id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
3 | 1904.05961v3 | 9 | [
78.60390784523703,
180.22633488972983,
157.61173659104568,
252.8696632385254
] | \begin{table}[tb]
% \vspace{-.0em}
% \footnotesize
% \renewcommand{\arraystretch}{1.3}
% \caption{Average Running Time (sec) } \label{tab:time}
% \vspace{-.5em}
% \centering
% \begin{tabular}{r|c|c|c|c}
% \hline
% algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\
% \hline
% farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\
% \hline
% nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\
% \hline
% uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\
% \hline
% RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\
% \hline
% RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\
% \hline
% \end{tabular}
% \vspace{-1em}
% \end{table} | [
[
"",
"farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian"
],
[
null,
""
]
] | 0.480769 | null | null |
4 | 1904.05961v3 | 15 | [
71.8550033569336,
85.47900390625,
277.1319885253906,
157.8079833984375
] | \begin{table}[tb]
%\vspace{-.0em}
\color{blue}
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Error bound $\epsilon$ for MEB ($z=1$)} \label{tab:epsilon, z=1}
%\vspace{-.5em}
\centering
\begin{tabular}{r|c|c|c}
\hline
dataset & coreset size & max relative error & $\epsilon$ \\
\hline
Fisher's iris & 5 (20) & 0.0041 & 0.4127 \\
\hline
Facebook & 20 (80) & 0.0044 & 49.3484 \\
\hline
Pendigits & 40 (400) & 0.0027 & 691.345 \\
\hline
MNIST & 400 & 8.1756 & 189130 \\
\hline
HARS & 400 & & \\
\hline
%LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\
%\hline
\end{tabular}
%\vspace{-.5em}
\end{table} | [
[
"dataset",
"coreset size",
"max relative error",
"ϵ"
],
[
"Fisher’s iris",
"20",
"0.0053",
"0.1073"
],
[
"Facebook",
"80",
"0.0344",
"1.18"
],
[
"Pendigits",
"400",
"0.0026",
"2.1112"
],
[
"MNIST",
"400",
"0.0024",
"10.74"
],
[
"HAR",
"400",
"5.6054e-05",
"3.9212"
]
] | 0.674938 | null | null |
5 | 1904.05961v3 | 15 | [
71.8550033569336,
199.45510864257812,
277.1319885253906,
273.01202392578125
] | \begin{table}[tb]
%\vspace{-.0em}
\color{blue}
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Error bound $\epsilon$ for MEB ($z=2$)} \label{tab:epsilon, z=2}
%\vspace{-.5em}
\centering
\begin{tabular}{r|c|c|c}
\hline
dataset & coreset size & max relative error & $\epsilon$ \\
\hline
Fisher's iris & 5 (20) & 0.0097 & 0.6424 \\
\hline
Facebook & 20 (80) & 0.0345 & 7.0248 \\
\hline
Pendigits & 40 (400) & 0.0023 & 26.2934 \\
\hline
MNIST & 400 & 8.1726 & 434.8897 \\
\hline
(new data) & & & \\
\hline
%LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\
%\hline
\end{tabular}
%\vspace{-.5em}
\end{table} | [
[
"dataset\nFisher’s iris",
"coreset size\n20",
"max relative error\n1.1896e-05",
"ϵ\n0.1093"
],
[
"Facebook",
"80",
"1.9976e-06",
"1.3711"
],
[
"Pendigits",
"400",
"4.3876e-05",
"2.0257"
],
[
"MNIST",
"400",
"0.0020",
"8.53"
],
[
"HAR",
"400",
"4.9972e-07",
"3.5612"
]
] | 0.49642 | null | null |
6 | 1904.05961v3 | 15 | [
310.60457938058033,
94.44598388671875,
567.0517142159598,
154.719970703125
] | \begin{table}[t]
{
%\small
\footnotesize
%\color{blue}
\renewcommand{\arraystretch}{1.3}
\caption{Original Machine Learning Performance (cost for MEB, $k$-means, PCA; accuracy for SVM and NN)} \label{tab:original cost}
%\vspace{-1em}
\centerline{
\begin{tabular}{r|c|c|c|c|c}
\hline
problem & Fisher's & Facebook & Pendigits & MNIST & HAR\\
\hline
MEB & 2.05 & 7.65 & 18.06 & 90.43 & 60.26 \\
\hline
$k$-means & 84.54 & 853.67 & 2.00e+05 & 4.98e+07 & 2.86e+06 \\
\hline
PCA & 1.94 & 197.19 & 910.79 & 1.73e+04 & 4.46e+05 \\
\hline
SVM/NN\footnotemark & 100\% & 89.36\% & 99.33\% & 87.01\% & 78.01\% \\
%\hline
%NN & & & & & \\
\hline
\end{tabular}
}
}
\vspace{.5em}
\end{table} | [
[
"problem",
"Fisher’s",
"Facebook",
"Pendigits",
"MNIST",
"HAR"
],
[
"MEB",
"2.05",
"7.65",
"18.06",
"90.43",
"60.26"
],
[
"k-means",
"84.54",
"853.67",
"2.00e+05",
"4.98e+07",
"2.86e+06"
],
[
"PCA",
"1.94",
"197.19",
"910.79",
"1.73e+04",
"4.46e+05"
],
[
"SVM/NN4",
"100%",
"89.36%",
"99.33%",
"87.01%",
"78.01%"
]
] | 0.803738 | null | null |
7 | 1904.05961v3 | 8 | [
465.7950966971261,
163.474755859375,
542.6723248517072,
243.49267578125
] | \begin{table}[t]
{
%\small
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time}
%\vspace{-1em}
\centerline{
\begin{tabular}{r|c|c|c|c|c}
\hline
algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\
\hline
FP %farthest point
& 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\
\hline
NS %nonuniform samp.
& 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\
\hline
US %uniform samp.
& 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\
\hline
RS %RCC-kmeans
& 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\
\hline
RN %RCC-kmedian
& 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\
\hline
\end{tabular}
}
}
\vspace{.5em}
\end{table} | [
[
"farthest point\nnonuniform sampling\nuniform sampling",
null
],
[
"RCC-kmeans\nRCC-kmedian",
""
]
] | 0.371585 | null | null |
8 | 1904.05961v3 | 9 | [
203.78987312316895,
285.95184326171875,
279.5675640106201,
359.3156337738037
] | \begin{table}[tb]
% \vspace{-.0em}
% \footnotesize
% \renewcommand{\arraystretch}{1.3}
% \caption{Average Running Time (sec) } \label{tab:time}
% \vspace{-.5em}
% \centering
% \begin{tabular}{r|c|c|c|c}
% \hline
% algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\
% \hline
% farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\
% \hline
% nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\
% \hline
% uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\
% \hline
% RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\
% \hline
% RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\
% \hline
% \end{tabular}
% \vspace{-1em}
% \end{table} | [
[
"farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian",
null,
null
],
[
null,
"RCC-\nRCC-",
"kmeans\nkmedian"
]
] | 0.466859 | null | null |
0 | 2301.01542v1 | 31 | [
206.56300354003906,
117.44898986816406,
403.19598388671875,
169.3759765625
] | \begin{table}[t]
\caption{Average test accuracy across clients for different datasets in the settings when $N_{\text{hist}} /N = 50\%$.}
\label{tab:ratio_estimation_exp}
% \vskip 0.15in
\begin{center}
\begin{small}
\begin{sc}
\begin{tabular}{ l | c c c c }
\toprule
\textbf{Dataset} & $D$ & $G$ & $B$ & $d$
\\
\midrule
Synthetic & $1.9$ & $0.4$ & $0.7$ & $21$
\\
CIFAR-10 & $1.0$ & $5.5$ & $2.3$ & $3,353,034$
\\
CIFAR-100 & $1.0$ & $4.7$ & $4.6$ & $3,537,444$
\\
FEMNIST & $5.9$ & $12.9$ & $3.5$ & $867,390$
\\
Shakespeare & $2.6$ & $1.4$ & $6.1$ & $226,180$
\\
\bottomrule
\end{tabular}
\end{sc}
\end{small}
\end{center}
% \vskip -0.1in
\end{table} | [
[
"SYNTHETIC\nCIFAR-10\nCIFAR-100\nFEMNIST\nSHAKESPEARE",
"1.9 0.4 0.7 21\n1.0 5.5 2.3 3, 353, 034\n1.0 4.7 4.6 3, 537, 444\n5.9 12.9 3.5 867, 390\n2.6 1.4 6.1 226, 180"
]
] | 0.397032 | null | null |
0 | 1908.04909v1 | 1 | [
321.5539855957031,
536.426025390625,
553.4600219726562,
564.52099609375
] | \begin{table}[h]
\begin{center}
\begin{tabular}{|l|r|r|r|r|r|r|r|}\hline
& TP & FP & FN & TN & ACC & MCC & FPR \\\hline
\textbf{model A} & 900 & 500 & 100 & 8500 & 94.0\% & 0.73 & 5.6\% \\\hline
\textbf{model B} & 350 & 100 & 650 & 8900 & 92.5\% & 0.49 & 1.1\% \\\hline
\end{tabular}
\end{center}
\caption[Two candidate models]%
{Performance of models A and B. TP is true positives; FP is false positives; FN is false negatives; TN is true negatives; ACC is accuracy; FPR is false positive rate. Compared to model B, model A has better MCC, but worse FPR.}
\label{ex_data_tab}
%\vspace{-20pt}
\end{table} | [
[
"",
"TP",
"FP",
"FN",
"TN",
"ACC",
"MCC",
"FPR"
],
[
"model A",
"900",
"500",
"100",
"8500",
"94.0%",
"0.73",
"5.6%"
],
[
"model B",
"350",
"100",
"650",
"8900",
"92.5%",
"0.49",
"1.1%"
]
] | 0.422594 | null | null |
1 | 1908.04909v1 | 8 | [
92.98300170898438,
47.15399169921875,
256.00299072265625,
75.2490234375
] | \begin{table}[h]
\begin{center}
\begin{tabular}{ | c |c | c | }
\hline
\textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline
\textbf{False} & 146,956 & 5,562 \\ \hline
\textbf{True} & 22,963 & 10,721 \\ \hline
\end{tabular}
\end{center}
\caption{Confusion Matrix - Validation Data - Default Model}
\label{donors_tab2}
% \vspace{-20pt}
\end{table} | [
[
"Target",
"Predicted False",
"Predicted True"
],
[
"False",
"147,417",
"5,101"
],
[
"True",
"13,650",
"20,034"
]
] | 0.545455 | null | null |
2 | 1908.04909v1 | 9 | [
92.98300170898438,
270.469970703125,
256.00299072265625,
298.5639953613281
] | \begin{table}[h]
\begin{center}
\begin{tabular}{ | c | c | c | }
\hline
\textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline
\textbf{False} & 147,417 & 5,101\\ \hline
\textbf{True} & 13,650 & 20,034 \\ \hline
\end{tabular}
\end{center}
\caption{Confusion Matrix - Validation Data - "Best" Model}
\label{donors_tab3}
% \vspace{-20pt}
\end{table} | [
[
"Target",
"Predicted False",
"Predicted True"
],
[
"False",
"276,482",
"1,429"
],
[
"True",
"4,535",
"6,371"
]
] | 0.516129 | null | null |
0 | 2304.14853v1 | 4 | [
73.21099853515625,
611.2139892578125,
276.7539173473011,
667.4030151367188
] | \begin{table}[H]
\centering
\caption{$p$-values for Sleep States using TDA}
\begin{tabular}{| c | c | c | c | c |}
\hline
\textbf{EEG Band} & NREM1 & NREM2 & NREM3 & REM \\
\hline
Delta Band & 0.000 & 0.001 & 0.000 & 0.040 \\
\hline
Theta Band & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
Alpha Band & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
Beta Band & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
Gamma Band & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\label{tab:sleep_state_p_value_pl}
\end{table} | [
[
"EEG Band",
"NREM1",
"NREM2",
"NREM3",
"REM"
],
[
"Delta Band",
"0.000",
"0.001",
"0.000",
"0.040"
],
[
"Theta Band",
"0.000",
"0.000",
"0.000",
"0.000"
],
[
"Alpha Band",
"0.000",
"0.000",
"0.000",
"0.000"
],
[
"Beta Band",
"0.000",
"0.000",
"0.000",
"0.000"
],
[
"Gamma Band",
"0.000",
"0.000",
"0.000",
"0.000"
]
] | 0.946636 | null | null |
0 | 2308.15992v3 | 8 | [
73.57655270894368,
