
[ 198.75824737548828, 412.72900390625, 416.5977554321289, 490.63702392578125 ]
\begin{table}[!htb] \centering \caption{Datasets} \label{DS} \begin{tabular}{|c|c|c|} \hline \textbf{Benchmark}& \textbf{Size} & \textbf{Descriptions} \\\hline \textbf{D1}& 10,000 Points & \begin{tabular}[c]{@{}c@{}}Different shapes, with \\ some clusters surrounded\\ by others\end{tabular} \\\hline \textbf{D2}& 30,000 Points& \begin{tabular}[c]{@{}c@{}}2 small circles,\\ 1 big circle\\ and 2 linked ovals\end{tabular} \\ \hline \end{tabular} \end{table}
[ [ "Benchmark", "Size", "Descriptions" ], [ "D1", "10,000 Points", "Different shapes, with\nsome clusters surrounded\nby others" ], [ "D2", "30,000 Points", "2 small circles,\n1 big circle\nand 2 linked ovals" ] ]
0.532751
null
null
0
2306.00454v1
5
[ 126.68000030517578, 109.06097412109375, 485.0359802246094, 228.74564615885416 ]
\begin{table} \centering % \begin{tabular}{l|cc} \hline & Reaction rate for $d(p,\gamma)^{3}{\rm He}$ & $D_{p}$ data \tabularnewline \hline \hline { } Case I & Adelberger et al. & no-data\tabularnewline { } Case II & Adelberger et al. & Cooke et al. + offset \tabularnewline { } Case III & Adelberger et al. & Cooke et al.\tabularnewline { } Case IV & Marcucci et al. & Cooke et al.\tabularnewline { } Case V & Marcucci et al. & recent 11 weighted mean\tabularnewline { } Case VI & Pisanti et al. & Cooke et al.\tabularnewline { } Case VII & Pisanti et al. & recent 11 weighted mean\tabularnewline \hline \hline \end{tabular}\caption{\label{tab:Dp_treatment} Combinations of the data of $D_{p}$ and theoretical treatment of the reaction rate for $d(p,\gamma)^{3}{\rm He}$ used in our analysis. } \end{table}
[ [ "", "Reaction rate for d(p, γ)3He D data\np" ], [ "Case I\nCase II\nCase III\nCase IV\nCase V\nCase VI\nCase VII", "Adelberger et al. no-data\nAdelberger et al. Cooke et al. + offset\nAdelberger et al. Cooke et al.\nMarcucci et al. Cooke et al.\nMarcucci et al. recent 11 weighted mean\nPisanti et al. Cooke et al.\nPisanti et al. recent 11 weighted mean" ] ]
0.484118
null
null
0
2103.08664v1
3
[ 359.14009941948785, 104.84100341796875, 509.2700025770399, 141.50299072265625 ]
\begin{table}[t] \centering \caption{Test accuracy of different training strategies on Physionet data: left fist VS right fist (task 2); both fists VS both feet (task 4).} \begin{tabular}{|c|cc|}\hline motor imagery task & task 2 & task 4 \\ \hline conventional learning & 59.6\% & 66.6\% \\ transfer learning & 56.0\% & 62.4\% \\ meta-learning & \textbf{64.5\%} & \textbf{68.2\%} \\ \hline \end{tabular} \label{tab:5} \end{table}
[ [ "motor imagery task", "task 2 task 4" ], [ "conventional learning\ntransfer learning\nmeta-learning", "59.6% 66.6%\n56.0% 62.4%\n64.5% 68.2%" ] ]
0.786885
null
null
1
2103.08664v1
3
[ 359.14009941948785, 703.6309814453125, 509.2700025770399, 731.3280029296875 ]
\begin{table}[b] \centering \caption{Test accuracy on Physionet data after online sample filtering} \begin{tabular}{|c|cc|} \hline motor imagery task & task 2 & task 4 \\ \hline without meta-learning & 67.9\% & 68.8\% \\ with meta-learning & \textbf{80.6\%} & \textbf{79.7\%}\\ \hline \end{tabular} \label{tab:7} \end{table}
[ [ "motor imagery task", "task 2 task 4" ], [ "without meta-learning\nwith meta-learning", "67.9% 68.8%\n80.6% 79.7%" ] ]
0.846939
null
null
0
2109.05142v1
2
[ 54, 68.0570068359375, 298.39300537109375, 124.04901123046875 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|p{1.3in}|} \hline \textbf{Data Source}& \textbf{Data Model} &\multicolumn{1}{c|}{\textbf{Polystore Placement}} \\ \hline Patents &Relational &PostgreSQL, Text in Solr \\ \hline News articles &Structured Text &Solr, Entity Network in Neo4J \\ \hline Federal Spending&Relational &PostgreSQL \\ \hline Company Networks&Graph &Neo4J \\ \hline \end{tabular} \vspace{1em} \caption{Data from a source are processed and placed into different stores.} \label{tab:sources} \vspace{-1.3em} \end{table}
[ [ "Data Source", "Data Model", "Polystore Placement" ], [ "Patents", "Relational", "PostgreSQL, Text in Solr" ], [ "News articles", "Structured Text", "Solr, Entity Network in\nNeo4J" ], [ "Federal Spending", "Relational", "PostgreSQL" ], [ "Company Networks", "Graph", "Neo4J" ] ]
0.821497
null
null
0
1911.00108v2
5
[ 315.1610107421875, 71.31903076171875, 536.5859497070312, 143.1500244140625 ]
\begin{table}[H] \centering \small \begin{tabular}{|l|l|l|} \hline \textbf{Method} & \textbf{Average Accuracy} & \textbf{stdev} \\ \hline TPOT & 0.816 & 0.159 \\ \hline auto-sklearn(V) & 0.796 & 0.168 \\ \hline auto-sklearn(E) & 0.805 & 0.165 \\ \hline RankML \#1 rank & 0.786 & 0.169 \\ \hline RankML Max top-5 rank &0.819 & 0.154 \\ \hline RankML Max top-10 rank &\textbf{0.827} & 0.152 \\ \hline \end{tabular} \caption[Average accuracy Results]{Average accuracy results across 149 classification datasets.} \label{table:1} \end{table}
[ [ "Method", "Average Accuracy", "stdev" ], [ "TPOT", "0.816", "0.159" ], [ "auto-sklearn(V)", "0.796", "0.168" ], [ "auto-sklearn(E)", "0.805", "0.165" ], [ "RankML #1 rank", "0.786", "0.169" ], [ "RankML Max top-5 rank", "0.819", "0.154" ], [ "RankML Max top-10 rank", "0.827", "0.152" ] ]
0.795181
null
null
1
1911.00108v2
5
[ 305.25987752278644, 177.13555908203125, 550.0725606282552, 222.65481567382812 ]
\begin{table}[H] \resizebox{\columnwidth}{!}{% \begin{tabular}{|l|c|c|c|} \hline \multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4} \multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline RankML \#1 rank & 65(49\%) & 74(55\%) & 68(51\%) \\ \hline RankML Max top-5 rank & 102(73\%) & 112(80\%) & 112(80\%) \\ \hline RankML Max top-10 rank & \textbf{110(79\%)} & \textbf{119(85\%)} & \textbf{118(84\%)} \\ \hline \end{tabular}% } \caption{The number of classification datasets each method got better or comparable(BOC) results against baselines (percentage is out of valid datasets).} \label{table:2} \end{table}
[ [ "Method", "Number of Datasets with BOC Performance(%)", null, null ], [ null, "TPOT", "auto-sklearn(V)", "auto-sklearn(E)" ], [ "RankML #1 rank", "65(49%)", "74(55%)", "68(51%)" ], [ "RankML Max top-5 rank", "102(73%)", "112(80%)", "112(80%)" ], [ "RankML Max top-10 rank", "110(79%)", "119(85%)", "118(84%)" ] ]
0.679487
null
null
2
1911.00108v2
6
[ 303.395884253762, 480.09014892578125, 550.0364815848214, 613.9104614257812 ]
\begin{table}[H] \centering \resizebox{\columnwidth}{!}{% \begin{tabular}{|m{3.3cm}|m{2cm}|m{1.1cm}|} \hline \multicolumn{1}{|c|}{\textbf{Primitive}} & \multicolumn{1}{c|}{\textbf{Family}} & \multicolumn{1}{c|}{\textbf{\begin{tabular}[c]{@{}c@{}}Avg \% \\ of appearances\end{tabular}}} \\ \hline MaxAbsScaler & Data pre-processing & 16\% \\ \hline StandardScaler & Data pre-processing & 11\% \\ \hline KNeighborsClassifier & Predictive models & 10\% \\ \hline RandomForestClassifier & Predictive models& 4\% \\ \hline PCA & Feature pre-processing & 0.4\% \\ \hline \end{tabular}% } \caption{A selection of primitives used in RankML recommended pipelines for classification. "Avg \% of appearances" is out of all primitives. } \label{table:4} \end{table}
[ [ "Primitive Family", "Avg %\nof appearances" ], [ "Data pre-\nMaxAbsScaler\nprocessing", "16%" ], [ "Data pre-\nStandardScaler\nprocessing", "11%" ], [ "Predictive mod-\nKNeighborsClassifier\nels", "10%" ], [ "Predictive mod-\nRandomForestClassifier\nels", "4%" ], [ "Feature pre-\nPCA\nprocessing", "0.4%" ] ]
0.410774
null
null
3
1911.00108v2
7
[ 42.245869954427086, 264.8241271972656, 287.0585581461589, 309.4196014404297 ]
\begin{table} \resizebox{\columnwidth}{!}{% \begin{tabular}{|l|c|c|c|} \hline \multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4} \multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline RankML \#1 rank & 30(39\%) & 35(46\%) & 26(34\%) \\ \hline RankML Max top-5 rank & 39(49\%) & 47(59\%) & 41(52\%) \\ \hline RankML Max top-10 rank & \textbf{45(57\%)} & \textbf{53(67\%)} & \textbf{45(57\%)} \\ \hline \end{tabular}% } \caption{The number of regression datasets each version of our approach got better or comparable results against the baselines (percentage is out of valid datasets).} \label{table:1_reg} \end{table}
[ [ "Method", "Number of Datasets with BOC Performance(%)", null, null ], [ null, "TPOT", "auto-sklearn(V)", "auto-sklearn(E)" ], [ "RankML #1 rank", "30(39%)", "35(46%)", "26(34%)" ], [ "RankML Max top-5 rank", "39(49%)", "47(59%)", "41(52%)" ], [ "RankML Max top-10 rank", "45(57%)", "53(67%)", "45(57%)" ] ]
0.61244
null
null
0
1509.03329v1
5
[ 196.67799377441406, 518.427001953125, 398.59698486328125, 602.5120239257812 ]
\begin{table}[!ht] \caption{Summary of cuts applied in the \xeff\ analysis depending on the brightness of the source.} \begin{center} \begin{tabular}{|c|ccc|} \hline % \rowcolor{gray!10} Brightness &\phi12 & $\eta$ & \xeff\ \\% cut \\ % \rowcolor{gray!10} &\diffi&& \\ \hline \hline Very Bright & $>10$ & 0.1 & $<0.3$ \\ % \hline Bright & 1 ... 10 & 0.2 & $<0.3$ \\ % \hline Medium & 0.5 ... 1 & 0.4 & $<0.3$\\ % \hline Faint & $< 0.5 $ & 0.7 & $<0.3$ \\ % \hline % Very faint & $< 0.1 $ & 0.8 & 0.3 \\ % $<1 \% $ Crab &&& \\ % \hline \hline \end{tabular} \end{center} \label{tabcuts} \end{table}
[ [ "Brightness", "Φ(1TeV).10-12 η X\ne f f\ncm-2.s-1.TeV -1" ], [ "Very Bright\nBright\nMedium\nFaint", "> 10 0.1 < 0.3\n1 ... 10 0.2 < 0.3\n0.5 ... 1 0.4 < 0.3\n< 0.5 0.7 < 0.3" ] ]
0.58651
null
null
0
2104.04036v1
4
[ 65.74857221330915, 66.5419921875, 531.794416155134, 150.22802734375 ]
\begin{table}[!ht] \centering \begin{tabular}{| L{3.26cm} | C{2.75cm}| C{2.75cm} | C{2.75cm} | C{2.75cm} | } \hline & Optimal Agent & Symmetric & Tabular Q & Deep-Q \\ \hline Mean Wealth & 47.79 & 57.67 & 44.21 & 53.47 \\ \hline Std. Dev. Wealth& 6.09 & 11.86 & 7.08 & 6.67 \\ \hline Sharpe Ratio & 7.83 & 4.86 & 6.24 & 8.00 \\ \hline Mean Cum. Reward & 22.46 & -7.17 & 19.19 & 29.04 \\ \hline Utility Estimate& -2.63e-9 & -4.34e-6 & -1.49e-6 & -2.20e-10 \\ \hline \end{tabular} \caption{1000 simulations for $\beta = 0.5$} \label{tab:table_strat_tr} \end{table}
[ [ "", "Optimal Agent", "Symmetric", "Tabular Q", "Deep-Q" ], [ "Mean Wealth", "47.79", "57.67", "44.21", "53.47" ], [ "Std. Dev. Wealth", "6.09", "11.86", "7.08", "6.67" ], [ "Sharpe Ratio", "7.83", "4.86", "6.24", "8.00" ], [ "Mean Cum. Reward", "22.46", "-7.17", "19.19", "29.04" ], [ "Utility Estimate", "-2.63e-9", "-4.34e-6", "-1.49e-6", "-2.20e-10" ] ]
0.908068
null
null
0
1904.08994v1
3
[ 149.78399658203125, 136.18902587890625, 462.2149963378906, 180.62200927734375 ]
\begin{table}[h!] \centering \begin{tabular}{c|l|l} \hline \textbf{Symbol} & \textbf{Meaning} & \textbf{Notes}\\ \hline $p_{z}$ & Data distribution over noise input $z$ & Usually, just uniform. \\ $p_{g}$ & The generator's distribution over data $x$ & \\ $p_{r}$ & Data distribution over real sample $x$ & \\ \hline \end{tabular} \end{table}
[ [ "Symbol", "Meaning", "Notes" ], [ "p\nz\np\ng\np\nr", "Data distribution over noise input z\nThe generator’s distribution over data x\nData distribution over real sample x", "Usually, just uniform." ] ]
0.813056
null
null
1
1904.08994v1
5
[ 133.77200317382812, 287.04998779296875, 478.22698974609375, 353.3009948730469 ]
\begin{table}[h!] \centering \begin{tabular}{c|p{10cm}} \hline \textbf{Term} & \textbf{Explanation} \\ \hline Manifold & A topological space that locally resembles Euclidean space near each point. Precisely, when this Euclidean space is of dimension $n$, the manifold is referred as $n$-manifold. \\ Support & A real-valued function $f$ is the subset of the domain containing those elements which are not mapped to zero.\\ \hline \end{tabular} \end{table}
[ [ "Term", "Explanation" ], [ "Manifold\nSupport", "A topological space that locally resembles Euclidean space near each\npoint. Precisely, when this Euclidean space is of dimension n, the\nmanifold is referred as n-manifold.\nA real-valued function f is the subset of the domain containing those\nelements which are not mapped to zero." ] ]
0.974522
null
null
0
1907.09456v3
4
[ 49.28083292643229, 78.68798828125, 293.8931528727214, 124.3170166015625 ]
\begin{table}[h] \centering \caption{Summary of \texttt{SCSF} Tuning Parameters} \begin{tabular}{|c|l|c|} \hline \textbf{Param.} & \textbf{Description} & \textbf{Value} \\ \hline $k$ & Rank of the matrix factorization & $6$ \\ $\tau$ & Approximate quantile of the data to be fit & $0.85$ \\ $\mu_L$ & Weight of the smoothing term on the left matrix & $500$ \\ $\mu_R$ & Weight of the smoothing term on the right matrix & $1000$ \\ \hline \end{tabular} \label{tab:tuning-param} \end{table}
[ [ "Param.", "Description", "Value" ], [ "k\nτ\nµL\nµR", "Rank of the matrix factorization\nApproximate quantile of the data to be fit\nWeight of the smoothing term on the left matrix\nWeight of the smoothing term on the right matrix", "6\n0.85\n500\n1000" ] ]
0.496788
null
null
1
1907.09456v3
4
[ 353.1228383382161, 670.615966796875, 522.1231892903646, 716.2449951171875 ]
\begin{table}[b] \centering \caption{\texttt{SCSF} Tuning Parameter Grid Search} \begin{tabular}{|c|c|c|c|} \hline \textbf{Param.} & \textbf{Low Val.} & \textbf{Mid Val.} & \textbf{High Val.} \\ \hline $k$ & $4$ & $6$ & $8$ \\ $\tau$ & $.8$ & $.85$ & $.9$ \\ $\mu_L$ & $1e2$ & $5e2$ & $1e3$ \\ $\mu_R$ & $5e2$ & $1e3$ & $5e3$ \\ \hline \end{tabular} \label{tab:tuning-study} \end{table}
[ [ "Param.", "Low Val.", "Mid Val.", "High Val." ], [ "k\nτ\nµL\nµR", "4\n.8\n1e2\n5e2", "6\n.85\n5e2\n1e3", "8\n.9\n1e3\n5e3" ] ]
0.666667
null
null
2
1907.09456v3
6
[ 320.7982116699219, 679.5830078125, 554.4480224609375, 716.2449951171875 ]
\begin{table}[b] \centering \caption{Summary of site selection for both methods} \begin{tabular}{|c|c|c|c|} \hline & & & \textbf{Unique} \\ & \textbf{Included Sites}& \textbf{Excluded Sites} & \textbf{Excluded Sites} \\ \hline \texttt{SCSF}& $551$ & $22$ & $19$ \\ \texttt{RdTools} & $387$ & $186$ & $183$\\ \hline \end{tabular} \label{tab:fleet-join} \end{table}
[ [ "", "Included Sites", "Excluded Sites", "Unique\nExcluded Sites" ], [ "SCSF\nRdTools", "551\n387", "22\n186", "19\n183" ] ]
0.737968
null
null
0
2211.08064v2
3
[ 312, 287.80499267578125, 549.5800170898438, 522.9420166015625 ]