129.3708038330078,
501.71382904052734,
238.49429321289062
] | \begin{table}[h]
\setlength{\abovecaptionskip}{0cm}
\setlength{\belowcaptionskip}{-0.2cm}
\caption{Comparison of Existing Surveys on Cryptocurrency and DeFi Fraud. It covers target platforms, classification method, taxonomy through project life cycle, detail on-chain pattern exploration, AI detection models analysis, DeFi vs. CeFi fraud comparison, and discussion of challenges and future opportunities for each paper. For those classifying by detection methods, fraud taxonomy and on-chain patterns are not applicable (N/A) to them.}
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|m{4cm}<{\centering}|m{3.3cm}<{\centering}|m{3cm}<{\centering}|m{1.3cm}<{\centering}|m{1.4cm}<{\centering}|m{1.3cm}<{\centering}|m{1.4cm}<{\centering}|m{1.7cm}<{\centering}|}
\hline
\textbf{Paper} & \textbf{Platforms} & \textbf{Classification} & \textbf{Project life cycle} & \textbf{On-chain Patterns} & \textbf{AI Methods} & \textbf{Comp. w/ CeFi} & \textbf{Future Opportunities}\\
\hline
Badawi and Jourdan (2020) \cite{badawi2020cryptocurrencies} & General cryptocurrencies & By frauds & $\times$ & $\times$ & \checkmark & $\times$& $\times$\\
\hline
Li et al. (2020) \cite{li2020survey} & General cryptocurrencies & By detection methods & N/A & N/A & \checkmark & $\times$ &\checkmark \\
\hline
Eigelshoven et al. (2021) \cite{eigelshoven2021cryptocurrency} & General cryptocurrencies & By frauds & $\times$ & \checkmark & $\times$ & \checkmark & \checkmark \\
\hline
Bartoletti et al. (2021) \cite{bartoletti2021cryptocurrency} & General cryptocurrencies & By frauds & $\times$& \checkmark & $\times$ & $\times$ & \checkmark \\
\hline
Trozze et al. (2022) \cite{trozze2022cryptocurrencies} & General cryptocurrencies & By frauds & $\times$ & $\times$ & $\times$ & $\times$ & \checkmark \\
\hline
Li (2022) \cite{li2022survey} & Ethereum & By detection methods & N/A & N/A & \checkmark & $\times$ & \checkmark \\
\hline
Yan et al. (2022) \cite{yan2022blockchain} & Public and consortium blockchain & By frauds & $\times$ & $\times$ & \checkmark & $\times$ & \checkmark \\
\hline
Wu et al. (2023) \cite{wu2023financial} & Web3-metaverse & By frauds & $\times$ & $\times$ & $\times$ & \checkmark & \checkmark \\
\hline
Krishnan et al. (2023) \cite{krishnan2023scams} & General cryptocurrencies & By frauds & $\times$ & $\times$ & \checkmark & $\times$ & $\times$ \\
\hline
Our Survey & DeFi & By frauds & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark\\
\hline
\end{tabular}}
\label{table:review-comparison}
\end{table} | [
[
"Paper",
"Platforms",
"Classification",
"Project\nlife cycle",
"On-chain\nPatterns",
"AI\nMethods",
"Comp. w/\nCeFi",
"Future Op-\nportunities"
],
[
"Badawi and Jourdan (2020) [12]",
"General cryptocurrencies",
"By frauds",
"×",
"×",
"✓",
"×",
"×"
],
[
"Li et al. (2020) [104]",
"General cryptocurrencies",
"By detection methods",
"N/A",
"N/A",
"✓",
"×",
"✓"
],
[
"Eigelshoven et al. (2021) [52]",
"General cryptocurrencies",
"By frauds",
"×",
"✓",
"×",
"✓",
"✓"
],
[
"Bartoletti et al. (2021) [14]",
"General cryptocurrencies",
"By frauds",
"×",
"✓",
"×",
"×",
"✓"
],
[
"Trozze et al. (2022) [152]",
"General cryptocurrencies",
"By frauds",
"×",
"×",
"×",
"×",
"✓"
],
[
"Li (2022) [106]",
"Ethereum",
"By detection methods",
"N/A",
"N/A",
"✓",
"×",
"✓"
],
[
"Yan et al. (2022) [183]",
"Public and consortium\nblockchain",
"By frauds",
"×",
"×",
"✓",
"×",
"✓"
],
[
"Wu et al. (2023) [175]",
"Web3-metaverse",
"By frauds",
"×",
"×",
"×",
"✓",
"✓"
],
[
"Krishnan et al. (2023) [95]",
"General cryptocurrencies",
"By frauds",
"×",
"×",
"✓",
"×",
"×"
],
[
"Our Survey",
"DeFi",
"By frauds",
"✓",
"✓",
"✓",
"✓",
"✓"
]
] | 0.606001 | null | null |
0 | 2405.17731v1 | 5 | [
63.372429438999724,
117.75799560546875,
284.47127859933033,
185.90301513671875
] | \begin{table}[htbp]
\centering
\caption{Data Loading times for all databases across the five datasets (time in seconds)}
\label{tab:loadtime}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Databases & SF1 & SF2 & SF3 & SF4 & SF5 \\ \hline
PostgreSQL & 37s & 375s & 857s & 1089s & 1481s\\ \hline
MongoDB & 90s & 1250s & 1701s & 2275s & 2810s \\ \hline
ArangoDB & 295s & 2249s & 3964s & 12169s & 15162s \\ \hline
Redis & 1495s & 3245s & 5023s & 7748s & 10289s\\ \hline
Apache Kudu & 42s & 95s & 146s & 192s & 240s\\ \hline
\end{tabular}
\end{table} | [
[
"Databases",
"SF1",
"SF2",
"SF3",
"SF4",
"SF5"
],
[
"PostgreSQL",
"37s",
"375s",
"857s",
"1089s",
"1481s"
],
[
"MongoDB",
"90s",
"1250s",
"1701s",
"2275s",
"2810s"
],
[
"ArangoDB",
"295s",
"2249s",
"3964s",
"12169s",
"15162s"
],
[
"Redis",
"1495s",
"3245s",
"5023s",
"7748s",
"10289s"
],
[
"Apache Kudu",
"42s",
"95s",
"146s",
"192s",
"240s"
]
] | 1 | null | null |
0 | 1903.09493v1 | 5 | [
264.3240051269531,
116.03497314453125,
351.0320129394531,
269.85797119140625
] | \begin{table}[ht]
\centering
\begin{tabular}{c|c}
\hline
\textbf{Reference} & \textbf{Paper} \\
& \textbf{number} \\
\cline{1-2}
\cite{Dwork:12} & [1] \\
\cite{Kleinberg:16} & [2] \\
\cite{Berk:17} & [3] \\
\cite{Hardt:16} & [4] \\
\cite{Corbett:17} & [5] \\
\cite{Simoiu:17} & [6] \\
\cite{Chouldechova:16} & [7] \\
\cite{Zafar:17} & [8] \\
\cite{Kusner:18} & [9] \\
\cite{Dieterich:16} & [10] \\
\cite{Zafar2:17} & [11] \\
\cite{Binns:18} & [12] \\
\hline
\end{tabular}
\caption{References}
\label{Table:2}
\end{table} | [
[
"Reference",
"Paper\nnumber"
],
[
"[12]\n[18]\n[2]\n[15]\n[9]\n[24]\n[7]\n[28]\n[19]\n[10]\n[27]\n[4]",
"[1]\n[2]\n[3]\n[4]\n[5]\n[6]\n[7]\n[8]\n[9]\n[10]\n[11]\n[12]"
]
] | 0.409091 | null | null |
0 | 2309.04210v1 | 5 | [
315.2139892578125,
459.90899658203125,
555.9860229492188,
498.0660095214844
] | \begin{table}
\renewcommand{\arraystretch}{1.3}
\caption{Comparison of all three observers, showing the mean and standard deviation of the rms voltage error $\obserrrms$ (in $mV$) across twenty trials.}
\label{table:results_full}
\centering
\begin{tabular}{|c|c|c|c|c|} \hline
& Centralized & Distributed & $\numredundant=3$ & $\numredundant=9$\\
\hline\hline
Mean & 1.15 & 0.0788 & 0.0280 & 0.0241 \\ \hline
Standard Deviation & 0.14 & 0.017 & 0.0056 & 0.0030 \\
\hline
\end{tabular}
\end{table} | [
[
"",
"Centralized",
"Distributed",
"N = 3",
"N = 9"
],
[
"Mean",
"1.15",
"0.0788",
"0.0280",
"0.0241"
],
[
"Standard Deviation",
"0.14",
"0.017",
"0.0056",
"0.0030"
]
] | 0.87395 | null | null |
0 | 1604.02608v1 | 6 | [
211.61500549316406,
154.77801513671875,
399.63299560546875,
216.5469970703125
] | \begin{table}[!ht]
\caption{Data intensive users supported by the OSDC}
\begin{center}
\begin{tabular}{|l | r|}
\hline
\# core hours during month & \# of users \\
\hline
% 10,000 & 435 \\ \hline
20,000 & 120 \\ \hline
50,000 & 34 \\ \hline
100,000 & 23 \\ \hline
200,000 & 5 \\
\hline
\end{tabular}
\end{center}
\label{tab:users}
\footnotesize{The estimated cost of 100,000 core hours on a commercial cloud service provider like AWS is \$40,000 per month.}
\end{table} | [
[
"# core hours during month",
"# of users"
],
[
"20,000",
"120"
],
[
"50,000",
"34"
],
[
"100,000",
"23"
],
[
"200,000",
"5"
]
] | 0.543554 | null | null |
0 | 2101.04025v2 | 6 | [
53.79800033569336,
128.71697998046875,
306.6470031738281,
202.739990234375
] | \begin{table}[h]
\renewcommand{\arraystretch}{1.3}
\caption{Serverless Fit Times and Costs with 1024 MB Memory and Per-Sample-Split Scaling
(Mean, Min \& Max in 100 Runs).}
\label{table_timing_example}
\centering
\begin{tabular}{l || c | c | c}
\hline
& \bfseries Mean & \bfseries Min & \bfseries Max \\
\hline\hline
\bfseries Fit Time (s) & 19.82 & 19.53 & 21.49 \\
\bfseries Billed Duration (GB-s) & 3515.36 & 3492.01 & 3571.42 \\
\bfseries Avg.\ Duration per Invocation (s) & 17.16 & 17.05 & 17.44 \\
\bfseries Total Response Time (s) & 19.09 & 18.81 & 20.76 \\
\hline
\end{tabular}
\end{table} | [
[
"",
"Mean",
"Min",
"Max"
],
[
"Fit Time (s)\nBilled Duration (GB-s)\nAvg. Duration per Invocation (s)\nTotal Response Time (s)",
"19.82\n3515.36\n17.16\n19.09",
"19.53\n3492.01\n17.05\n18.81",
"21.49\n3571.42\n17.44\n20.76"
]
] | 0.573427 | null | null |
0 | 2005.03197v4 | 5 | [
68.84456565163352,
320.3421630859375,
282.4513327858665,
400.2100524902344
] | \begin{table}[htb!]
%\fontsize{7}{7}\selectfont
\caption{(MFC Results) Vanilla HAC and FHAC (Ours)}\label{table1}
\begin{center}
\tabcolsep=0.10cm
\resizebox{0.42\textwidth}{!}{
\begin{tabular}{|c|c|c|c|c|c|c|c|}%
\hline
\textbf{Dataset} & \textbf{Linkage} & \textbf{$\theta_1$} & \textbf{$\theta_2$} & \textbf{MFC (Vanilla)} & \textbf{MFC (FHAC)}\\
\hline
\hline
\texttt{census} & Average & 0.001 & 0.001 & \textbf{0.0853} & \textbf{ 0.0853}\\
\hline
\texttt{census} & Complete & 0.001 & 0.001 & 0.1806 & \textbf{0.0853}\\
\hline
\texttt{census} & Single & 0.001 & 0.65 & 1.248 & \textbf{0.752}\\
\hline
\texttt{creditcard} & Average & 0.00005 & 0.005 & 1.2439 & \textbf{1.0}\\
\hline
\texttt{creditcard} & Complete & 0.00005 & 0.005 & 0.744 & \textbf{0.60}\\
\hline
\texttt{creditcard} & Single & 0.0075 & 0.5 & 1.5 & \textbf{ 0.778}\\
\hline
\texttt{bank} & Average & 0.0001 & 0.05 & 1.332 & \textbf{0.6679}\\
\hline
\texttt{bank} & Complete & 0.5 & 0.05 & 1.332 & \textbf{0.4457}\\
\hline
\texttt{bank} & Single & 0.001 & 0.65 & 1.332 & \textbf{0.6653}\\
\hline
\end{tabular}}
\end{center}
\end{table} | [
[
"Dataset",
"Linkage",
"θ1",
"θ2",
"MFC (Vanilla)",
"MFC (FHAC)"
],
[
"census",
"Average",
"0.001",
"0.001",
"0.0853",
"0.0853"
],
[
"census",
"Complete",
"0.001",
"0.001",
"0.1806",
"0.0853"
],
[
"census",
"Single",
"0.001",
"0.65",
"1.248",
"0.752"
],
[
"creditcard",
"Average",
"0.00005",
"0.005",
"1.2439",
"1.0"
],
[
"creditcard",
"Complete",
"0.00005",
"0.005",
"0.744",
"0.60"
],
[
"creditcard",
"Single",
"0.0075",
"0.5",
"1.5",
"0.778"
],
[
"bank",
"Average",
"0.0001",
"0.05",
"1.332",
"0.6679"
],
[
"bank",
"Complete",
"0.5",
"0.05",
"1.332",
"0.4457"
],
[
"bank",
"Single",
"0.001",
"0.65",
"1.332",
"0.6653"
]
] | 0.980392 | null | null |
1 | 2005.03197v4 | 5 | [
68.84456565163352,
436.6025695800781,
282.4513327858665,
515.1467895507812
] | \begin{table}[htb!]