\begin{table}[h] \begin{tabular}{c|c} \hline Notations & Description \\ \hline $u$ & state variables of the physical system \\ \hline $\boldsymbol{x}$ & spatial or spatial-temporal coordinates \\ \hline $x$ & spatial coordinates \\ \hline $t$ & temporal coordinates \\ \hline $\theta$ & parameters for a physical system \\ \hline $w$ & weights of neural networks \\ \hline $\frac{\partial}{\partial x_i}$ & partial derivatives operator \\ \hline $\mathcal{D}^k_i$ & $\frac{\partial^k}{\partial x_i^k}$, $k$-order derivatives for variable $x_i$ \\ \hline $\nabla$ & nabla operator (gradient) \\ \hline $\Delta$ & Laplace operator \\ \hline $\int$ & integral operator \\ \hline $\mathcal{F}$ & differential operator representing the PDEs/ODEs \\ \hline $\mathcal{I}$ & initial conditions (operator) \\ \hline $\mathcal{B}$ & boundary conditions (operator) \\ \hline $\Omega$ & spatial or spatial-temporal domain of the system \\ \hline $\Theta$ & space of the parameters $\theta$ \\ \hline $W$ & space of weights of neural networks \\ \hline $\mathcal{L}$ & loss functions \\ \hline $\mathcal{L}_r$ & residual loss \\ \hline $\mathcal{L}_b$ & boundary condition loss \\ \hline $\mathcal{L}_i$ & initial condition loss \\ \hline $l_k$ & residual (error) terms \\ \hline $\| \cdummy \|$ & norm of a vector or a function \\ \hline \end{tabular} \caption{A table of mathematical notations.} \label{tb1} \end{table}
[ [ "Notations", "Description" ], [ "u", "state variables of the physical system" ], [ "x", "spatial or spatial-temporal coordinates" ], [ "x", "spatial coordinates" ], [ "t", "temporal coordinates" ], [ "θ", "parameters for a physical system" ], [ "w", "weights of neural networks" ], [ "∂\n∂xi", "partial derivatives operator" ], [ "k\nDi", "∂∂ xk k, k-order derivatives for variable xi\ni" ], [ "∇", "nabla operator (gradient)" ], [ "∆", "Laplace operator" ], [ "R", "integral operator" ], [ "F", "differential operator representing the PDEs/ODEs" ], [ "I", "initial conditions (operator)" ], [ "B", "boundary conditions (operator)" ], [ "Ω", "spatial or spatial-temporal domain of the system" ], [ "Θ", "space of the parameters θ" ], [ "W", "space of weights of neural networks" ], [ "L", "loss functions" ], [ "Lr", "residual loss" ], [ "Lb", "boundary condition loss" ], [ "Li", "initial condition loss" ], [ "lk", "residual (error) terms" ], [ "∥· ∥", "norm of a vector or a function" ] ]
0.881761
null
null
0
1903.07639v2
2
[ 85.03900146484375, 435.23699951171875, 505.79998779296875, 630.1060180664062 ]
\begin{table}[ht!] \caption{\textbf{Elements of a data analysis.} This table describes eight elements that are used by the data analyst to build the data analysis.} \label{table-elements} \begin{tabular}{p{3cm}|p{11cm}} \hline \textbf{Element} & \textbf{Description} \\ \hline Narrative text & Expository phrases or sentences that describe what is happening in the data analysis in a human readable format \\ \hline Code & A series of programmatic instructions to execute a particular programming or scripting language \\ \hline Code comment & Non-executable code or text near or inline with code that describes the expected action/result of the surrounding code or provides context \\ \hline Data visualization & A plot, figure or graph illustrating a visual representation of the data. \\ \hline Narrative diagram & A diagram or flowchart without data \\ \hline Summary statistics & Numerical quantities derived from the data, such as the mean, standard deviation, etc. \\ \hline Table & An ordered arrangement of data or summaries of data in rows and columns \\ \hline Statistical model or computational algorithm & Mathematical model or algorithm concerning the underlying data phenomena or data-generation process, predictive ability, or computational algorithm \\ \hline \end{tabular} \end{table}
[ [ "Element", "Description" ], [ "Narrative text", "Expository phrases or sentences that describe what is happening in the\ndata analysis in a human readable format" ], [ "Code", "A series of programmatic instructions to execute a particular program-\nming or scripting language" ], [ "Code comment", "Non-executable code or text near or inline with code that describes the\nexpected action/result of the surrounding code or provides context" ], [ "Data visualization", "A plot, figure or graph illustrating a visual representation of the data." ], [ "Narrative diagram", "A diagram or flowchart without data" ], [ "Summary statistics", "Numerical quantities derived from the data, such as the mean, standard\ndeviation, etc." ], [ "Table", "An ordered arrangement of data or summaries of data in rows and\ncolumns" ], [ "Statistical model\nor computational\nalgorithm", "Mathematical model or algorithm concerning the underlying data phe-\nnomena or data-generation process, predictive ability, or computational\nalgorithm" ] ]
0.997838
null
null
0
2103.03739v1
14
[ 374.0275390625, 134.90832010904947, 480.1824951171875, 178.17041015625 ]
\begin{table}[t!] \centering \caption{Threat prioritization depending on likelihood and impact.} \label{tab:lin:threat-table:priorities} \scalebox{0.92}{ \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline low & low & \multirow{3}{*}{low} \\ low & medium & \\ medium & low & \\ \hline \end{tabular} % \quad % \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline low & high & \multirow{3}{*}{medium}\\ medium & medium & \\ high & low & \\ \hline \end{tabular} % \quad % \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline medium & high & \multirow{3}{*}{high} \\ high & medium & \\ high & high & \\ \hline \end{tabular} } \end{table}
[ [ "Likelihood", "Impact", "Priority" ], [ "medium\nhigh\nhigh", "high\nmedium\nhigh", "high" ] ]
0.47619
null
null
1
2103.03739v1
15
[ 141.84440994262695, 145.88299560546875, 473.51158142089844, 328 ]
\begin{table}[t] \centering \caption{Overview of threat prioritization. Threats that are not effective due to our assumptions are not included in the table.} \label{tab:lin:threat-table:prioritization} \begin{tabular}{ | m{.6\textwidth}<{\raggedleft} || c | c || c | } \hline \multicolumn{1}{|c||}{Threat} & Likelihood & Impact & Priority \\ \hline \hline Linkability in one or more storages & medium & medium & medium \\ \hline Identifiability in one or more storages & low & high & medium \\ \hline Detectability of data existence & medium & low & low \\ \hline Detectability in communication between different trust domains & low & low & low \\ \hline Linkability of IP addresses in communication between different trust domains & low & medium & low \\ \hline Linkability of IP addresses in communication between different trust domains leads to identifiability & low & high & medium\\ \hline Non-repudiation of encrypted data & low & low & low \\ \hline Non-repudiation of communication between different trust domains & low & low & low \\ \hline Unawareness of the data owner & low & high & medium \\ \hline Non deletion of data in cloud storage & low & low & low \\ \hline \end{tabular} \end{table}
[ [ "Threat", "Likelihood", "Impact", "Priority" ], [ "Linkability in one or more storages", "medium", "medium", "medium" ], [ "Identifiability in one or more storages", "low", "high", "medium" ], [ "Detectability of data existence", "medium", "low", "low" ], [ "Detectability in communication between different\ntrust domains", "low", "low", "low" ], [ "Linkability of IP addresses in communication\nbetween different trust domains", "low", "medium", "low" ], [ "Linkability of IP addresses in communication\nbetween different trust domains leads to\nidentifiability", "low", "high", "medium" ], [ "Non-repudiation of encrypted data", "low", "low", "low" ], [ "Non-repudiation of communication between\ndifferent trust domains", "low", "low", "low" ], [ "Unawareness of the data owner", "low", "high", "medium" ], [ "Non deletion of data in cloud storage", "low", "low", "low" ] ]