\caption{(Balance Results) Vanilla HAC and FHAC (Ours)}\label{table2}
\begin{center}
\tabcolsep=0.09cm
\resizebox{0.42\textwidth}{!}{
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Dataset} & \textbf{Linkage} & $\theta_1$ & $\theta_2$ & \textbf{Balance(Vanilla)} & \textbf{Balance(FHAC)}\\
\hline
\hline
\texttt{census} & Average & 0.001 & 0.001 & \textbf{0.8865} & \textbf{0.8865}\\
\hline
\texttt{census} & Complete & 0.001 & 0.001 & 0.7599 & \textbf{0.8865}\\
\hline
\texttt{census} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.9385}\\
\hline
\texttt{creditcard} & Average & 0.05 & 0.1 & 0.0 & \textbf{0.427}\\
\hline
\texttt{creditcard} & Complete & 0.0005 & 1.0 & 0.0 & \textbf{0.7105}\\
\hline
\texttt{creditcard} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.7959}\\
\hline
\texttt{bank} & Average & 0.045 & 0.09 & 0.0 & \textbf{0.5567}\\
\hline
\texttt{bank} & Complete & 0.5 & 0.05 & 0.0 & \textbf{0.3327}\\
\hline
\texttt{bank} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.8099}\\
\hline
\end{tabular}}
\end{center}
\end{table} | [
[
"Dataset",
"Linkage",
"θ1",
"θ2",
"Balance(Vanilla)",
"Balance(FHAC)"
],
[
"census",
"Average",
"0.001",
"0.001",
"0.8865",
"0.8865"
],
[
"census",
"Complete",
"0.001",
"0.001",
"0.7599",
"0.8865"
],
[
"census",
"Single",
"0.0005",
"1.0",
"0.0",
"0.9385"
],
[
"creditcard",
"Average",
"0.05",
"0.1",
"0.0",
"0.427"
],
[
"creditcard",
"Complete",
"0.0005",
"1.0",
"0.0",
"0.7105"
],
[
"creditcard",
"Single",
"0.0005",
"1.0",
"0.0",
"0.7959"
],
[
"bank",
"Average",
"0.045",
"0.09",
"0.0",
"0.5567"
],
[
"bank",
"Complete",
"0.5",
"0.05",
"0.0",
"0.3327"
],
[
"bank",
"Single",
"0.0005",
"1.0",
"0.0",
"0.8099"
]
] | 0.979899 | null | null |
2 | 2005.03197v4 | 5 | [
331.9150848388672,
178.67807006835938,
545.4621948242187,
213.11260986328125
] | \begin{table}[htbp]
\caption{(MFC Results) FHAC, AFHAC-R, and AFHAC-V}\label{table3}
\begin{center}
%\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|}
\tabcolsep=0.10cm
\resizebox{0.42\textwidth}{!}{
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Dataset} & \textbf{MFC (FHAC)} & \textbf{MFC (AFHAC-V)} & \textbf{MFC (AFHAC-R)}\\
\hline
\hline
\texttt{creditcard} & \textbf{1.0} & 2.8505 & 1.5825 \\
\hline
\texttt{census} & \textbf{0.0853} & 4.0 & 4.0 \\
\hline
\texttt{bank} & 0.6679 & \textbf{0.03648} & 2.0027\\
\hline
\end{tabular}}
\end{center}
\end{table} | [
[
"Dataset",
"MFC (FHAC)",
"MFC (AFHAC-V)",
"MFC (AFHAC-R)"
],
[
"creditcard",
"1.0",
"2.8505",
"1.5825"
],
[
"census",
"0.0853",
"4.0",
"4.0"
],
[
"bank",
"0.6679",
"0.03648",
"2.0027"
]
] | 1 | null | null |
3 | 2005.03197v4 | 5 | [
331.9150848388672,
407.85089111328125,
545.4621948242187,
440.2733459472656
] | \begin{table}[htbp]
\caption{(Balance Results) FHAC, AFHAC-R, AFHAC-V}\label{table4}
\begin{center}
%\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|}
\tabcolsep=0.09cm
\resizebox{0.42\textwidth}{!}{
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Dataset} & \textbf{Balance(FHAC)} & \textbf{Balance(AFHAC-V)} & \textbf{Balance(AFHAC-R)}\\
\hline
\hline
\texttt{creditcard} & \textbf{0.427} & 0.0 & 0.416 \\
\hline
\texttt{census} & \textbf{0.8865} & 0.2 & 0.0 \\
\hline
\texttt{bank} & 0.5567 & \textbf{0.9474} & 0.0\\
\hline
\end{tabular}}
\end{center}
\end{table} | [
[
"Dataset",
"Balance(FHAC)",
"Balance(AFHAC-V)",
"Balance(AFHAC-R)"
],
[
"creditcard",
"0.427",
"0.0",
"0.416"
],
[
"census",
"0.8865",
"0.2",
"0.0"
],
[
"bank",
"0.5567",
"0.9474",
"0.0"
]
] | 1 | null | null |
0 | 2211.00948v2 | 13 | [
246.5290069580078,
592.0690307617188,
362.9800109863281,
693.6380004882812
] | \begin{table}
\centering
\begin{tabular}{c|c}
& \textbf{Huber loss} \\ \hline
\textbf{$0_th$ Round} & 3.91E+01 \\ \hline
\textbf{$1_st$ Round} & 3.68E+01 \\ \hline
\textbf{$2_nd$ Round} & 3.44E+01 \\ \hline
\textbf{$3_rd$ Round} & 2.49E+01 \\ \hline
\textbf{$4_th$ Round} & 1.66E+01 \\ \hline
\textbf{$5_th$ Round} & 1.42E+01 \\ \hline
\textbf{$6_th$ Round} & 2.99E+01 \\ \hline
\textbf{$7_th$ Round} & 3.22E+01 \\ \hline
\end{tabular}
\caption{Loss Values In Different Rounds}
\label{tab:store-sizec}
\vspace{4mm}
\end{table} | [
[
"",
"Huber loss"
],
[
"0 h Round\nt",
"3.91E+01"
],
[
"1 t Round\ns",
"3.68E+01"
],
[
"2 d Round\nn",
"3.44E+01"
],
[
"3 d Round\nr",
"2.49E+01"
],
[
"4 h Round\nt",
"1.66E+01"
],
[
"5 h Round\nt",
"1.42E+01"
],
[
"6 h Round\nt",
"2.99E+01"
],
[
"7 h Round\nt",
"3.22E+01"
]
] | 0.750656 | null | null |
1 | 2211.00948v2 | 14 | [
165.6510009765625,
428.6319885253906,
443.8580017089844,
451.0480041503906
] | \begin{table}[H]
\centering
\begin{tabular}{@{}c|ccc@{}}
& \textbf{Without Risk-Neutral} & \textbf{With Risk-Neutral} \\ \hline
\textbf{Loss } &$1.18E+02$($1000_{th}$iteration) &$2.37E+02$($253_{th}$iteration) \\ \hline
\end{tabular}
\caption{Loss of two jump-diffusion models}
\label{tab:5 assets loss}
\vspace{-4mm}
\end{table} | [
[
"",
"Without Risk-Neutral With Risk-Neutral"
],
[
"Loss",
"1.18E + 02(1000 iteration) 2.37E + 02(253 iteration)\nth th"
]
] | 0.504673 | null | null |
0 | 1907.07305v1 | 20 | [
151.3139991760254,
359.5298018022017,
473.27100372314453,
387.2619934082031
] | \begin{table}[!htb]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\rowcolor[rgb]{0,1,1}
$S$ & $r$ & $q$ & $T_{max}$ & $K_{\max}$ & Call/Put & $N_u$ & $N_v$ & $R_c$ \\
\hline
100.00 & 0.05 & 0.01 & 1.00 & 400.00 & Call & 200 & 100 & 20 \\
\hline
\end{tabular}
\caption{Parameters of the test.}
\label{inputs}
\end{center}
\end{table} | [
[
"S",
"r",
"q",
"T\nmax",
"K\nmax",
"Call/Put",
"N\nu",
"N\nv",
"R\nc"
],
[
"100.00",
"0.05",
"0.01",
"1.00",
"400.00",
"Call",
"200",
"100",
"20"
]
] | 0.739336 | null | null |
1 | 1907.07305v1 | 24 | [
166.64599778917102,
65.93869018554688,
457.9391038682726,
163.44000244140625
] | \begin{table}[!htb]
\begin{center}
\begin{tabular}{|r|r|r|r|}
\hline
\rowcolor[rgb]{0,1,1}
Step in time & Iterations per step & $\varepsilon \ \ $ & $t$ elapsed, secs \\
\hline
1 & 20 & 1.5e-4 & 16 \\
\hline
2 & 3 & 2.3e-6 & 2.7 \\
\hline
3 & 3 & 1.9e-6 & 2.8 \\
\hline
5 & 3 & 1.4e-6 & 2.8 \\
\hline
10 & 3 & 8.3e-7 & 2.8 \\
\hline
20 & 3 & 3.8e-7 & 2.8 \\
\hline
\end{tabular}
\caption{Convergence of the Picard iterations for various steps in time $T$. The time step $\Delta T$ = 0.01.}
\label{conv}
\end{center}
\end{table} | [
[
"Step in time",
"Iterations per step",
"ε",
"t elapsed, secs"
],
[
"1",
"20",
"1.5e-4",
"16"
],
[
"2",
"3",
"2.3e-6",
"2.7"
],
[
"3",
"3",
"1.9e-6",
"2.8"
],
[
"5",
"3",
"1.4e-6",
"2.8"
],
[
"10",
"3",
"8.3e-7",
"2.8"
],
[
"20",
"3",
"3.8e-7",
"2.8"
]
] | 0.682809 | null | null |
0 | 2110.07519v1 | 21 | [
36.68600082397461,
208.1970418294271,
279.2229919433594,
248.8449910481771
] | \begin{table}[tb]
\centering
\caption{Index expansion rate (index size as a percentage of the original data size).}\label{table5}
\hspace*{-0.3cm}
\begin{tabular}{|c|c|c|c|}
\hline
&Synthetic&Seismic&SALD\\
& {100GB} & {100GB} & {100GB} \\
& {100M series} & {100M series} & {200M series} \\
\hline
index expansion rate&5.7\%& 5.1\%& 10.5\%\\
\hline
\end{tabular}
\end{table} | [
[
"",
"Synthetic\n100GB\n100M series",
"Seismic\n100GB\n100M series",
"SALD\n100GB\n200M series"
],
[
"index expansion rate",
"5.7%",
"5.1%",
"10.5%"
]
] | 0.762332 | null | null |
1 | 2110.07519v1 | 21 | [
131.4929962158203,
107.9210205078125,
439.4949951171875,
159.72698974609375
] | \begin{table}[tb]
% \centering
% \scriptsize
% \caption{Query answering algorithms comparison: number of times an operation is executed (average over 100 queries). }\label{table4}
% \begin{tabular}{|c|c|c|c|c|c|}
% \hline
% & {\bf ParIS} & {\bf ParIS-TS} & {\bf ParIS-TS-LB} & {\bf MESSI-sq} & {\bf MESSI-mq} \\
% \hline
% Insert node &n/a&69K& 69K& 15K& 15K\\
% \hline
% Delete node&n/a&20K &20K& 11K& 11K\\
% \hline
% LBD calculation &100M& 69K &9M& 9M &9M\\
% \hline
% RD calculation &112K &9M &52K &54K &54K\\
% \hline
% \end{tabular}
%\end{table} | [
[
"",
"ParIS+",
"ParIS+TS",
"ParIS+TS-LB",
"MESSI-sq",
"MESSI-mq"
],
[
"PQ ins. node",
"n/a",
"69,117",
"69,134",
"14,620",
"14,611"
],
[
"PQ del. node",
"n/a",
"20,051",
"20,111",
"11,152",
"10,747"
],
[
"LBD calcul.",
"100 M",
"69,117",
"9,173,401",
"9,175,400",
"9,170,162"
],
[
"RD calcul.",
"112,321",
"9,183,312",
"52,139",
"54,207",
"53,919"
]
] | 0.444444 | null | null |
2 | 2110.07519v1 | 21 | [
308.25,
198.322021484375,
519.970100402832,
269.62767537434894
] | \begin{table}[tb]
\centering
\makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (Euclidean distance).}
{
\begin{tabular}{|c|c|c|c|c|}
\hline
%Number of nearest neighbors
& {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\
\hline
number of BSF& & & & \\
%updates/query&11.97&20.92&45.58&258.04\\
updates/query&11.9&20.9&45.6&258.1\\
\hline
BSF update time& & & &\\ %$\mu$sec/query&0.51&5.07&19.12&186.47\\
$\mu$sec/query&0.5&5.1&19.1&186.5\\
\hline
% BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\%
BSF update time& & & &\\ query time \% &0.001\% & 0.01\% & 0.04\% & 0.3\%
\\
\hline
\end{tabular}
} % font size
\vspace*{0.1cm}
\label{table2}
\end{table} | [
[
"",
"1-NN",
"5-NN",
"10-NN",
"50-NN"
],
[
"number of BSF\nupdates/query",
"11.9",
"20.9",
"45.6",
"258.1"
],
[
"BSF update time\nµsec/query",
"0.5",
"5.1",
"19.1",
"186.5"
],
[
"BSF update time\nquery time %",
"0.001%",
"0.01%",
"0.04%",
"0.3%"
]
] | 0.617424 | null | null |
3 | 2110.07519v1 | 23 | [
51.75600051879883,
286.10198974609375,
265.49737548828125,
357.4350280761719
] | \begin{table}[tb]
\centering
\makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 5\% warping).}
{
\begin{tabular}{|c|c|c|c|c|}
\hline
%Number of nearest neighbors
& {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\
\hline
number of BSF& & & & \\
%updates/query&22.71& 83.94& 160.2& 672.35\\
updates/query&22.7& 83.9& 160.2& 672.4\\
\hline
BSF update time& & & &\\ %$\mu$sec/query&4.92&19.95& 50.21&473.27
$\mu$sec/query&4.9&19.9& 50.2&473.3
\\
\hline
% BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\%
BSF update time& & & &\\ query time \textperthousand
% &0.0072\textperthousand
% &0.027\textperthousand
% &0.062\textperthousand
% &0.54\textperthousand
&0.007\textperthousand
&0.03\textperthousand
&0.06\textperthousand
&0.5\textperthousand
\\
\hline
\end{tabular}
} % font size
\vspace*{0.1cm}
\label{tabledtw5}
\end{table} | [
[
"",
"1-NN",
"5-NN",
"10-NN",
"50-NN"
],
[
"number of BSF\nupdates/query",
"22.7",
"83.9",
"160.2",
"672.4"
],
[
"BSF update time\nµsec/query",
"4.9",
"19.9",
"50.2",
"473.3"
],
[
"BSF update time\nquery time ‰",
"0.007‰",
"0.03‰",
"0.06‰",
"0.5‰"
]
] | 0.471264 | null | null |
4 | 2110.07519v1 | 23 | [
47.63600158691406,
401.4490051269531,
270.5639885796441,
472.7820129394531
] | \begin{table}[tb]
\centering
\makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 10\% warping).}
{
\begin{tabular}{|c|c|c|c|c|}
\hline
%Number of nearest neighbors
& {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\
\hline
number of BSF& & & & \\
%updates/query&45.83& 124.73& 221.36& 854.04\\
updates/query&45.8& 124.7& 221.4& 854.1\\
\hline
BSF update time& & & &\\
%$\mu$sec/query&11.91 &31.46&72.51&574.22
$\mu$sec/query&11.9 &31.5&72.5&574.2
\\
\hline
% BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\%
BSF update time& & & &\\ query time \textperthousand
% &0.0031\textperthousand&
% 0.0076\textperthousand&
% 0.0016\textperthousand&
% 0.12\textperthousand
&0.003\textperthousand&
0.008\textperthousand&
0.002\textperthousand&
0.1\textperthousand
\\
\hline
\end{tabular}
} % font size
\vspace*{0.1cm}
\label{tabledtw10}
\end{table} | [
[
"",
"1-NN",
"5-NN",
"10-NN",
"50-NN"
],
[
"number of BSF\nupdates/query",
"45.8",
"124.7",
"221.4",
"854.1"
],
[
"BSF update time\nµsec/query",
"11.9",
"31.5",
"72.5",
"574.2"
],
[
"BSF update time\nquery time ‰",
"0.003‰",
"0.008‰",
"0.002‰",
"0.1‰"
]
] | 0.476056 | null | null |
0 | 1811.01315v2 | 4 | [
163.9600067138672,
133.2239990234375,
427.41400146484375,
385.5770263671875
] | \begin{table}[!h]
\centering
\caption{List of Abbreviations and Acronyms.}
\begin{tabular}{c|c}
\hline
MNL & Multinomial logit \\ \hline
NB & Naive Bayes \\ \hline
CART & Classification and regression trees \\ \hline
RF & Random forest \\\hline
BOOST & Boosting trees \\\hline
BAG & Bagging trees \\\hline
SVM & Support vector machines \\\hline
NN & Neural networks \\\hline
AIC & Akaike information criterion \\\hline
BIC & Bayesian information criterion \\\hline
Min & Minimum \\\hline
Max & Maximum \\\hline
SD & Standard deviation \\\hline
SP & Stated-preference \\\hline
RP & Revealed-preference \\\hline
IIA & Independence of irrelevant alternatives \\ \hline
PT & Public transit \\ \hline
\end{tabular}
\label{tab:acy}
\end{table} | [
[
"MNL",
"Multinomial logit"
],
[
"NB",
"Naive Bayes"
],
[
"CART",
"Classification and regression trees"
],
[
"RF",
"Random forest"
],
[
"BOOST",
"Boosting trees"
],
[
"BAG",
"Bagging trees"
],
[
"SVM",
"Support vector machines"
],
[
"NN",
"Neural networks"
],
[
"AIC",
"Akaike information criterion"
],
[
"BIC",
"Bayesian information criterion"
],
[
"Min",
"Minimum"
],
[
"Max",
"Maximum"
],
[
"SD",
"Standard deviation"
],
[
"SP",
"Stated-preference"
],
[
"RP",
"Revealed-preference"
],
[
"IIA",
"Independence of irrelevant alternatives"
],
[
"PT",
"Public transit"
]
] | 0.990099 | null | null |
1 | 1811.01315v2 | 6 | [
65.09200286865234,
133.2239990234375,
526.8619995117188,
547.7470092773438
] | \begin{table}[!t]
\centering
\caption{List of Symbols and Notations Used in the Paper}
\footnotesize
\begin{tabular}{c|c}
\hline
\bf{} Symbols & \bf{} Description \\
\hline
$K$ & Total number of alternatives \\
\hline
$N$ & Total number of observations \\
\hline
$P$ & Total number of features\\
\hline
$\boldsymbol{X}$ & Input data for logit models containing $P$ features with $N$ observations for $K$ alternatives \\
\hline
$\boldsymbol X_{k,p}$ & Feature $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\
\hline
$\boldsymbol{X}_{k,-p}$ & All the features except $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\
\hline
$\boldsymbol{X}_{ik}$ & A row-vector for the $i$th observation for alternative $k, k = 1, ..., K$ \\
\hline
$\boldsymbol{X}_k$ & Input data for alternative $k$, $\boldsymbol{X}_k = [\boldsymbol{X}_{.k1}; ...; \boldsymbol{X}_{.kP}]$ where $\boldsymbol{X}_{.kp} = [X_{1kp}, ..., X_{Nkp}]$\\
\hline
$\boldsymbol{X}_i$ & The $i$th observation of $\boldsymbol{X}$, $\boldsymbol{X}_i = [\boldsymbol{X}_{i.1}, ..., \boldsymbol{X}_{i.P}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$ \\
\hline
$\boldsymbol{X}_p$ & The feature $p$ of $\boldsymbol{X}$, $\boldsymbol{X}_p = [\boldsymbol{X}_{1.p}, ..., \boldsymbol{X}_{N.p}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$\\
\hline
$\boldsymbol{Z}$ & Input data for machine-learning models containing $P$ features and $N$ observations\\
\hline
$\boldsymbol Z_{p}$ & Feature $p$ of $\boldsymbol{Z}$\\
\hline
$\boldsymbol Z_{-p}$ & All the features except $p$ of $\boldsymbol{Z}$\\
\hline
$\boldsymbol{Z}_i$ & $i$th observation of $\boldsymbol{Z}, \boldsymbol{Z}_i = [Z_{i1}, ..., Z_{iP}$]\\
\hline
$U_k(\boldsymbol{X}_k|\boldsymbol{\beta}_k)$ & Utility function for mode $k$ \\
\hline
$\boldsymbol{\beta}_k$ & Parameter vector for alternative $k$ of MNL model\\
\hline
$\boldsymbol{\beta}$ & Parameter matrix of MNL model, $\boldsymbol{\beta} = [\boldsymbol{\beta}_1,..., \boldsymbol{\beta}_K]$ \\
\hline
$\hat{\boldsymbol{\beta}}$ & Estimated parameter matrix of MNL model \\
\hline
$\boldsymbol{\varepsilon}_{k}$ & Random error for alternative $k$ of MNL model \\
\hline
$\boldsymbol{Y}$ & Output mode choice data \\
\hline
$\hat{Y}_i$ & Estimated mode choice for observation $i$ \\
\hline
$\boldsymbol{\theta}$ & Parameter or hyperparameter vector for machine-learning models\\
\hline
$\hat{\boldsymbol{\theta}}$ & Estimated parameter or hyperparameter vector\\
\hline
$f(\boldsymbol{Z}|\boldsymbol{\theta})$ & Machine-learning models based on $\boldsymbol{Z}$ and $\boldsymbol{\theta}$ \\
\hline
$p_{ik}$ & Probability of choosing alternative $k$ of observation $i$ \\
\hline
$\hat{p}_{ik}$ & Predicted probability for choosing alternative $k$ of observation $i$\\
\hline
$I_k(\hat{Y}_i)$ & Indicator function that equals to 1 if $\hat{Y}_i = k$ \\
\hline
$P_k(\boldsymbol{X}|\hat{ \boldsymbol{\beta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{X}$ and $\hat{ \boldsymbol{\beta}}$ for logit models\\
\hline
$Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{Z}$ and $\hat{ \boldsymbol{\theta}}$ for machine-learning models\\
\hline
$E_k(\cdot)$ & Arc elasticity for alternative $k$\\
\hline
$M_k(\cdot)$ & Marginal effect for alternative $k$\\
\hline
$\Delta$ & Constant\\
\hline
\end{tabular}
\label{tab:symbol_des}
\end{table} | [
[
"Symbols",
"Description"
],
[
"K",
"Total number of alternatives"
],
[
"N",
"Total number of observations"
],
[
"P",
"Total number of features"
],
[
"X",
"Input data for logit models containing P features with N observations for K alternatives"
],
[
"X\nk,p",
"Feature p for alternative k, k = 1, ..., K of X"
],
[
"X\nk,−p",
"All the features except p for alternative k, k = 1, ..., K of X"
],
[
"X\nik",
"A row-vector for the ith observation for alternative k, k = 1, ..., K"
],
[
"X\nk",
"Input data for alternative k, X = [X .k1; ...; X ] where X = [X 1kp, ..., X Nkp]\nk .kP .kp"
],
[
"X\ni",
"The ith observation of X, X = [X i.1, ..., X ] where X = [X i1p; ...; X iKp]\ni i.P i.p"
],
[
"X\np",
"The feature p of X, X = [X 1.p, ..., X N.p] where X = [X i1p; ...; X iKp]\np i.p"
],
[
"Z",
"Input data for machine-learning models containing P features and N observations"
],
[
"Z\np",
"Feature p of Z"
],
[
"Z\n−p",
"All the features except p of Z"
],
[
"Z\ni",
"ith observation of Z, Z = [Z i1, ..., Z ]\ni iP"
],
[
"U (X β )\nk k| k",
"Utility function for mode k"
],
[
"β\nk",
"Parameter vector for alternative k of MNL model"
],
[
"β",
"Parameter matrix of MNL model, β = [β , ..., β ]\n1 K"
],
[
"βˆ",
"Estimated parameter matrix of MNL model"
],
[
"ε\nk",
"Random error for alternative k of MNL model"
],
[
"Y",
"Output mode choice data"
],
[
"Yˆ\ni",
"Estimated mode choice for observation i"
],
[
"θ",
"Parameter or hyperparameter vector for machine-learning models"
],
[
"θˆ",
"Estimated parameter or hyperparameter vector"
],
[
"f(Z θ)\n|",
"Machine-learning models based on Z and θ"
],
[
"p\nik",
"Probability of choosing alternative k of observation i"
],
[
"pˆ\nik",
"Predicted probability for choosing alternative k of observation i"
],
[
"I ( Yˆ)\nk i",
"Indicator function that equals to 1 if Yˆ = k\ni"
],
[
"P (X βˆ)\nk |",
"Aggregate level prediction for mode k based on X and βˆ for logit models"
],
[
"Q (Z θˆ)\nk |",
"Aggregate level prediction for mode k based on Z and θˆ for machine-learning models"
],
[
"E ()\nk ·",
"Arc elasticity for alternative k"
],
[
"M ()\nk ·",
"Marginal effect for alternative k"
],
[
"∆",
"Constant"
]
] | 0.590507 | null | null |
2 | 1811.01315v2 | 7 | [
64.51399993896484,
276.370849609375,
528.147216796875,
586.4410400390625
] | \begin{table}[!]