0.996426
null
null
0
2003.09758v1
11
[ 69.33112621307373, 516.2634948730469, 277.2290344238281, 581.260009765625 ]
\begin{table}[htb!] \small \centering \begin{tabular}{|c|c|c|c|c|} \hline \rowcolor[HTML]{EFEFEF} \textbf{Dataset} & \textbf{\begin{tabular}[c]{@{}c@{}}Score \\ change\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Speed \\ (x faster)\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Tables \\ removed\end{tabular}} & \textbf{$\tau$} \\ \hline Taxi & -0.04\% & 3.18 & 10 & 24 \\ \hline Pickup & -15.35\% & 3.50 & 17 & 17 \\ \hline Poverty & -1.19\% & 5.87 & 36 & 15 \\ \hline School (S) & -1\% & 1.14 & 2 & 15 \\ \hline School (L) & -5\% & 1.32 & 39 & 17 \\ \hline \end{tabular} \caption{Performance of ARDA with \textsf{RIFS} and Tuple Rule as a table filtering step for real world datasets. Hyperparameter $\tau$ was optimized for each dataset.} \label{tab:TR_RIFS_prefilter} \end{table}
[ [ "Dataset", "Score", "Speed", "Tables", "τ" ], [ null, "change", "(x faster)", "removed", null ], [ "Taxi", "-0.04%", "3.18", "10", "24" ], [ "Pickup", "-15.35%", "3.50", "17", "17" ], [ "Poverty", "-1.19%", "5.87", "36", "15" ], [ "School (S)", "-1%", "1.14", "2", "15" ], [ "School (L)", "-5%", "1.32", "39", "17" ] ]
0.493256
null
null
0
1305.2505v1
18
[ 323.3190002441406, 67.260009765625, 525.5609893798828, 117.072998046875 ]
\begin{table}[t] \centering \begin{tabular}{|c|c|} \hline Hypothesis class & Rademacher Complexity\\\hline $\B_q(\norm{\W}_q)$ & $2\norm{\X}_p\norm{\W}_q\sqrt{\frac{p - 1}{n}}$\\\hline $\B_1(\norm{\W}_1)$& $2\norm{\X}_\infty \norm{\W}_1\sqrt{\frac{e\log d}{n}}$\\\hline \end{tabular} \caption{Rademacher complexity bounds for AUC maximization. We have $1/p+1/q = 1$ and $q > 1$.} \label{tab:rad-bounds-auc} \end{table}
[ [ "Hypothesis class", "Rademacher Complexity" ], [ "( )\nBq ∥W∥q", "q\n2 p−1\n∥X∥p ∥W∥q n" ], [ "( )\nB1 ∥W∥1", "q\n2 e log d\n∥X∥ ∞∥W∥1 n" ] ]
0.47138
null
null
1
1305.2505v1
20
[ 68.20600128173828, 67.260009765625, 276.67498779296875, 111.15899658203125 ]
\begin{table}[t] \centering \begin{tabular}{|c|c|} \hline Hypothesis Class & Rademacher Avg. Bound\\\hline $\S_2(1)$ & $\kappa^2\sqrt{\frac{p}{n}}$\\\hline $\Delta(1)$ & $\kappa^2\sqrt{\frac{e\log p}{n}}$\\\hline \end{tabular} \caption{Rademacher complexity bounds for Multiple kernel learning} \label{tab:mkl-rad-bounds} \end{table}
[ [ "Hypothesis Class", "Rademacher Avg. Bound" ], [ "(1)\nS2", "κ2pp\nn" ], [ "∆(1)", "q\nκ2 e log p\nn" ] ]
0.506438
null
null
0
2102.06826v3
4
[ 322.04100036621094, 76.9420166015625, 553.9599914550781, 120.79264322916667 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \caption{Task difference between the three DNNs $F_w$, $F_{w_1}$ and $F_{w_2}$.} \centering \begin{tabular}{c|ccc} \hline\hline DNN & Style Transfer & Data Embedding & Data Extraction\\ \hline $F_w$ & $\surd$ & $\surd$ & $\surd$\\ \hline $F_{w_1}$ & $\surd$ & $\times$ & $\times$\\ \hline $F_{w_2}$ & $\times$ & $\surd$ & $\surd$\\ \hline\hline \end{tabular} \end{table}
[ [ "DNN", "Style Transfer Data Embedding Data Extraction" ], [ "Fw", "√ √ √" ], [ "Fw1", "√\n× ×" ], [ "Fw2", "√ √\n×" ] ]
0.741935
null
null
1
2102.06826v3
4
[ 322.04100036621094, 167.3673299153646, 553.9599914550781, 220.71964518229166 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \caption{The mean PSNR (dB) and mean SSIM (on 5000 test images).} \centering \begin{tabular}{c|cccccc} \hline\hline DNN/AL & $0$ & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\ \hline $F_{w_1}$: PSNR & 28.13 & $-$ & $-$ & $-$ & $-$ & $-$\\ $F_{w_1}$: SSIM & 0.865 & $-$ & $-$ & $-$ & $-$ & $-$\\ \hline $F_w$: PSNR & $-$ & 27.63 & 25.31 & 25.28 & 25.25 & 24.96\\ $F_w$: SSIM & $-$ & 0.860 & 0.800 & 0.800 & 0.796 & 0.776\\ \hline\hline \end{tabular} \end{table}
[ [ "DNN/AL", "0 82 162 322 642 1282" ], [ "Fw1: PSNR\nFw1: SSIM", "28.13 − − − − −\n0.865 − − − − −" ], [ "Fw: PSNR\nFw: SSIM", "− 27.63 25.31 25.28 25.25 24.96\n− 0.860 0.800 0.800 0.796 0.776" ] ]
0.802469
null
null
2
2102.06826v3
4
[ 312, 267.29400634765625, 565.6409912109375, 320.64666748046875 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \caption{The mean PSNR (dB) and mean BER (on 5000 test images).} \centering \begin{tabular}{c|ccccc} \hline\hline DNN/AL & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\ \hline $F_{w_2}$: PSNR & 38.29 & 37.36 & 37.18 & 36.31 & 34.83\\ $F_{w_2}$: BER & 0 & 0 & 0 & $5.28\times 10^{-5}$ & $4.10\times 10^{-4}$\\ \hline $F_w$: PSNR & 37.00 & 36.68 & 36.49 & 36.20 & 31.45\\ $F_w$: BER & 0 & 0 & 0 & $7.48\times 10^{-5}$ & $4.62\times 10^{-4}$\\ \hline\hline \end{tabular} \end{table}
[ [ "DNN/AL", "82 162 322 642 1282" ], [ "Fw2: PSNR\nFw2: BER", "38.29 37.36 37.18 36.31 34.83\n0 0 0 5.28 × 10−5 4.10 × 10−4" ], [ "Fw: PSNR\nFw: BER", "37.00 36.68 36.49 36.20 31.45\n0 0 0 7.48 × 10−5 4.62 × 10−4" ] ]
0.81383
null
null
3
2102.06826v3
4
[ 337.4110107421875, 367.22100830078125, 538.5900268554688, 400.77301025390625 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \caption{Classification accuracy with the steganalysis method in \cite{xu:net}.} \centering \begin{tabular}{c|ccccc} \hline\hline DNN/AL & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\ \hline $F_{w_2}$ & 0.906 & 0.925 & 0.939 & 0.975 & 0.995\\ \hline $F_w$ & 0.913 & 0.9375 & 0.941 & 0.981 & 0.998\\ \hline\hline \end{tabular} \end{table}
[ [ "DNN/AL", "82 162 322 642 1282" ], [ "Fw2", "0.906 0.925 0.939 0.975 0.995" ], [ "Fw", "0.913 0.9375 0.941 0.981 0.998" ] ]
1
null
null
4
2102.06826v3
6
[ 49.27399826049805, 85.57432047526042, 298.72601318359375, 138.52801513671875 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \centering \caption{Quantitative results by using the L2-norm loss. The PSNRs, SSIMs and BERs shown in this Table are mean values (on 5000 test images).} \begin{tabular}{c|c|c|c|c} \hline\hline \multicolumn{1}{c|}{\multirow{2}{*}{AL}} & \multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\ \cline{2-5} & PSNR (dB) & SSIM & PSNR (dB) & BER \\ \hline $16^2$ & 25.60 & 0.814 & 36.63 & 0\\ $64^2$ & 25.17 & 0.793 & 36.08 & $7.97\times 10^{-5}$\\ $128^2$ & 25.01 & 0.770 & 31.94 & $4.58\times 10^{-4}$\\ \hline\hline \end{tabular} \end{table}
[ [ "AL", "Style Transfer", null, "Data Embedding", "Data Extraction" ], [ null, "PSNR (dB)", "SSIM", "PSNR (dB)", "BER" ], [ "162\n642\n1282", "25.60\n25.17\n25.01", "0.814\n0.793\n0.770", "36.63\n36.08\n31.94", "0\n7.97 × 10−5\n4.58 × 10−4" ] ]
0.632708
null
null
5
2102.06826v3
6
[ 313.27398681640625, 273.6723225911458, 562.7260131835938, 326.6260070800781 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \centering \caption{Quantitative results by using a pre-trained DNN to generate the ground-truth images for the style transfer task. The PSNRs, SSIMs and BERs shown in this Table are mean values (on 5000 test images).} \begin{tabular}{c|c|c|c|c} \hline\hline \multicolumn{1}{c|}{\multirow{2}{*}{AL}} & \multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\ \cline{2-5} & PSNR (dB) & SSIM & PSNR (dB) & BER \\ \hline $16^2$ & 35.04 & 0.876 & 41.12 & 0\\ $64^2$ & 34.99 & 0.875 & 41.05 & $4.60\times 10^{-5}$\\ $128^2$ & 34.73 & 0.869 & 37.42 & $2.66\times 10^{-4}$\\ \hline\hline \end{tabular} \end{table}
[ [ "AL", "Style Transfer", null, "Data Embedding", "Data Extraction" ], [ null, "PSNR (dB)", "SSIM", "PSNR (dB)", "BER" ], [ "162\n642\n1282", "35.04\n34.99\n34.73", "0.876\n0.875\n0.869", "41.12\n41.05\n37.42", "0\n4.60 × 10−5\n2.66 × 10−4" ] ]
0.648794
null
null
6
2102.06826v3
7
[ 49.27399826049805, 85.57432047526042, 298.72601318359375, 138.52801513671875 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.1} \centering \caption{Quantitative results for the method in \cite{DH:TPAMI}. The PSNRs and BERs shown in this Table are mean values (on 5000 test images).} \begin{tabular}{c|c|c|c|c} \hline\hline \multicolumn{1}{c|}{\multirow{2}{*}{AL}} & \multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\ \cline{2-5} & PSNR (dB) & SSIM & PSNR (dB) & BER \\ \hline $16^2$ & $-$ & $-$ & 38.50 & 0\\ $64^2$ & $-$ & $-$ & 37.79 & $1.74\times 10^{-6}$\\ $128^2$ & $-$ & $-$ & 35.12 & $4.03\times 10^{-5}$\\ \hline\hline \end{tabular} \end{table}
[ [ "AL", "Style Transfer", null, "Data Embedding", "Data Extraction" ], [ null, "PSNR (dB)", "SSIM", "PSNR (dB)", "BER" ], [ "162\n642\n1282", "−\n−\n−", "−\n−\n−", "38.50\n37.79\n35.12", "0\n1.74 × 10−6\n4.03 × 10−5" ] ]
0.683077
null
null
7
2102.06826v3
7
[ 105.36599731445312, 188.0903523763021, 242.63400268554688, 213.14398193359375 ]
\begin{table}[!t] \renewcommand{\arraystretch}{1.2} \caption{Classification accuracy for detecting the method in \cite{DH:TPAMI} with XuNet.} \centering \begin{tabular}{c|ccc} \hline\hline DNN/AL & $16^2$ & $64^2$ & $128^2$\\ \hline \cite{DH:TPAMI} & 0.935 & 0.966 & 0.990\\ \hline\hline \end{tabular} \end{table}
[ [ "DNN/AL", "162 642 1282" ], [ "[27]", "0.935 0.966 0.990" ] ]
0.863636
null
null
0
1811.09248v1
3
[ 54.18091028386896, 201.4642333984375, 298.14232381184894, 285.3999938964844 ]
\begin{table}[tb] \footnotesize %FIGURE 2: data context \begin{tabular}{|l|l|l|l|l|l|l|} \cline{1-2} \multicolumn{2}{|c|}{Price paid data} \\ \hline price\_paid & saon & paon & street & postcode & town\\ \hline 155000 & Flat 6 & 25 & Bournem. Rd & SE15 4UJ & London\\ \hline \end{tabular} \begin{tabular}{|l|l|l|l|l|l|} \cline{1-2} \multicolumn{2}{|l|}{Address data} \\ \hline pao & street.name & town.name & postcode.name\\ \hline 14 & Heron Lane & Scarborough & YO12 4TW\\ \hline \end{tabular} \quad \begin{tabular}{|l|l|l|l|l|l|l|} \cline{1-1} Master data \\ \hline street\_nr & paon & city & postcode & price\\ \hline Redhill street & 8 & London & E14 3NE & 125.000£\\ \hline \end{tabular} \caption{Data context information: price paid data (examples), address data (reference data) and master data} \label{tab:datacontext} \end{table}
[ [ "Price paid data", null, null, null, "", null, null, null, null, null, null ], [ "price paid", null, "saon", null, "paon", null, "street", null, null, "postcode", "town" ], [ "155000", null, "Flat 6", null, "25", null, "Bournem. Rd", null, null, "SE15 4UJ", "London" ], [ "Address data", null, null, null, null, null, null, null, null, null, null ], [ "pao", "street.name", null, null, "town.name", null, null, null, "postcode.name", null, null ], [ "14", "Heron Lane", null, null, "Scarborough", null, null, null, "YO12 4TW", null, null ], [ "Master data", null, null, null, null, null, null, null, null, null, null ], [ "street nr", null, null, "paon", null, "city", null, "postcode", null, "price", null ], [ "Redhill street", null, null, "8", null, "London", null, "E14 3NE", null, "125.000", null ] ]
0.411273
null
null
1
1811.09248v1
3
[ 315.18091375177556, 201.4642333984375, 550.1184581409801, 295.1629943847656 ]
\begin{table}[t] \begin{tabular}{|m{0.6cm}|m{2cm}|m{1cm}|m{1.5cm}|m{1cm}|} \hline tuple&street&city&postcode&price\\ \hline $t_1$&Whitfield Street & London & W1T 5EF &137,495\\ $t_2$&Biscayne Ave & London & E14 9BE&189,950\\ $t_3$&Canton Street & London & E14 6JW&595,000\\ $t_4$&South Drive & London & W1A 0AA&575,000\\ \hline \end{tabular} \begin{tabular}{|m{0.6cm}|m{3cm}|m{1.5cm}|m{1.45cm}|} \hline tuple& agency & contact & crimestats\\ \hline $t_1$&Leaders&898756 & 136\\ $t_2$&ReedsRains&8654789 & 45\\ $t_3$&Belvoir London LTD&E14 3NE& 34\\ $t_4$&Belvoir London LTD&E14 3NE& 78\\ \hline \end{tabular} \caption{Transformed, integrated and repaired records} \label{tab:transformdata} \normalsize \end{table}
[ [ "tuple", "street", "city", null, "postcode", null, "price" ], [ "t1\nt2\nt3\nt4", "Whitfield Street\nBiscayne Ave\nCanton Street\nSouth Drive", "London\nLondon\nLondon\nLondon", null, "W1T 5EF\nE14 9BE\nE14 6JW\nW1A 0AA", null, "137,495\n189,950\n595,000\n575,000" ], [ "tuple", "agency", null, "contact", null, "crimestats", null ], [ "t1\nt2\nt3\nt4", "Leaders\nReedsRains\nBelvoir London LTD\nBelvoir London LTD", null, "898756\n8654789\nE14 3NE\nE14 3NE", null, "136\n45\n34\n78", null ] ]
0.443609
null
null
0
1902.06818v1
3
[ 344.0050048828125, 124.15399169921875, 527.95703125, 201.2650146484375 ]
\begin{table} \centering \caption{Classification accuracies obtained on the test partitions of movie review and UCI dataset using the various classifiers. Performance yielded by $C_f$ are significantly better than chance (using a binomial proportions test at $<$5\% significance level.)} \begin{tabular}{ l|cc } \hline Classifiers used & UCI dataset & Movie review\\ Chance & 50.0 & 50.0 \\ $C_b$ & 63.3 & 72.0 \\ $C_f$ & 56.3 & 55.7 \\ $C_t$ & 63.9 & 62.6\\ $C_b, C_f$ & 64.3 & 73.2 \\ $C_b, C_f, C_t$ & 64.5 & 74.0 \\ \hline \end{tabular} \label{tab:results2} \vspace{-5mm} \end{table}
[ [ "Classifiers used\nChance\nC\nb\nC\nf\nC\nt\nC , C\nb f\nC , C , C\nb f t", "UCI dataset Movie review\n50.0 50.0\n63.3 72.0\n56.3 55.7\n63.9 62.6\n64.3 73.2\n64.5 74.0" ] ]
0.675585
null
null
0
1706.00857v2
17
[ 95.68000030517578, 258.6303304036458, 516.3209838867188, 572.7589925130209 ]
\begin{table}[htbp] \footnotesize \caption{\label{tab4}{\bf Grouping Results for The Index Coefficients for SMB, HML and \centerline{Link Functions of 49 Industrial Portfolios}}} \begin{center} \begin{tabular}{c|cccccccccc} \hline \hline & Agric & Food & Soda & Beer & Smoke & Toys & Fun & Books & Hshld & Clths\tabularnewline SMB & 6 & 5 & 6 & 4 & 2 & 8 & 9 & 7 & 6 & 6\tabularnewline HML & 4 & 4 & 4 & 3 & 4 & 5 & 3 & 4 & 5 & 6\tabularnewline Function & ii & i & ii & ii & i & i & i & i & i & ii\tabularnewline \hline & Hth & MedEq & Drugs & Chems & Rubbr & Txtls & BldMt & Cnstr & Steel & FabPr\tabularnewline SMB & 9 & 8 & 9 & 7 & 7 & 8 & 8 & 8 & 9 & 10\tabularnewline HML & 2 & 2 & 1 & 6 & 4 & 4 & 6 & 6 & 9 & 7\tabularnewline Function & i & i & i & i & i & i & i & i & i & ii\tabularnewline \hline & Mach & ElcEq & Autos & Aero & Ships & Guns & Gold & Mines & Coal & Oil\tabularnewline SMB & 8 & 9 & 7 & 6 & 8 & 6 & 10 & 9 & 11 & 9 \tabularnewline HML & 8 & 6 & 6 & 6 & 7 & 4 & 10 & 7 & 11 & 9 \tabularnewline Function & i & i & i & i & i & i & ii & i & ii & i\tabularnewline \hline & Util & Telcm & PerSv & BusSv & Hardw & Softw & Chips & LabEq & Paper & Boxes\tabularnewline SMB & 4 & 8 & 8 & 7 & 8 & 8 & 7 & 7 & 6 & 6 \tabularnewline HML & 5 & 4 & 5 & 4 & 5 & 3 & 5 & 5 & 5 & 6\tabularnewline Function & i & i & i & i & i & i & i & i & i & i \tabularnewline \hline & Trans & Whlsl & Rtail & Meals & Banks & Insur & RIEst & Fin & Other & \tabularnewline SMB & 7 & 7 & 7 & 7 & 7 & 6 & 7 & 6 & 7 & \tabularnewline HML & 6 & 6 & 4 & 3 & 6 & 5 & 5 & 5 & 6 & \tabularnewline Function & i & i & i & i & i & i & i & i & ii & \tabularnewline \hline \hline \end{tabular} \end{center} \end{table}