\caption{Comparison Between Logit and Machine-Learning Models}
\footnotesize
\resizebox{1\textwidth}{!}{% <------ Don't forget this %
\begin{tabular}{p{3.2cm}|p{8.8cm}|p{7.5cm}}
\hline
\textbf{} & \textbf{Logit Models} & \textbf{Machine-Learning Models} \Tstrut\Bstrut \\ \hline
\multirow{3}{*}{\textbf{Model formulation}} & $U_{k}(\boldsymbol{X}_k|\boldsymbol{\beta}_k) = \boldsymbol{\beta}_k^T \boldsymbol{X}_{k} + \boldsymbol{\varepsilon}_{k}$ & $\boldsymbol{Y} = f(\boldsymbol{Z}|\boldsymbol{\theta}), \boldsymbol{Y} \in \{1, …, K\}$ \Tstrut \\
& $p_{ik} = \frac{\exp {(\boldsymbol{\beta}}_k^T \boldsymbol{X}_{ik})}{\sum_{p=1}^K \exp {(\boldsymbol{\beta}}_p^T \boldsymbol{X}_{ik})}, k \in \{1, ..., K\}$ \Tstrut &
\\ \hline
\textbf{Commonly used model type} & MNL, mixed logit, nested MNL, generalized MNL & NB, CART, BAG, BOOST, RF, SVM, NN \Tstrut\Bstrut \\ \hline
\textbf{Prediction type} & Class probability: $p_{i1}, …, p_{iK}$ & Classification: $k, k \in \{1, ..., K\}$ \Tstrut\Bstrut \\ \hline
\textbf{Input data} & $\boldsymbol{X}$ & $\boldsymbol{Z}$ \\ \hline
\textbf{Model topology} & Layer structure & Layer structure, tree structure, case-based reasoning, etc. \Tstrut\Bstrut \\ \hline
\textbf{Optimization method} & Maximum likelihood estimation, simulated maximum likelihood & Back propagation, gradient descent, recursive partitioning, structural risk minimization, maximum likelihood, etc. \\ \hline
\textbf{Evaluation criteria} & (Adjusted) McFadden's pseudo $R^2$, AIC, BIC & Resampling-based measures, e.g., cross validation \Tstrut\Bstrut \\ \hline
\textbf{Individual-level mode prediction} & $\argmax_k (\hat{p}_{i1}, ..., \hat{p}_{iK})$ & $\hat{Y}_i$ \Tstrut\Bstrut \\ \hline
\textbf{Aggregate-level mode share prediction} & $P_k(\boldsymbol{X}_k|\hat{ \boldsymbol{\beta}}_k) = \sum_i^N \hat{p}_{ik}/N$ & $Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}}) = \sum_i^N \hat{p}_{ik}/N$ \Tstrut \\ \hline
\textbf{Variable importance} & Standardized Beta coefficients & Variable importance, computed by using Gini index, out-of-bag error, and many others \Tstrut\Bstrut
\\ \hline
\textbf{Variable effects} & Sign and magnitude of Beta coefficients & Partial dependence plots
\Tstrut\Bstrut
\\ \hline
\textbf{Arc elasticity of feature $p$ for alternative $k$} & $E_k(\boldsymbol{X}_{k,p}) = \frac{[P_k(\boldsymbol{X}_{k,-p}, \boldsymbol X_{k,p} \cdot (1+\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)]/P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut &
$E_k(\boldsymbol{Z}_{p}) = \frac{[Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} \cdot (1+\Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)]/Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut
\\ \hline
\textbf{Marginal effects of feature $p$ for alternative $k$} & $M_k(\boldsymbol{X}_{k,p}) = \frac{P_k(\boldsymbol{X}_{k,-p}, \boldsymbol{X}_{k,p} +\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$
$k \in \{1, ..., K\}$ \Tstrut &
$M_k(\boldsymbol{Z}_{p}) = \frac{Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} + \Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$
$k \in \{1, ..., K\}$ \Tstrut \\ \hline
\end{tabular}
}
\label{tab:comparison}
\end{table} | [
[
"",
"Logit Models",
"Machine-Learning Models"
],
[
"Model formulation",
"Uk(Xk|β k) = βT Xk + εk\nk\npik = pe =x 1p ( xβ pT k X pi k X) ik), k ∈{1, ..., K}\nPK e ( βT",
"Y = f(Z|θ), Y ∈{1, . . . , K}"
],
[
"Commonly used\nmodel type",
"MNL, mixed logit, nested MNL, generalized MNL",
"NB, CART, BAG, BOOST, RF, SVM, NN"
],
[
"Prediction type",
"Class probability: pi1, . . . , piK",
"Classification: k, k ∈{1, ..., K}"
],
[
"Input data",
"X",
"Z"
],
[
"Model topology",
"Layer structure",
"Layer structure, tree structure, case-based rea-\nsoning, etc."
],
[
"Optimization\nmethod",
"Maximum likelihood estimation, simulated maximum like-\nlihood",
"Back propagation, gradient descent, recursive\npartitioning, structural risk minimization, max-\nimum likelihood, etc."
],
[
"Evaluation crite-\nria",
"(Adjusted) McFadden’s pseudo R2, AIC, BIC",
"Resampling-based measures, e.g., cross validation"
],
[
"Individual-level\nmode prediction",
"arg max k(pˆi1, ..., pˆiK)",
"Yˆ\ni"
],
[
"Aggregate-level\nmode share pre-\ndiction",
"Pk(Xk|βˆ k) = PN pˆik/N\ni",
"Qk(Z|θˆ) = PN pˆik/N\ni"
],
[
"Variable impor-\ntance",
"Standardized Beta coefficients",
"Variable importance, computed by using Gini in-\ndex, out-of-bag error, and many others"
],
[
"Variable effects",
"Sign and magnitude of Beta coefficients",
"Partial dependence plots"
],
[
"Arc elasticity of\nfeature p for alter-\nnative k",
"Ek(Xk,p) = [Pk(Xk,−p,Xk,p·(1+∆)|βˆ |k ∆) |−Pk(Xk|βˆ k)]/Pk(Xk|βˆ k),\nk ∈{1, ..., K}",
"Ek(Zp) = [Qk(Z −p,Zp·(1+∆)|θˆ k |∆)− |Qk(Z|θˆ k)]/Qk(Z|θˆ k),\nk ∈{1, ..., K}"
],
[
"Marginal effects\nof feature p for\nalternative k",
"Mk(Xk,p) = Pk(Xk,−p,Xk,p+ |∆ ∆) ||βˆ k)−Pk(Xk|βˆ k), k ∈\n{1, ..., K}",
"Mk(Zp) = Qk(Z −p,Zp+∆ |∆)| |θˆ k)−Qk(Z|θˆ k), k ∈\n{1, ..., K}"
]
] | 0.590293 | null | null |
3 | 1811.01315v2 | 23 | [
144.75999450683594,
133.2239990234375,
446.61297607421875,
394.0460205078125
] | \begin{table}[!t]
\caption{Ranking of Variable Importance for RF, NN, MNL, and Mixed Logit}
\begin{tabular}{c|cccc}
\hline
\textbf{Variable} & \textbf{RF} & \textbf{NN} & \textbf{MNL} & \textbf{Mixed logit} \\ \hline
TT\_Walk & 1 & 16 & 2 & 2 \\
TT\_Drive & 2 & 14 & 4 & 5 \\
TT\_Bike & 3 & 13 & 1 & 1 \\
TT\_PT & 4 & 11 & 3 & 3 \\
Current\_Mode\_Bike & 5 & 2 & 5 & 10 \\
PT\_Access & 6 & 8 & 13 & 16 \\
Bike\_Walkability & 7 & 6 & 16 & 13 \\
Income & 8 & 10 & 14 & 15 \\
CarPerCap & 9 & 7 & 11 & 14 \\
Current\_Mode\_Walk & 10 & 1 & 6 & 12 \\
Rideshare & 11 & 9 & 9 & 9 \\
Transfer & 12 & 5 & 8 & 8 \\
Wait\_Time & 13 & 15 & 10 & 11 \\
Female & 14 & 3 & 15 & 17 \\
Parking\_Cost & 15 & 12 & 12 & 4 \\
Current\_Mode\_Car & 16 & 4 & 7 & 6 \\
Current\_Mode\_PT & / & / & 17 & 7 \\ \hline
\end{tabular}
\label{tab:VarImp}
\end{table} | [
[
"Variable",
"RF NN MNL Mixed logit"
],
[
"TT Walk\nTT Drive\nTT Bike\nTT PT\nCurrent Mode Bike\nPT Access\nBike Walkability\nIncome\nCarPerCap\nCurrent Mode Walk\nRideshare\nTransfer\nWait Time\nFemale\nParking Cost\nCurrent Mode Car\nCurrent Mode PT",
"1 16 2 2\n2 14 4 5\n3 13 1 1\n4 11 3 3\n5 2 5 10\n6 8 13 16\n7 6 16 13\n8 10 14 15\n9 7 11 14\n10 1 6 12\n11 9 9 9\n12 5 8 8\n13 15 10 11\n14 3 15 17\n15 12 12 4\n16 4 7 6\n/ / 17 7"
]
] | 0.388098 | null | null |
0 | 1612.03079v2 | 4 | [
315.16583760579425,
72.198974609375,
544.1151428222656,
127.791015625
] | \begin{table}[t]
\centering
\small
% \subfloat[Benchmark Datasets]{
\begin{tabular}[b]{ | l | l | l | c | c | c | }
\hline
\textbf{Dataset} & \textbf{Type} & \textbf{Size} & \textbf{Features} & \textbf{Labels} \\
\hline
MNIST \cite{mnist} & Image & 70K & 28x28 & 10 \\
CIFAR \cite{cifardata} & Image & 60k & 32x32x3 & 10 \\
ImageNet \cite{imagenet} & Image & ~1.26M & 299x299x3 & 1000 \\
Speech \cite{timit} & Sound & 6300 & 5 sec. & 39 \\
\hline
\end{tabular}
\vspace{-4mm}
\caption{\small \textbf{Datasets.} The collection of real-world benchmark datasets used in the experiments.}
\vspace{-5mm}
\label{tab:datasets}
\end{table} | [
[
"Dataset",
"Type",
"Size",
"Features",
"Labels"
],
[
"MNIST [35]\nCIFAR [32]\nImageNet [49]\nSpeech [24]",
"Image\nImage\nImage\nSound",
"70K\n60k\n1.26M\n6300",
"28x28\n32x32x3\n299x299x3\n5 sec.",
"10\n10\n1000\n39"
]
] | 0.397436 | null | null |
0 | 1109.6846v2 | 12 | [
151.30999755859375,
85.44000244140625,
460.69014630998885,
171.51702880859375
] | \begin{table}
\label{table:sham}
\begin{center}
\begin{tabular}{|c||c|c|} \hline
observed degree & \# predicted ($E[N_{\delta,\rho^*}]$) & \# actual ($N_{\delta,\rho^*}$) \\ \hline
$d_i\geq \delta =1$ & 8531 & 8492 \\ \hline
$d_i\geq \delta =2$ & 1697 & 1635 \\ \hline
$d_i\geq \delta =3$ & 234 & 229 \\ \hline
$d_i\geq \delta =4$ & 24 & 28 \\ \hline
$d_i\geq \delta =5$ & 2 & 4 \\ \hline
\end{tabular}
\caption{Fidelity of the predicted (mean) number of false positives and
the observed number of false positives in the realization of the sham
NKI dataset experiment shown in Fig. \ref{fig:pv1}}.