[ [ "SMB\nHML\nFunction", "Agric Food Soda Beer Smoke Toys Fun Books Hshld Clths\n6 5 6 4 2 8 9 7 6 6\n4 4 4 3 4 5 3 4 5 6\nii i ii ii i i i i i ii" ], [ "SMB\nHML\nFunction", "Hth MedEq Drugs Chems Rubbr Txtls BldMt Cnstr Steel FabPr\n9 8 9 7 7 8 8 8 9 10\n2 2 1 6 4 4 6 6 9 7\ni i i i i i i i i ii" ], [ "SMB\nHML\nFunction", "Mach ElcEq Autos Aero Ships Guns Gold Mines Coal Oil\n8 9 7 6 8 6 10 9 11 9\n8 6 6 6 7 4 10 7 11 9\ni i i i i i ii i ii i" ], [ "SMB\nHML\nFunction", "Util Telcm PerSv BusSv Hardw Softw Chips LabEq Paper Boxes\n4 8 8 7 8 8 7 7 6 6\n5 4 5 4 5 3 5 5 5 6\ni i i i i i i i i i" ], [ "SMB\nHML\nFunction", "Trans Whlsl Rtail Meals Banks Insur RIEst Fin Other\n7 7 7 7 7 6 7 6 7\n6 6 4 3 6 5 5 5 6\ni i i i i i i i ii" ] ]
0.467324
null
null
1
1706.00857v2
19
[ 72, 312.1470031738281, 562.0870361328125, 439.3926696777344 ]
\begin{table}[htbp] \footnotesize \begin{center} \caption{{\bf Grouping Results for The Index Coefficients for RAIN, SUN and \centerline{Link Functions at 16 Locations}}} \label{tab6} \vspace{0.3cm} \begin{tabular}{c|cccccccc} \hline \hline & Waddington & Sheffield & Shawbury & Ross-On-Wye & Paisley & Oxford & Leuchars & Lerwick\tabularnewline RAIN & 4 & 4 & 4 & 3 & 4 & 3 & 4 & 4 \tabularnewline SUN & 1 & 1 & 2 & 2 & 3 & 2 & 3 & 4 \tabularnewline Function & i & i & i & ii & i & i & i & i \tabularnewline \hline & Hurn & Heathrow & Eskdalemuir & Eastbourne & Cambridge & Camborne & Bradford & Armagh \tabularnewline RAIN & 3 & 4 & 3 & 3 & 3 & 3 & 3 & 4 \tabularnewline SUN & 2 & 1 & 2 & 2 & 1 & 3 & 2 & 2 \tabularnewline Function & i & i & ii & i & i & i & i & ii \tabularnewline \hline \hline \end{tabular} \end{center} \end{table}
[ [ "RAIN\nSUN\nFunction", "Waddington Sheffield Shawbury Ross-On-Wye Paisley Oxford Leuchars Lerwick\n4 4 4 3 4 3 4 4\n1 1 2 2 3 2 3 4\ni i i ii i i i i" ], [ "RAIN\nSUN\nFunction", "Hurn Heathrow Eskdalemuir Eastbourne Cambridge Camborne Bradford Armagh\n3 4 3 3 3 3 3 4\n2 1 2 2 1 3 2 2\ni i ii i i i i ii" ] ]
0.37408
null
null
0
2005.00745v1
4
[ 40.78441556294759, 78.63702392578125, 263.9496790568034, 183.842041015625 ]
\begin{table}[!h] \caption{Channel Measurement Parameters.}\label{tab1} \begin{tabular}{| m{5 cm} | m{2cm}|} \hline \bfseries Parameters & \bfseries Values \\ \hline Distance (m)& 1-40 \\ \hline Frequency (GHz) & 28 \\ \hline Bandwidth (MHz) & 800\\ \hline TXPower (dBm) & 300\\ \hline Scenario & UMi \\ \hline Polarization & Co-Pol \\ \hline TxArrayType & ULA \\ \hline RxArrayType & ULA \\ \hline Antena & SISO \\ \hline Tx/Rx antenna Azimuth and Elevation (red) & 10\\ \hline \end{tabular} \end{table}
[ [ "Parameters", "Values" ], [ "Distance (m)", "1-40" ], [ "Frequency (GHz)", "28" ], [ "Bandwidth (MHz)", "800" ], [ "TXPower (dBm)", "300" ], [ "Scenario", "UMi" ], [ "Polarization", "Co-Pol" ], [ "TxArrayType", "ULA" ], [ "RxArrayType", "ULA" ], [ "Antena", "SISO" ], [ "Tx/Rx antenna Azimuth and Elevation (red)", "10" ] ]
0.919283
null
null
1
2005.00745v1
4
[ 303.7864292689732, 518.06005859375, 544.9984043666294, 581.3040161132812 ]
\begin{table}[!h] \caption{Communication Scenarios Comparison .}\label{tab1} \begin{tabular}{| m{3.5 cm} | m{2.10cm}| m{1.60cm}|} \hline \vspace{0.2mm} \bfseries Environment Scenario & \bfseries UMi & \bfseries UMa \\ \hline \textbf{MAE} & 8.92& 6.66 \\ \hline \textbf{MSE} & 126.60 & 74.32 \\ \hline \textbf{RMSE}& 11.25 & 8.62 \\ \hline \textbf{R Square}& 0.21 & 0.533 \\ \hline \textbf{Confidence}& 0.21 & 0.533 \\ \hline \end{tabular} \end{table}
[ [ "Environment Scenario", "UMi", "UMa" ], [ "MAE", "8.92", "6.66" ], [ "MSE", "126.60", "74.32" ], [ "RMSE", "11.25", "8.62" ], [ "R Square", "0.21", "0.533" ], [ "Confidence", "0.21", "0.533" ] ]
0.876404
null
null
2
2005.00745v1
5
[ 40.76957803023489, 78.63702392578125, 288.6707810621995, 170.4410400390625 ]
\begin{table}[!h] \caption{Channel Measurement Parameters for UMi Communication.}\label{tab1} \begin{tabular}{| m{3.55 cm} | m{1.150cm}| m{1.150cm}| m{1.150cm}|} \hline \vspace{0.2mm} \bfseries Test & \bfseries LR & \bfseries MLR &\bfseries MLR \\ \hline \textbf{T-R Separation Distance (m) } & 0.56& 0.46 & 0.48\\ \hline \textbf{Time Delay (ns)} & - & -0.08 &-0.09 \\ \hline \textbf{Received Power (dBm)}& - & -0.69 &-0.69\\ \hline \textbf{RMS Delay Spread (ns)}& -& -& 0.29\\ \hline \textbf{Elevation AoD (degree)} & -& -&-0.10 \\ \hline \textbf{Azimuth AoD (degree)} & -& - &-0.002\\ \hline \textbf{Azimuth AoA (degree)}& - & - &-0.004\\ \hline \textbf{Elevation AoA (degree)}& -& - & -0.001\\ \hline \end{tabular} \end{table}
[ [ "Test", "LR", "MLR", "MLR" ], [ "T-R Separation Distance (m)", "0.56", "0.46", "0.48" ], [ "Time Delay (ns)", "-", "-0.08", "-0.09" ], [ "Received Power (dBm)", "-", "-0.69", "-0.69" ], [ "RMS Delay Spread (ns)", "-", "-", "0.29" ], [ "Elevation AoD (degree)", "-", "-", "-0.10" ], [ "Azimuth AoD (degree)", "-", "-", "-0.002" ], [ "Azimuth AoA (degree)", "-", "-", "-0.004" ], [ "Elevation AoA (degree)", "-", "-", "-0.001" ] ]
0.931373
null
null
3
2005.00745v1
5
[ 40.76957803023489, 212.217041015625, 288.6707810621995, 237.20404052734375 ]
\begin{table}[!h] \caption{Linear Regression Model.}\label{tab1} \begin{tabular}{| m{3.55 cm} | m{1.150cm}| m{1.150cm}| m{1.150cm}|} \hline \vspace{0.2mm} \bfseries Environment & \bfseries $\alpha$ & \bfseries $L_0[dB]$ &\bfseries $X_\sigma{}[dB]$ \\ \hline \textbf{Outdoor Micro Urban } & 9.7 & .61 & 13.6 \\ \hline \end{tabular} \end{table}
[ [ "Environment", "α", "L0[dB]", "Xσ[dB]" ], [ "Outdoor Micro Urban", "9.7", ".61", "13.6" ] ]
0.70303
null
null
4
2005.00745v1
5
[ 40.76957803023489, 528.2139892578125, 275.4933268229167, 626.1700439453125 ]
\begin{table}[!h] \caption{Micro Urban Channel Measurement Parameters.}\label{tab1} \begin{tabular}{| m{1.125 cm} | m{2.210cm}| m{1.60cm}| m{1.60cm}|} \hline \bfseries Test & \bfseries Linear Regression & \bfseries Multiple Linear Regression (3 Feature) &\bfseries Multiple Linear Regression (7 Feature)\\ \hline \vspace{0.2mm} \textbf{MAE} & 8.92& 6.66 &5.10 \\ \hline \vspace{0.2mm} \textbf{MSE} & 126.60 & 74.32 &44.51 \\ \hline \vspace{0.2mm} \textbf{RMSE}& 11.25 & 8.62 &6.67\\ \hline \vspace{0.2mm} \textbf{R Square}& 0.21 & 0.533 & 0.72\\ \hline \end{tabular} \end{table}
[ [ "Test", "Linear Regression", "Multiple\nLinear\nRegression\n(3 Feature)", "Multiple\nLinear\nRegression\n(7 Feature)" ], [ "MAE", "8.92", "6.66", "5.10" ], [ "MSE", "126.60", "74.32", "44.51" ], [ "RMSE", "11.25", "8.62", "6.67" ], [ "R Square", "0.21", "0.533", "0.72" ] ]
0.862385
null
null
0
1905.05494v3
34
[ 85.2468318939209, 321.36700439453125, 463.13308160955256, 468.864013671875 ]
\begin{table}[ht] \begin{tabular}{|c||c|c|c||c|c|c||c|c|c|}\hline & \multicolumn{3}{c||}{no rounding ($C$ is a ball)} & \multicolumn{3}{c||}{rounding} & \multicolumn{3}{c|}{H-polytope approx.}\\ \hline \centering Z-polytope & $k$ & Refl & time & $k$ & Refl & time & $k$ & Refl & time \\ \hline\hline $Z_{\mathcal{U}}$-$30$-$60$ & 3 & 3.09e+04 & 54 & 1 & 2.80e+04 & 50 & \textbf{1} & \textbf{1.57e+04} & \textbf{35.9} \\ \hline $Z_{\mathcal{U}}$-$40$-$80$ & 4 & 4.23e+04 & 126 & 1 & 3.89e+04 & 115 & \textbf{1} & \textbf{1.71e+04} & \textbf{67.1} \\ \hline $Z_{\mathcal{U}}$-$50$-$100$ & 5 & 5.53e+04 & 282 & 1 & 5.10e+04 & 270 & \textbf{1} & \textbf{1.84e+04} & \textbf{133} \\ \hline $Z_{\mathcal{U}}$-$60$-$120$ & 7 & 9.04e+04 & 825 & 1 & 6.61e+04 & 575 & \textbf{2} & \textbf{3.52e+04} & \textbf{369} \\ \hline\hline $Z_{\mathcal{U}}$-$30$-$150$ & \textbf{1} & \textbf{7.01e+03} & \textbf{57} & 1 & 1.61e+04 & 111 & 1 & 7.24e+03 & 64 \\ \hline $Z_{\mathcal{U}}$-$40$-$200$ & \textbf{1} & \textbf{7.79e+03} & \textbf{126} & 1 & 2.07e+04 & 323 & 1 & 7.81e+03 & 163 \\ \hline $Z_{\mathcal{U}}$-$50$-$250$ & \textbf{1} & \textbf{8.33e+03} & \textbf{319} & 1 & 2.67e+04 & 858 & 2 & 1.24e+04 & 414 \\ \hline $Z_{\mathcal{U}}$-$60$-$300$ & \textbf{1} & \textbf{9.53e+03} & \textbf{721} & 1 & 3.35e+04 & 2121 & 2 & 1.37e+04 & 1168 \\ \hline %$rvc$-$30$-$60$ & 3 & 4.74e+04 & 72 & \textbf{1} & \textbf{2.11e+04} & \textbf{29} & 1 & 4.22e+04 & 63 \\ \hline %$rvc$-$40$-$80$ & 4 & 7.39e+04 & 185 & \textbf{2} & \textbf{3.37e+04} & \textbf{82} & 2 & 6.73e+04 & 175 \\ \hline %$rvc$-$50$-$100$ & 5 & 1.07e+05 & 456 & \textbf{2} & \textbf{4.03e+04} & \textbf{173} & 2 & 9.06e+04 & 365 \\ \hline %$rvc$-$60$-$120$ & 7 & 1.44e+05 & 849 & \textbf{3} & \textbf{5.32e+04} & \textbf{331} & 3 & 1.24e+05 & 779 \\ \hline %$rvc$-$70$-$140$ & 8 & 1.66e+05 & 2382 & \textbf{3} & \textbf{5.93e+04} & \textbf{582} & 4 & 1.60e+05 & 1412 \\ \hline \end{tabular} \caption{Comparisons between rounding and the H-polytope approximation used as body in MMC of Section~\ref{sec:rounding}. For each Z-polytope \volalg\ performs 10 runs. $k$: average number of bodies in MMC; Refl: average number of reflection (or boundary oracle calls) performed by \billiard; time: average runtime of \volalg\ in seconds. We set $\epsilon = 0.1$ in all cases. Bold marks best runtimes. The volumes for each Z-polytope agree up to at most $\epsilon = 0.05$ and thus omitted. \label{tab:r_nr_hp2} } \end{table}
[ [ "", null, "no rounding (C is a ball)", null, null, "rounding", null, null, "H-polytope approx.", null, null ], [ "Z-polytope", null, "k", "Refl", "time", "k", "Refl", "time", "k", "Refl", "time" ], [ "Z -30-60\nU", null, "3", "3.09e+04", "54", "1", "2.80e+04", "50", "1", "1.57e+04", "35.9" ], [ "Z -40-80\nU", null, "4", "4.23e+04", "126", "1", "3.89e+04", "115", "1", "1.71e+04", "67.1" ], [ "Z -50-100\nU", null, "5", "5.53e+04", "282", "1", "5.10e+04", "270", "1", "1.84e+04", "133" ], [ "Z -60-120\nU", null, "7", "9.04e+04", "825", "1", "6.61e+04", "575", "2", "3.52e+04", "369" ], [ "Z -30-150\nU", null, "1", "7.01e+03", "57", "1", "1.61e+04", "111", "1", "7.24e+03", "64" ], [ "Z -40-200\nU", null, "1", "7.79e+03", "126", "1", "2.07e+04", "323", "1", "7.81e+03", "163" ], [ "Z -50-250\nU", null, "1", "8.33e+03", "319", "1", "2.67e+04", "858", "2", "1.24e+04", "414" ], [ "Z -60-300\nU", null, "1", "9.53e+03", "721", "1", "3.35e+04", "2121", "2", "1.37e+04", "1168" ], [ "", "Table 6 Comparisons between rounding and the H-polytope approximation used as bo", null, null, null, null, null, null, null, null, null ] ]
0.450772
null
null
0
2008.11081v1
2
[ 57.0620002746582, 467.2146708170573, 293.968994140625, 503.9429931640625 ]
\begin{table}[htbp] \caption{Sample Clinical notes} \begin{center} %\begin{tabular}{|c|c|c|c|} %\begin{tabular}{p{1.25cm} | p{2cm} |p{2cm}| p{2cm} } \begin{tabular}{p{2.0cm} | p{5.5cm} } %\begin{tabularx}{8cm}{|X|X|X|X|} \hline %\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\ %\cline{2-4} \cline{2-2} %\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\ %\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant %(Exclusive)}}& \textbf{\textbf{Pain Irrelevant %(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\ \textbf{\textbf{Pain Relevance}}& \textbf{\textbf{Sample Clinical Note}} \\ \hline YES & Patient pain increased from 8/10 to 9/10 in chest. \\ \hline NO & Discharge home \vspace*{-\baselineskip} %\vspace{-2em} %$^{\mathrm{a}}$& & \\ %$^{\mathrm{}}$& & \\ %\hline %\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.} \end{tabular} %\end{tabularx} \label{tab1} \end{center} \vspace{-4mm} \end{table}
[ [ "Pain Relevance", "Sample Clinical Note" ], [ "YES", "Patient pain increased from 8/10 to 9/10 in chest." ], [ "NO", "Discharge home" ] ]
0.413793
null
null
1
2008.11081v1
2
[ 328.197998046875, 609.9216715494791, 539.1920166015625, 691.083984375 ]
\begin{table}[htbp] \caption{Top 10 Unigrams} \begin{center} %\begin{tabular}{|c|c|c|c|} %\begin{tabular}{p{1.25cm} | p{2cm} |p{2cm}| p{2cm} } \begin{tabular}{p{2.15cm} |p{2cm}| p{2cm} } %\begin{tabularx}{8cm}{|X|X|X|X|} \hline %\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\ %\cline{2-4} \cline{2-3} %\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\ %\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant %(Exclusive)}}& \textbf{\textbf{Pain Irrelevant %(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\ \textbf{\textbf{Pain Relevant (Exclusive)}}& \textbf{\textbf{Pain Irrelevant (Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\ \hline emar, intervention, increase, dose, expressions, chest, regimen, alteration, toradol, medication & home, wheelchair, chc, fatigue, bedside, parent, discharge, warm, relief, mother & pain, pca, plan, develop, control, altered, patient, level, comfort, manage %$^{\mathrm{a}}$& & \\ %$^{\mathrm{}}$& & \\ %\hline %\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.} \end{tabular} %\end{tabularx} \label{tab1} \end{center} \vspace{-4mm} \end{table}
[ [ "Pain Relevant\n(Exclusive)", "Pain Irrelevant\n(Exclusive)", "Pain Relevant\nAND Pain\nIrrelevant" ], [ "emar, intervention,\nincrease, dose,\nexpressions,\nchest, regimen,\nalteration, toradol,\nmedication", "home,\nwheelchair,\nchc, fatigue,\nbedside, parent,\ndischarge, warm,\nrelief, mother", "pain, pca, plan,\ndevelop, control,\naltered, patient,\nlevel, comfort,\nmanage" ] ]
0.704545
null
null
2
2008.11081v1
3
[ 53.79800033569336, 572.7586466471354, 307.3110046386719, 636.385986328125 ]
\begin{table}[htbp] \vspace{1 mm} \caption{Topic distribution based on pain relevance} \begin{center} \vspace{-4 mm} %\begin{tabular}{|c|c|c|c|} \begin{tabular}{p{1.25cm} | p{3.2cm} | p{3.2cm}} %\begin{tabular}{p{2cm} | p{5cm} } %\begin{tabularx}{8cm}{|X|X|X|X|} \hline %\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\ \cline{2-3} %\cline{2-2} %\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\ %\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant %(Exclusive)}}& \textbf{\textbf{Pain Irrelevant %(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\ \textbf{\textbf{Pain Relevance}}& \textbf{Most Prevalent Words in Topic-1} & \textbf{Most Prevalent Words in Topic-2} \\ \hline YES & progress, pain, improve, decrease, knowledge, control%, management, satisfaction & patient, pain, medication, knowledge, goal, state%, improve, regimen \\ \hline NO & note, admission, discharge, patient, home, ability%, respiratory, mother & pain, goal, admission, outcome, relief, continue %, home, ability \vspace*{-\baselineskip} %$^{\mathrm{a}}$& & \\ %$^{\mathrm{}}$& & \\ %$^{\mathrm{}}$& & \\ %\hline %\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.} \end{tabular} %\end{tabularx} \label{tab1} \end{center} \vspace{-4mm} \end{table}