\end{center}
\end{table} | [
[
"observed degree",
"# predicted (E[N ])\nδ,ρ∗",
"# actual (N )\nδ,ρ∗"
],
[
"d δ = 1\ni ≥",
"8531",
"8492"
],
[
"d δ = 2\ni ≥",
"1697",
"1635"
],
[
"d δ = 3\ni ≥",
"234",
"229"
],
[
"d δ = 4\ni ≥",
"24",
"28"
],
[
"d δ = 5\ni ≥",
"2",
"4"
]
] | 0.44316 | null | null |
0 | 2305.02029v1 | 18 | [
110.85399627685547,
142.59100341796875,
534.9630126953125,
623.68701171875
] | \begin{table}[!htbp]
\begin{tabular}{|p{0.88\textwidth}|p{0.15\textwidth}|}
\hline
High Probability Words & Suggested topic\\
\hline
0.018*"quote" + 0.013*"ebay" + 0.010*"finance" + 0.009*"premium" +
0.009*"level" + 0.008*"performance" + 0.007*"new\_car" +
0.007*"expensive" + 0.007*"struggle" + 0.006*"advance" & package\\
\hline
0.019*"data" + 0.015*"flag" + 0.013*"meet" + 0.011*"retail\_check" +
0.010*"price\_indicator" + 0.010*"spec" + 0.008*"sit" +
0.008*"valuations" + 0.007*"group" + 0.007*"price\_flags" & price indicator flags\\
\hline
0.012*"request" + 0.012*"admin\_fees" + 0.011*"video" + 0.007*"find" +
0.007*"image" + 0.006*"actually" + 0.006*"query" + 0.006*"frustrate" +
0.005*"spec" + 0.005*"unhappy" & unhappy\\
\hline
0.017*"image" + 0.013*"rat" + 0.012*"new\_car" + 0.010*"highly" + 0.009*"upload" + 0.008*"reply" + 0.008*"award" +
0.007*"consumers" + 0.006*"info" + 0.006*"message" & live chat\\
\hline
0.012*"text" + 0.011*"valuations" + 0.011*"product" + 0.010*"chat" +
0.009*"lose" + 0.007*"tech" + 0.007*"margin" + 0.006*"platform" +
0.006*"retail" + 0.006*"higher" & valuations\\
\hline
0.010*"retract" + 0.008*"close" + 0.008*"open" + 0.007*"watch" +
0.007*"webinar" + 0.006*"book" + 0.006*"phone" + 0.006*"process" +
0.006*"answer" + 0.006*"charge" & process related\\
\hline
0.011*"staff" + 0.010*"coronavirus" + 0.010*"reduce" +
0.010*"lockdown" + 0.009*"canx" + 0.009*"plan" + 0.008*"struggle" +
0.008*"online" + 0.008*"june" + 0.008*"continue" & coronavirus\\
\hline
0.016*"lockdown" + 0.010*"june" + 0.010*"collect" + 0.008*"open" +
0.008*"retract" + 0.007*"confuse" + 0.007*"follow" + 0.007*"aware" +
0.007*"extend" + 0.007*"appreciate" & lockdown extensions\\
\hline
0.061*"xxxemailxxx" + 0.023*"subject" + 0.015*"group" + 0.013*"kind"
+ 0.009*"xxxtelephonexxx" + 0.008*"sit" + 0.008*"retail" + 0.007*"lead"
+ 0.007*"manheim" + 0.006*"option" & no recognised subject\\
\hline
0.027*"year" + 0.016*"experian" + 0.008*"car\_gurus" + 0.007*"ebay" +
0.006*"meet" + 0.006*"zuto" + 0.006*"july" + 0.005*"achieve" +
0.005*"award" + 0.005*"normal" & rival valuation products\\
\hline
\end{tabular}
\caption{Topic modelling results from the AutoTrader note corpus, with sector expert led topic naming suggestions.}
\label{table:1}
\end{table} | [
[
"High Probability Words",
"Suggested\ntopic"
],
[
"0.018*”quote” + 0.013*”ebay” + 0.010*”finance” + 0.009*”pre-\nmium” + 0.009*”level” + 0.008*”performance” + 0.007*”new car”\n+ 0.007*”expensive” + 0.007*”struggle” + 0.006*”advance”",
"package"
],
[
"0.019*”data” + 0.015*”flag” + 0.013*”meet” + 0.011*”re-\ntail check” + 0.010*”price indicator” + 0.010*”spec” + 0.008*”sit”\n+ 0.008*”valuations” + 0.007*”group” + 0.007*”price flags”",
"price indi-\ncator flags"
],
[
"0.012*”request” + 0.012*”admin fees” + 0.011*”video” +\n0.007*”find” + 0.007*”image” + 0.006*”actually” + 0.006*”query”\n+ 0.006*”frustrate” + 0.005*”spec” + 0.005*”unhappy”",
"unhappy"
],
[
"0.017*”image” + 0.013*”rat” + 0.012*”new car” + 0.010*”highly”\n+ 0.009*”upload” + 0.008*”reply” + 0.008*”award” + 0.007*”con-\nsumers” + 0.006*”info” + 0.006*”message”",
"live chat"
],
[
"0.012*”text” + 0.011*”valuations” + 0.011*”product” +\n0.010*”chat” + 0.009*”lose” + 0.007*”tech” + 0.007*”mar-\ngin” + 0.006*”platform” + 0.006*”retail” + 0.006*”higher”",
"valuations"
],
[
"0.010*”retract” + 0.008*”close” + 0.008*”open” + 0.007*”watch”\n+ 0.007*”webinar” + 0.006*”book” + 0.006*”phone” +\n0.006*”process” + 0.006*”answer” + 0.006*”charge”",
"process re-\nlated"
],
[
"0.011*”staff” + 0.010*”coronavirus” + 0.010*”reduce” +\n0.010*”lockdown” + 0.009*”canx” + 0.009*”plan” + 0.008*”strug-\ngle” + 0.008*”online” + 0.008*”june” + 0.008*”continue”",
"coronavirus"
],
[
"0.016*”lockdown” + 0.010*”june” + 0.010*”collect” +\n0.008*”open” + 0.008*”retract” + 0.007*”confuse” + 0.007*”fol-\nlow” + 0.007*”aware” + 0.007*”extend” + 0.007*”appreciate”",
"lockdown\nextensions"
],
[
"0.061*”xxxemailxxx” + 0.023*”subject” + 0.015*”group” +\n0.013*”kind” + 0.009*”xxxtelephonexxx” + 0.008*”sit” +\n0.008*”retail” + 0.007*”lead” + 0.007*”manheim” + 0.006*”op-\ntion”",
"no recog-\nnised\nsubject"
],
[
"0.027*”year” + 0.016*”experian” + 0.008*”car gurus” +\n0.007*”ebay” + 0.006*”meet” + 0.006*”zuto” + 0.006*”july”\n+ 0.005*”achieve” + 0.005*”award” + 0.005*”normal”",
"rival valua-\ntion prod-\nucts"
]
] | 0.484109 | null | null |
1 | 2305.02029v1 | 30 | [
240.21800231933594,
414.81500244140625,
370.03299289279516,
533.5689697265625
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Clean & Baseline\\
\hline
Valuation &0.97 \\
\hline
Price &0.76 \\
\hline
Package &0.78 \\
\hline
Cancellation &0.63 \\
\hline
Stock &0.68 \\
\hline
Tech &0.86 \\
\hline
Billing &0.56 \\
\hline
\end{tabular}
\caption{ Baseline NDCG evaluations for the clean data.
}
\label{table:2}
\end{table} | [
[
"Clean",
"Baseline"
],
[
"Valuation",
"0.97"
],
[
"Price",
"0.76"
],
[
"Package",
"0.78"
],
[
"Cancellation",
"0.63"
],
[
"Stock",
"0.68"
],
[
"Tech",
"0.86"
],
[
"Billing",
"0.56"
]
] | 0.795455 | null | null |
2 | 2305.02029v1 | 31 | [
236.98399353027344,
125.99700927734375,
373.26800537109375,
244.75201416015625
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Pre-processed & Baseline\\
\hline
Valuation &0.97 \\
\hline
Price &0.76 \\
\hline
Package &0.78 \\
\hline
Cancellation &0.63 \\
\hline
Stock &0.68 \\
\hline
Tech &0.86 \\
\hline
Billing &0.57 \\
\hline
\end{tabular}
\caption{ Baseline NDCG evaluations for the pre-processed data.
}
\label{table:3}
\end{table} | [
[
"Pre-processed",
"Baseline"
],
[
"Valuation",
"0.97"
],
[
"Price",
"0.76"
],
[
"Package",
"0.78"
],
[
"Cancellation",
"0.63"
],
[
"Stock",
"0.68"
],
[
"Tech",
"0.86"
],
[
"Billing",
"0.57"
]
] | 0.784722 | null | null |
3 | 2305.02029v1 | 31 | [
180.26300048828125,
465.95098876953125,
429.9880065917969,
584.7059936523438
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|}
\hline
Topic & Score & Difference from baseline\\
\hline
Valuation &0.96 & -0.01\\
\hline
Price &0.72 & -0.04\\
\hline
Package &0.74 & -0.04\\
\hline
Cancellation &0.60 & -0.03\\
\hline
Stock &0.67 & -0.01\\
\hline
Tech &0.92 & +0.06\\
\hline
Billing &0.55 & -0.02\\
\hline
\end{tabular}
\caption{NDCG evaluations for the query ``tech issue" on the pre-processed data.}
\label{table:4}
\end{table} | [
[
"Topic",
"Score",
"Difference from baseline"
],
[
"Valuation",
"0.96",
"-0.01"
],
[
"Price",
"0.72",
"-0.04"
],
[
"Package",
"0.74",
"-0.04"
],
[
"Cancellation",
"0.60",
"-0.03"
],
[
"Stock",
"0.67",
"-0.01"
],
[
"Tech",
"0.92",
"+0.06"
],
[
"Billing",
"0.55",
"-0.02"
]
] | 0.808612 | null | null |
4 | 2305.02029v1 | 32 | [
180.26300048828125,
125.99700927734375,
429.9880065917969,
244.75201416015625
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|}
\hline
Topic & Score & Difference from baseline\\
\hline
Valuation &0.97 & 0.00\\
\hline
Price &0.86 & +0.10\\
\hline
Package &0.79 & +0.01\\
\hline
Cancellation &0.66 & +0.03\\
\hline
Stock &0.68 & 0.00\\
\hline
Tech &0.82 & -0.04\\
\hline
Billing &0.54 & -0.03\\
\hline
\end{tabular}
\caption{NDCG evaluations for the query ``too expensive" on the pre-processed data.}
\label{table:5}
\end{table} | [
[
"Topic",
"Score",
"Difference from baseline"
],
[
"Valuation",
"0.97",
"0.00"
],
[
"Price",
"0.86",
"+0.10"
],
[
"Package",
"0.79",
"+0.01"
],
[
"Cancellation",
"0.66",
"+0.03"
],
[
"Stock",
"0.68",
"0.00"
],
[
"Tech",
"0.82",
"-0.04"
],
[
"Billing",
"0.54",
"-0.03"
]
] | 0.800959 | null | null |
5 | 2305.02029v1 | 32 | [
180.26300048828125,
399.7929992675781,
429.9880065917969,
518.5469970703125
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Topic & Score & Difference from baseline\\
\hline
Valuation &0.96 & -0.01\\
\hline
Price &0.75 & -0.01\\
\hline
Package &0.74 & -0.04\\
\hline
Cancellation &0.65 & -0.02\\
\hline
Stock &0.64 & -0.04\\
\hline
Tech &0.84 & -0.02\\
\hline
Billing &0.68 & +0.11\\
\hline
\end{tabular}
\caption{NDCG evaluations for the query ``send money" on the pre-processed data.}
\label{table:6}
\end{table} | [
[
"Topic",
"Score",
"Difference from baseline"
],
[
"Valuation",
"0.96",
"-0.01"
],
[
"Price",
"0.75",
"-0.01"
],
[
"Package",
"0.74",
"-0.04"
],
[
"Cancellation",
"0.65",
"-0.02"
],
[
"Stock",
"0.64",
"-0.04"
],
[
"Tech",
"0.84",
"-0.02"
],
[
"Billing",
"0.68",
"+0.11"
]
] | 0.808612 | null | null |
0 | 1807.08372v1 | 7 | [
319.5,
455.5369873046875,
562.2869873046875,
560.343994140625
] | \begin{table}[h!]
\begin{smallermathTable}
\scriptsize{
\centering
\begin{tabular}[t]{p{1.52cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{0.98cm}<{\centering}}
\hline
TBox Axi.: 541 & Concept Ast. Ent.: 1824 &Role Ast. Ent.: 4528 & Individual: 1159 & Ext. Axi.: $\sim21$ K \\\hline
\hline
Parameters ($\sigma, \kappa, \tau$) & Root Concept Ast. Ent.& Root Role Ast. Ent. & Root Individual & External Axioms\\\hline
P1:($.90, 1, .40$) & $1105$ ($61\%$) & $3805$ ($84\%$) & $1103$ ($95\%$) & $\sim$ $20$ K \\\hline
P2:($.93, 1, .43$) & $990$ ($54\%$) & $3459$ ($76\%$) & $1080$ ($93\%$) & $\sim$ $19$ K \\\hline
P3:($.96, 1, .46$) & $540$ ($30\%$) & $1816$ ($40\%$)& $872$ ($75\%$) & $\sim$ $16$ K \\\hline
P4:($.99, 1, .49$) & $305$ ($17\%$) &$980$ ($22\%$) &$510$ ($44\%$) & $6271$ \\\hline
P5:($.99, 2, .49$) & $157$ ($8.6\%$) & $402$ ($8.9\%$)& $108$ ($9.3\%$) & $615$ \\\hline
\end{tabular}
\vspace{-0.25cm}
\caption{\label{res:count} Average Number of Root Entailments, Root Individuals and External Axioms per Learning Domain.}
}
\end{smallermathTable}
\end{table} | [
[
"TBox Axi.:\n541",
"Concept Ast.\nEnt.: 1824",
"Role Ast.\nEnt.: 4528",
"Individual:\n1159",
"Ext. Axi.:\n∼21 K"
],
[
"Parameters\n(σ, κ, τ)",
"Root\nConcept Ast.\nEnt.",
"Root Role\nAst. Ent.",
"Root\nIndividual",
"External\nAxioms"
],
[
"P1:(.90, 1, .40)",
"1105 (61%)",
"3805 (84%)",
"1103 (95%)",
"∼20 K"
],
[
"P2:(.93, 1, .43)",
"990 (54%)",
"3459 (76%)",
"1080 (93%)",
"∼19 K"
],
[
"P3:(.96, 1, .46)",
"540 (30%)",
"1816 (40%)",
"872 (75%)",
"∼16 K"
],
[
"P4:(.99, 1, .49)",
"305 (17%)",
"980 (22%)",
"510 (44%)",
"6271"
],
[
"P5:(.99, 2, .49)",
"157 (8.6%)",
"402 (8.9%)",
"108 (9.3%)",
"615"
]
] | 0.563758 | null | null |
0 | 2210.09619v1 | 3 | [
194.56675720214844,
125.03375244140625,
413.3579406738281,
322.7275695800781
] | \begin{table}[ht]
\centering
\resizebox{0.65\textwidth}{!}{
\begin{tabular}{|c|c|c|c|c|}
\hline
\cline{1-3}
\textbf{Symbol} & \textbf{Sector} & \textbf{$\#$ of stocks}\\
\hline
AU & Auto & 15 \\ \hline
BM & Basic Materials & 189 \\ \hline
BX & Bankex & 10 \\ \hline
CD & Consumer Durables & 12 \\ \hline
CDGS & Consumer Discretionary Goods \& Services & 297 \\ \hline
CG & Capital Goods & 25 \\ \hline
CPSE & CPSE & 52 \\ \hline
EG & Energy & 27 \\ \hline
FMCG & Fast Moving Consumer Goods & 81 \\ \hline
FN & Financials & 139 \\ \hline
HC & Healthcare & 96 \\ \hline
ID & Industrials & 203 \\ \hline
II & India Infrastructure & 30 \\ \hline
IT & Information Technology & 62 \\ \hline
MT & Metal & 10 \\ \hline
ONG & Oil \& Gas & 10 \\ \hline
PSU & PSU & 56 \\ \hline
PWR & Power & 11 \\ \hline
RE & Realty & 10 \\ \hline
TC & Telecom & 17 \\ \hline
Teck & Teck & 28 \\ \hline
UT & Utilities & 24 \\ \hline
\end{tabular}
}
\caption{Details of Bombay stock exchange (S\&P BSE) sectors considered for the analysis are given here. The first column consists of the symbol of the sectors followed by the name of the corresponding sectors in the second column. The third column shows the total number of available stocks in each sector during the time period considered for analysis. For the rest of the paper, we are going to refer the sectors by their corresponding symbol name provided here.}
\label{table:stocksdetails1}
\end{table} | [
[
"Symbol",
"Sector",
"# of stocks"
],
[
"AU",
"Auto",
"15"
],
[
"BM",
"Basic Materials",
"189"
],
[
"BX",
"Bankex",
"10"
],
[
"CD",
"Consumer Durables",
"12"
],
[
"CDGS",
"Consumer Discretionary Goods & Services",
"297"
],
[
"CG",
"Capital Goods",
"25"
],
[
"CPSE",
"CPSE",
"52"
],
[
"EG",
"Energy",
"27"
],
[
"FMCG",
"Fast Moving Consumer Goods",
"81"
],
[
"FN",
"Financials",
"139"
],
[
"HC",
"Healthcare",
"96"
],
[
"ID",
"Industrials",
"203"
],
[
"II",
"India Infrastructure",
"30"
],
[
"IT",
"Information Technology",
"62"
],
[
"MT",
"Metal",
"10"
],
[
"ONG",
"Oil & Gas",
"10"
],
[
"PSU",
"PSU",
"56"
],
[
"PWR",
"Power",
"11"
],
[
"RE",
"Realty",
"10"
],
[
"TC",
"Telecom",
"17"
],
[
"Teck",
"Teck",
"28"
],
[
"UT",
"Utilities",
"24"
]
] | 0.645208 | null | null |
1 | 2210.09619v1 | 10 | [
192.25999450683594,
124.97065734863281,
415.66802978515625,
366.2751159667969
] | \begin{table}[ht]
\centering
\resizebox{0.65\textwidth}{!}{%
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
Sectors & $\Delta \alpha$ & $\alpha_{max}$ & $\alpha_{0}$ & $\alpha_{min}$ & $H_2$ & dH & B \\ \hline
AU & 1.71 & 1.92 & 0.99 & 0.21 & 0.72 & 1.38 & -0.09 \\ \hline
BM & 0.64 & 0.69 & 0.4 & 0.05 & 0.33 & 0.46 &\ 0.09 \\ \hline
BX & 1.07 & 1.54 & 0.97 & 0.47 & 0.86 & 0.75 & -0.08 \\ \hline
CD & 1.21 & 1.37 & 0.59 & 0.16 & 0.47 & 0.93 & -0.29 \\ \hline
CDGS & 0.46 & 0.83 & 0.73 & 0.37 & 0.66 & 0.3 &\ 0.57 \\ \hline
CG & 1.55 & 1.51 & 0.75 & -0.04 & 0.5 & 1.15 & -0.02 \\ \hline
CPSE & 1.4 & 1.61 & 0.92 & 0.21 & 0.71 & 1.09 & \ 0.02 \\ \hline
EG & 0.58 & 1.07 & 0.82 & 0.49 & 0.82 & 0.35 &\ 0.13 \\ \hline
FMCG & 1.27 & 1.49 & 0.85 & 0.22 & 0.67 & 0.98 &\ 0.0 \\ \hline
FN & 0.71 & 0.86 & 0.54 & 0.15 & 0.44 & 0.55 &\ 0.11 \\ \hline
HC & 0.85 & 1.16 & 0.83 & 0.31 & 0.75 & 0.55 &\ 0.23 \\ \hline
ID & 0.71 & 1.01 & 0.51 & 0.3 & 0.47 & 0.48 & -0.42 \\ \hline
II & 0.87 & 1.33 & 1 & 0.46 & 0.87 & 0.65 &\ 0.26 \\ \hline
IT & 0.4 & 0.76 & 0.67 & 0.36 & 0.62 & 0.26 &\ 0.51 \\ \hline
MT & 0.89 & 0.59 & 0.32 & -0.29 & 0.18 & 0.65 &\ 0.37 \\ \hline
ONG & 1.04 & 1.23 & 0.52 & 0.19 & 0.45 & 0.68 & -0.36 \\ \hline
PSU & 1.65 & 1.6 & 0.71 & -0.04 & 0.47 & 1.25 & -0.08 \\ \hline
PWR & 1.01 & 1.43 & 0.87 & 0.42 & 0.8 & 0.7 & -0.11 \\ \hline
RE & 0.41 & 0.86 & 0.71 & 0.45 & 0.84 & 0.22 &\ 0.23 \\ \hline
TC & 1.51 & 1.75 & 0.84 & 0.23 & 0.67 & 1.12 & -0.19 \\ \hline
Teck & 0.82 & 1.2 & 1.01 & 0.38 & 0.84 & 0.63 & \ 0.54 \\ \hline
UT & 0.66 & 1.2 & 1.03 & 0.54 & 0.91 & 0.44 &\ 0.50 \\ \hline
\end{tabular}%
}
\caption{Sector-wise values of width of singularity spectrum ($\Delta \alpha$, column 2), Hurst exponents ($H_2$, column 6), spread in Hurst exponent ($dH$, column 7), and asymmetry ratio ($B$, column 8)}
\label{table2}
\end{table} | [
[
"Sectors",
"∆α",
"α\nmax",
"α\n0",
"α\nmin",
"H\n2",
"dH",
"B"
],
[
"AU",
"1.71",
"1.92",
"0.99",
"0.21",
"0.72",
"1.38",
"-0.09"
],
[
"BM",
"0.64",
"0.69",
"0.4",
"0.05",
"0.33",
"0.46",
"0.09"
],
[
"BX",
"1.07",
"1.54",
"0.97",
"0.47",
"0.86",
"0.75",
"-0.08"
],
[
"CD",
"1.21",
"1.37",
"0.59",
"0.16",
"0.47",
"0.93",
"-0.29"
],
[
"CDGS",
"0.46",
"0.83",
"0.73",
"0.37",
"0.66",
"0.3",
"0.57"
],
[
"CG",
"1.55",
"1.51",
"0.75",
"-0.04",
"0.5",
"1.15",
"-0.02"
],
[
"CPSE",
"1.4",
"1.61",
"0.92",
"0.21",
"0.71",
"1.09",
"0.02"
],
[
"EG",
"0.58",
"1.07",
"0.82",
"0.49",
"0.82",
"0.35",
"0.13"
],
[
"FMCG",
"1.27",
"1.49",
"0.85",
"0.22",
"0.67",
"0.98",
"0.0"
],
[
"FN",
"0.71",
"0.86",
"0.54",
"0.15",
"0.44",
"0.55",
"0.11"
],
[
"HC",
"0.85",
"1.16",
"0.83",
"0.31",
"0.75",
"0.55",
"0.23"
],
[
"ID",
"0.71",
"1.01",
"0.51",
"0.3",
"0.47",
"0.48",
"-0.42"
],
[
"II",
"0.87",
"1.33",
"1",
"0.46",
"0.87",
"0.65",
"0.26"
],
[
"IT",
"0.4",
"0.76",
"0.67",
"0.36",
"0.62",
"0.26",
"0.51"
],
[
"MT",
"0.89",
"0.59",
"0.32",
"-0.29",
"0.18",
"0.65",
"0.37"
],
[
"ONG",
"1.04",
"1.23",
"0.52",
"0.19",
"0.45",
"0.68",
"-0.36"
],
[
"PSU",
"1.65",
"1.6",
"0.71",
"-0.04",
"0.47",
"1.25",
"-0.08"
],
[
"PWR",
"1.01",
"1.43",
"0.87",
"0.42",
"0.8",
"0.7",
"-0.11"
],
[
"RE",
"0.41",
"0.86",
"0.71",
"0.45",
"0.84",
"0.22",
"0.23"
],
[
"TC",
"1.51",
"1.75",
"0.84",
"0.23",
"0.67",
"1.12",
"-0.19"
],
[
"Teck",
"0.82",
"1.2",
"1.01",
"0.38",
"0.84",
"0.63",
"0.54"
],
[
"UT",
"0.66",
"1.2",
"1.03",
"0.54",
"0.91",
"0.44",
"0.50"
]
] | 0.881994 | null | null |
0 | 2406.18112v1 | 6 | [
175.6929931640625,
476.9800109863281,
439.6631202697754,
558.0750122070312
] | \begin{table}
\caption{Averaged compute time of time steps in milliseconds for different parts of the in transit and hybrid analysis.}\label{tab-benchmark}
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
& \multicolumn{2}{c|}{\emph{Slice} Pipeline} & \multicolumn{2}{c|}{\emph{Resampling} Pipeline} \\
\cline{2-5} & In Transit & Hybrid & In Transit & Hybrid \\
\hline
Simulation Time (ms) & 15860 & 15835 & 33539 & 31677\\
\hline
Reduction Time (ms) & 0 & 319 & 0 & 2905\\
\hline
Data Transfer Time (ms)& 3415 & 6.56 & 10957 & 48.7 \\
\hline
\hline
Total Time (ms)& 19275 & 16161 & 44497 & 34632 \\
\hline
Total Gain & \multicolumn{2}{c|}{16.16\%} & \multicolumn{2}{c|}{22.17\%}\\
\hline
\end{tabular}
\end{table} | [
[
"",
"Slice Pipeline",
null,
"Resampling Pipeline",
null
],
[
null,
"In Transit",
"Hybrid",
"In Transit",
"Hybrid"
],
[
"Simulation Time (ms)",
"15860",
"15835",
"33539",
"31677"
],
[
"Reduction Time (ms)",
"0",
"319",
"0",
"2905"
],
[
"Data Transfer Time (ms)",
"3415",
"6.56",
"10957",
"48.7"
],
[
"Total Time (ms)",
"19275",
"16161",
"44497",
"34632"
],
[
"Total Gain",
"16.16%",
null,
"22.17%",
null
]
] | 0.875676 | null | null |
0 | 1906.03507v1 | 8 | [
109.00212478637695,
65.56700439453125,
529.9821243286133,
149.093994140625
] | \begin{table}[!htb]
\begin{center}
\begin{tabular}{|c|c|c|r|r|r|r|r|}
\hline
\rowcolor{cyan}
$\lambda_1$ & $\lambda_2$ & $\lambda_3$ & \mbox{In-sample} & \mbox{MSE, bps} & \mbox{Mean \% error}
& \mbox{Out-of sample} & \mbox{MSE, bps} \\
\hline
0 & 0 & 0 & 1008550 & 6.50 & 0.091 & 248432 & 6.48\\
\hline
1 & 1 & 1 & 421 & 10.32 & 0.115 & 101 & 10.38 \\
\hline
10 & 10 & 10 & 105 & 11.95 & 0.124 & 25 & 12.15\\
\hline
50 & 50 & 50 & 36 & 12.17 & 0.125 & 9 & 12.34 \\
\hline
100 & 100 & 100 & 25 & 11.26 & 0.120 & 6 & 11.43 \\
\hline
\end{tabular}
\caption{Penalty term ${\mathcal P}_{1,0}$ when predicting Call option prices using the ANN with soft constraints.}
\label{arbTab}
\end{center}
\end{table} | [
[
"λ\n1",
"λ\n2",
"λ\n3",
"In-sample",
"MSE, bps",
"Mean % error",
"Out-of sample",
"MSE, bps"
],
[
"0",
"0",
"0",
"1008550",
"6.50",
"0.091",
"248432",
"6.48"
],
[
"1",
"1",
"1",
"421",
"10.32",
"0.115",
"101",
"10.38"
],
[
"10",
"10",
"10",
"105",
"11.95",
"0.124",
"25",
"12.15"
],
[
"50",
"50",
"50",
"36",
"12.17",
"0.125",
"9",
"12.34"
],
[
"100",
"100",
"100",
"25",
"11.26",
"0.120",
"6",
"11.43"
]
] | 0.756757 | null | null |
0 | 1710.09593v2 | 11 | [
172.50189039442273,
134.217041015625,
442.85411241319446,
284.2540283203125
] | \begin{table}[!htb]
\centering
\caption{The characteristics of the used Machines}
\label{capa}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Machine's name} & \textbf{Operating System} & \textbf{Processor} & \textbf{Memory} \\\hline