[ [ "Pain Rele-\nvance", "Most Prevalent Words in\nTopic-1", "Most Prevalent Words in\nTopic-2" ], [ "YES", "progress, pain, improve, de-\ncrease, knowledge, control", "patient, pain, medication,\nknowledge, goal, state" ], [ "NO", "note, admission, discharge,\npatient, home, ability", "pain, goal, admission, out-\ncome, relief, continue" ] ]
0.602083
null
null
0
1810.08323v1
5
[ 67.66499710083008, 72.198974609375, 284.96475982666016, 103.28302001953125 ]
\begin{table}[t] \centering \fontsize{8}{10pt}\selectfont \begin{tabular}{|c|c|c|c|c|c|} \hline & Barbara & Boat & Man & Couple & Puffins \\ \hline Single Pass & 22.67 & 23.26 & 23.25 & 22.97 & 23.92 \\ \hline Two Passes & 23.00 & 23.60 & 23.39 & 23.26 & 24.29 \\ \hline \end{tabular} \caption{Denoised PSNR values (in dB) for the adaptive DeepResT algorithm using a single pass and two passes with $L=5$ layers and $\sigma=100$.} \label{tab2} %\vspace{-0.1in} \end{table}
[ [ "", "Barbara", "Boat", "Man", "Couple", "Puffins" ], [ "Single Pass", "22.67", "23.26", "23.25", "22.97", "23.92" ], [ "Two Passes", "23.00", "23.60", "23.39", "23.26", "24.29" ] ]
0.614555
null
null
0
2307.06450v1
15
[ 73.40999984741211, 159.718017578125, 537.1799926757812, 185.84002685546875 ]
\begin{table}[H] \caption{Parameters for CARA case of competition between portfolio managers with delayed tax effects.}\label{table param CARA no consump} \centering \begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | } \hline Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ \\ \hline Value & 10 & 10.0 & 0.08 & 0.2 & 0.04 & 2.0 & 0.01 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $2 + \frac{1}{10}(i-1)$ \\ \hline \end{tabular} \end{table}
[ [ "Parameter", "N", "T", "µ\n1", "σ", "r", "λ", "µ\n2", "δ\ni", "θ\ni", "Xi = xi\n(−∞,0] 0" ], [ "Value", "10", "10.0", "0.08", "0.2", "0.04", "2.0", "0.01", "0.3 + 4 9(i −1)", "0.3 + 4 9(i −1)", "2 + 11 0(i −1)" ] ]
0.770318
null
null
1
2307.06450v1
15
[ 79.802001953125, 230.958984375, 531.0701904296875, 257.08099365234375 ]
\begin{table}[H] \caption{Parameters for CRRA case of competition between portfolio managers with delayed tax effects.}\label{table param CRRA no consump} \centering \begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | } \hline Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ \\ \hline Value & 10 & 1.0 & 0.08 & 0.2 & 0.04 & 1.0 & 0.2 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $1 + \frac{1}{20}(i-1)$ \\ \hline \end{tabular} \end{table}
[ [ "Parameter", "N", "T", "µ\n1", "σ", "r", "λ", "µ\n2", "δ\ni", "θ\ni", "Xi = xi\n(−∞,0] 0" ], [ "Value", "10", "1.0", "0.08", "0.2", "0.04", "1.0", "0.2", "0.3 + 4 9(i −1)", "0.3 + 4 9(i −1)", "1 + 21 0(i −1)" ] ]
0.759857
null
null
2
2307.06450v1
15
[ 73.40999984741211, 302.20098876953125, 559.0450032552084, 328.3219909667969 ]
\begin{table}[H] \caption{Parameters for consumption and portfolio allocation game with delayed tax effects.} \label{table param CRRA w consump} \centering \begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | c | } \hline Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ & $\epsilon_i$ \\ \hline Value & 10 & 2.0 & 0.08 & 0.2 & 0.04 & 1.0 & 0.01 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $1 + \frac{1}{20}(i-1)$ & 50.0 \\ \hline \end{tabular} \end{table}
[ [ "Parameter", "N", "T", "µ\n1", "σ", "r", "λ", "µ\n2", "δ\ni", "θ\ni", "Xi = xi\n(−∞,0] 0", "ϵ\ni" ], [ "Value", "10", "2.0", "0.08", "0.2", "0.04", "1.0", "0.01", "0.3 + 4 9(i −1)", "0.3 + 4 9(i −1)", "1 + 21 0(i −1)", "50.0" ] ]
0.75
null
null
3
2307.06450v1
15
[ 146.2469940185547, 373.4419860839844, 466.31239013671876, 398.14898681640625 ]
\begin{table}[H] \caption{Parameters for inter-bank lending model.} \label{table iblwd params} \centering \begin{tabular}{| c || c | c | c | c | c | c | c | c | } \hline Parameter & $N$ & $T$ & $\sigma$ & $q$ & $\epsilon$ & $c$ & $\tau$ & $X^i_0 = \xi^i$ \\ \hline Value & 10 & 1.0 & .05 & 1.0 & 2.0 & 0.25 & 0.25 & $1+0.1 \cdot 1.15^{i-1}$\\ \hline \end{tabular} \end{table}
[ [ "Parameter", "N", "T", "σ", "q", "ϵ", "c", "τ", "X 0i = ξi" ], [ "Value", "10", "1.0", ".05", "1.0", "2.0", "0.25", "0.25", "1 + 0.1 1.15i−1\n·" ] ]
0.810811
null
null
0
1507.08340v1
4
[ 150.9679946899414, 137.9530029296875, 464.3870086669922, 267.7659912109375 ]
\begin{table}[!ht] \renewcommand{\arraystretch}{1.3} \caption{Benchmarks.} \label{Benchmarks} \centering \begin{tabular}{p{2cm}p{2cm}|p{3cm}|p{3cm}} \hline \multicolumn{2}{l|}{\textbf{Benchmarks}} & \textbf{Transformations} & \textbf{Actions} \\ \hline \multicolumn{1}{l|}{Micro-benchmarks} & Word count & map, reduceByKey & saveAsTextFile \\\cline{2-4} \multicolumn{1}{l|}{} & Grep & filter & saveAsTextFile \\ \cline{2-4} \multicolumn{1}{l|}{} & Sort & map, sortByKey & saveAsTextFile \\ \hline \multicolumn{1}{l|}{Classification} & Naive Bayes & map & collect \\ \multicolumn{1}{l|}{} & & & saveAsTextFile \\ \hline \multicolumn{1}{l|}{Clustering} & K-Means & map, filter & takeSample \\ \multicolumn{1}{l|}{} & & mapPartitions & collectAsMap \\ \multicolumn{1}{l|}{} & & reduceByKey & collect \\ \hline \end{tabular} \end{table}
[ [ "Benchmarks", null, "Transformations", "Actions" ], [ "Micro-benchmarks", "Word count", "map, reduceByKey", "saveAsTextFile" ], [ null, "Grep", "filter", "saveAsTextFile" ], [ null, "Sort", "map, sortByKey", "saveAsTextFile" ], [ "Classification", "Naive Bayes", "map", "collect\nsaveAsTextFile" ], [ "Clustering", "K-Means", "map, filter\nmapPartitions\nreduceByKey", "takeSample\ncollectAsMap\ncollect" ] ]
0.826953
null
null
1
1507.08340v1
4
[ 150.9679946899414, 301.02398681640625, 464.3870086669922, 485.73101806640625 ]
\begin{table}[!ht] \renewcommand{\arraystretch}{1.3} \caption{Machine Details.} \label{hardware} \centering \begin{tabular}{l|l|p{6.5cm}} \hline \textbf{Component} & \multicolumn{2}{c}{\textbf{Details}} \\ \hline Processor & \multicolumn{2}{l}{Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture} \\ \hline \multirow{6}{*}{} & Cores & 12 @ 2.7 GHz (Turbo upto 3.5 GHz) \\ \cline{2-3} & Threads & 2 per core \\ \cline{2-3} & Sockets & 2 \\ \cline{2-3} & L1 Cache & 32 KB for instructions and 32 KB for data per core \\ \cline{2-3} & L2 Cache & 256 KB per core \\ \cline{2-3} & L3 Cache (LLC) & 30 MB per socket \\ \hline Memory & \multicolumn{2}{l}{2 x 32 GB, 4 DDR3 channels, Max BW 60 GB/s} \\ \hline OS & \multicolumn{2}{l}{Linux kernel version 2.6.32} \\ \hline JVM & \multicolumn{2}{l}{Oracle Hotspot JDK version 7u71} \\ \hline Spark & \multicolumn{2}{l}{Version 1.3.0} \\ \hline \end{tabular} \end{table}
[ [ "Component", "Details", null ], [ "Processor", "Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture", null ], [ "", "Cores", "12 @ 2.7 GHz (Turbo upto 3.5 GHz)" ], [ null, "Threads", "2 per core" ], [ null, "Sockets", "2" ], [ null, "L1 Cache", "32 KB for instructions and 32 KB for data per\ncore" ], [ null, "L2 Cache", "256 KB per core" ], [ null, "L3 Cache (LLC)", "30 MB per socket" ], [ "Memory", "2 x 32 GB, 4 DDR3 channels, Max BW 60 GB/s", null ], [ "OS", "Linux kernel version 2.6.32", null ], [ "JVM", "Oracle Hotspot JDK version 7u71", null ], [ "Spark", "Version 1.3.0", null ] ]
0.888393
null
null