Dell-XPS L421X& \pbox{50cm}{Ubuntu \\ (V.14.04 LTS) }& \pbox{50cm}{1.8GHz*4 \\ Intel Core i5} & 8 GB \\ \hline
Dell-Inspiron-3721 & \pbox{50cm}{Ubuntu \\ (V.14.04 LTS)} & \pbox{50cm}{2.00GHz*4 \\Intel Core i5 }& 4 GB \\\hline
Dell-Inspiron-3521 & \pbox{50cm}{ Ubuntu \\(V.16.04 LTS)} &\pbox{50cm}{ 1.8 GHz*4 \\Intel Core i5 } & 6 GB \\\hline
iMac-Early 2010 & \pbox{50cm}{cinux Mint \\ (V.17.1 Rebecca) }& \pbox{50cm}{3.06GHz*2} & 4 GB \\ \hline
Dell-Inspiron-5559 & \pbox{50cm}{Ubuntu \\ (V.16.04 LTS) }& \pbox{50cm}{2.30GHz*4 \\ Intel Core i5} & 8 GB \\\hline
iMac-Early 2009 & \pbox{50cm}{OS X El Capitan \\(V.10.11.6)} &\pbox{50cm}{ 2.93 *2 GHz \\Intel Core Due}& 8 GB \\\hline
MacBook Air & \pbox{50cm}{OS X El Capitan \\(V.10.11.3)} &\pbox{50cm}{ 1.6 *2 GHz \\Intel Core i5 }& 8 GB \\\hline
\end{tabular}
\end{table} | [
[
"Machine’s name",
"Operating System",
"Processor",
"Memory"
],
[
"Dell-XPS L421X",
"Ubuntu\n(V.14.04 LTS)",
"1.8GHz*4\nIntel Core i5",
"8 GB"
],
[
"Dell-Inspiron-3721",
"Ubuntu\n(V.14.04 LTS)",
"2.00GHz*4\nIntel Core i5",
"4 GB"
],
[
"Dell-Inspiron-3521",
"Ubuntu\n(V.16.04 LTS)",
"1.8 GHz*4\nIntel Core i5",
"6 GB"
],
[
"iMac-Early 2010",
"cinux Mint\n(V.17.1 Rebecca)",
"3.06GHz*2",
"4 GB"
],
[
"Dell-Inspiron-5559",
"Ubuntu\n(V.16.04 LTS)",
"2.30GHz*4\nIntel Core i5",
"8 GB"
],
[
"iMac-Early 2009",
"OS X El Capitan\n(V.10.11.6)",
"2.93 *2 GHz\nIntel Core Due",
"8 GB"
],
[
"MacBook Air",
"OS X El Capitan\n(V.10.11.3)",
"1.6 *2 GHz\nIntel Core i5",
"8 GB"
]
] | 0.944043 | null | null |
1 | 1710.09593v2 | 11 | [
198.75824737548828,
412.72900390625,
416.5977554321289,
490.63702392578125
] | \begin{table}[!htb]
\centering
\caption{Datasets}
\label{DS}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Benchmark}& \textbf{Size} & \textbf{Descriptions} \\\hline
\textbf{D1}& 10,000 Points & \begin{tabular}[c]{@{}c@{}}Different shapes, with \\ some clusters surrounded\\ by others\end{tabular} \\\hline
\textbf{D2}& 30,000 Points& \begin{tabular}[c]{@{}c@{}}2 small circles,\\ 1 big circle\\ and 2 linked ovals\end{tabular} \\ \hline
\end{tabular}
\end{table} | [
[
"Benchmark",
"Size",
"Descriptions"
],
[
"D1",
"10,000 Points",
"Different shapes, with\nsome clusters surrounded\nby others"
],
[
"D2",
"30,000 Points",
"2 small circles,\n1 big circle\nand 2 linked ovals"
]
] | 0.532751 | null | null |
0 | 2306.00454v1 | 5 | [
126.68000030517578,
109.06097412109375,
485.0359802246094,
228.74564615885416
] | \begin{table}
\centering %
\begin{tabular}{l|cc}
\hline
& Reaction rate for $d(p,\gamma)^{3}{\rm He}$ & $D_{p}$ data \tabularnewline
\hline \hline
{ } Case I & Adelberger et al. & no-data\tabularnewline
{ } Case II & Adelberger et al. & Cooke et al. + offset \tabularnewline
{ } Case III & Adelberger et al. & Cooke et al.\tabularnewline
{ } Case IV & Marcucci et al. & Cooke et al.\tabularnewline
{ } Case V & Marcucci et al. & recent 11 weighted mean\tabularnewline
{ } Case VI & Pisanti et al. & Cooke et al.\tabularnewline
{ } Case VII & Pisanti et al. & recent 11 weighted mean\tabularnewline
\hline \hline
\end{tabular}\caption{\label{tab:Dp_treatment}
Combinations of the data of $D_{p}$ and theoretical treatment
of the reaction rate for $d(p,\gamma)^{3}{\rm He}$ used in our analysis. }
\end{table} | [
[
"",
"Reaction rate for d(p, γ)3He D data\np"
],
[
"Case I\nCase II\nCase III\nCase IV\nCase V\nCase VI\nCase VII",
"Adelberger et al. no-data\nAdelberger et al. Cooke et al. + offset\nAdelberger et al. Cooke et al.\nMarcucci et al. Cooke et al.\nMarcucci et al. recent 11 weighted mean\nPisanti et al. Cooke et al.\nPisanti et al. recent 11 weighted mean"
]
] | 0.484118 | null | null |
0 | 2103.08664v1 | 3 | [
359.14009941948785,
104.84100341796875,
509.2700025770399,
141.50299072265625
] | \begin{table}[t]
\centering
\caption{Test accuracy of different training strategies on Physionet data: left fist VS right fist (task 2); both fists VS both feet (task 4).}
\begin{tabular}{|c|cc|}\hline
motor imagery task & task 2 & task 4 \\ \hline
conventional learning & 59.6\% & 66.6\% \\
transfer learning & 56.0\% & 62.4\% \\
meta-learning & \textbf{64.5\%} & \textbf{68.2\%} \\
\hline
\end{tabular}
\label{tab:5}
\end{table} | [
[
"motor imagery task",
"task 2 task 4"
],
[
"conventional learning\ntransfer learning\nmeta-learning",
"59.6% 66.6%\n56.0% 62.4%\n64.5% 68.2%"
]
] | 0.786885 | null | null |
1 | 2103.08664v1 | 3 | [
359.14009941948785,
703.6309814453125,
509.2700025770399,
731.3280029296875
] | \begin{table}[b]
\centering
\caption{Test accuracy on Physionet data after online sample filtering}
\begin{tabular}{|c|cc|}
\hline
motor imagery task & task 2 & task 4 \\ \hline
without meta-learning & 67.9\% & 68.8\% \\
with meta-learning & \textbf{80.6\%} & \textbf{79.7\%}\\
\hline
\end{tabular}
\label{tab:7}
\end{table} | [
[
"motor imagery task",
"task 2 task 4"
],
[
"without meta-learning\nwith meta-learning",
"67.9% 68.8%\n80.6% 79.7%"
]
] | 0.846939 | null | null |
0 | 2109.05142v1 | 2 | [
54,
68.0570068359375,
298.39300537109375,
124.04901123046875
] | \begin{table}[ht]
\centering
\begin{tabular}{|c|c|p{1.3in}|} \hline
\textbf{Data Source}& \textbf{Data Model} &\multicolumn{1}{c|}{\textbf{Polystore Placement}} \\ \hline
Patents &Relational &PostgreSQL, Text in Solr \\ \hline
News articles &Structured Text &Solr, Entity Network in Neo4J \\ \hline
Federal Spending&Relational &PostgreSQL \\ \hline
Company Networks&Graph &Neo4J \\ \hline
\end{tabular}
\vspace{1em}
\caption{Data from a source are processed and placed into different stores.}
\label{tab:sources}
\vspace{-1.3em}
\end{table} | [
[
"Data Source",
"Data Model",
"Polystore Placement"
],
[
"Patents",
"Relational",
"PostgreSQL, Text in Solr"
],
[
"News articles",
"Structured Text",
"Solr, Entity Network in\nNeo4J"
],
[
"Federal Spending",
"Relational",
"PostgreSQL"
],
[
"Company Networks",
"Graph",
"Neo4J"
]
] | 0.821497 | null | null |
0 | 1911.00108v2 | 5 | [
315.1610107421875,
71.31903076171875,
536.5859497070312,
143.1500244140625
] | \begin{table}[H]
\centering
\small
\begin{tabular}{|l|l|l|}
\hline
\textbf{Method} & \textbf{Average Accuracy} & \textbf{stdev} \\ \hline
TPOT & 0.816 & 0.159 \\ \hline
auto-sklearn(V) & 0.796 & 0.168 \\ \hline
auto-sklearn(E) & 0.805 & 0.165 \\ \hline
RankML \#1 rank & 0.786 & 0.169 \\ \hline
RankML Max top-5 rank &0.819 & 0.154 \\
\hline
RankML Max top-10 rank &\textbf{0.827} & 0.152 \\
\hline
\end{tabular}
\caption[Average accuracy Results]{Average accuracy results across 149 classification datasets.}
\label{table:1}
\end{table} | [
[
"Method",
"Average Accuracy",
"stdev"
],
[
"TPOT",
"0.816",
"0.159"
],
[
"auto-sklearn(V)",
"0.796",
"0.168"
],
[
"auto-sklearn(E)",
"0.805",
"0.165"
],
[
"RankML #1 rank",
"0.786",
"0.169"
],
[
"RankML Max top-5 rank",
"0.819",
"0.154"
],
[
"RankML Max top-10 rank",
"0.827",
"0.152"
]
] | 0.795181 | null | null |
1 | 1911.00108v2 | 5 | [
305.25987752278644,
177.13555908203125,
550.0725606282552,
222.65481567382812
] | \begin{table}[H]
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|l|c|c|c|}
\hline
\multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4}
\multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline
RankML \#1 rank & 65(49\%) & 74(55\%) & 68(51\%) \\ \hline
RankML Max top-5 rank & 102(73\%) & 112(80\%) & 112(80\%) \\ \hline
RankML Max top-10 rank & \textbf{110(79\%)} & \textbf{119(85\%)} & \textbf{118(84\%)} \\ \hline
\end{tabular}%
}
\caption{The number of classification datasets each method got better or comparable(BOC) results against baselines (percentage is out of valid datasets).}
\label{table:2}
\end{table} | [
[
"Method",
"Number of Datasets with BOC Performance(%)",
null,
null
],
[
null,
"TPOT",
"auto-sklearn(V)",
"auto-sklearn(E)"
],
[
"RankML #1 rank",
"65(49%)",
"74(55%)",
"68(51%)"
],
[
"RankML Max top-5 rank",
"102(73%)",
"112(80%)",
"112(80%)"
],
[
"RankML Max top-10 rank",
"110(79%)",
"119(85%)",
"118(84%)"
]
] | 0.679487 | null | null |
2 | 1911.00108v2 | 6 | [
303.395884253762,
480.09014892578125,
550.0364815848214,
613.9104614257812
] | \begin{table}[H]
\centering
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|m{3.3cm}|m{2cm}|m{1.1cm}|}
\hline
\multicolumn{1}{|c|}{\textbf{Primitive}} & \multicolumn{1}{c|}{\textbf{Family}} & \multicolumn{1}{c|}{\textbf{\begin{tabular}[c]{@{}c@{}}Avg \% \\ of appearances\end{tabular}}} \\ \hline
MaxAbsScaler & Data pre-processing & 16\% \\ \hline
StandardScaler & Data pre-processing & 11\% \\ \hline
KNeighborsClassifier & Predictive models & 10\% \\ \hline
RandomForestClassifier & Predictive models& 4\% \\ \hline
PCA & Feature pre-processing & 0.4\% \\ \hline
\end{tabular}%
}
\caption{A selection of primitives used in RankML recommended pipelines for classification. "Avg \% of appearances" is out of all primitives.
}
\label{table:4}
\end{table} | [
[
"Primitive Family",
"Avg %\nof appearances"
],
[
"Data pre-\nMaxAbsScaler\nprocessing",
"16%"
],
[
"Data pre-\nStandardScaler\nprocessing",
"11%"
],
[
"Predictive mod-\nKNeighborsClassifier\nels",
"10%"
],
[
"Predictive mod-\nRandomForestClassifier\nels",
"4%"
],
[
"Feature pre-\nPCA\nprocessing",
"0.4%"
]
] | 0.410774 | null | null |
3 | 1911.00108v2 | 7 | [
42.245869954427086,
264.8241271972656,
287.0585581461589,
309.4196014404297
] | \begin{table}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|l|c|c|c|}
\hline
\multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4}
\multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline
RankML \#1 rank & 30(39\%) & 35(46\%) & 26(34\%) \\ \hline
RankML Max top-5 rank & 39(49\%) & 47(59\%) & 41(52\%) \\ \hline
RankML Max top-10 rank & \textbf{45(57\%)} & \textbf{53(67\%)} & \textbf{45(57\%)} \\ \hline
\end{tabular}%
}
\caption{The number of regression datasets each version of our approach got better or comparable results against the baselines
(percentage is out of valid datasets).}
\label{table:1_reg}
\end{table} | [
[
"Method",
"Number of Datasets with BOC Performance(%)",
null,
null
],
[
null,
"TPOT",
"auto-sklearn(V)",
"auto-sklearn(E)"
],
[
"RankML #1 rank",
"30(39%)",
"35(46%)",
"26(34%)"
],
[
"RankML Max top-5 rank",
"39(49%)",
"47(59%)",
"41(52%)"
],
[
"RankML Max top-10 rank",
"45(57%)",
"53(67%)",
"45(57%)"
]
] | 0.61244 | null | null |
0 | 1509.03329v1 | 5 | [
196.67799377441406,
518.427001953125,
398.59698486328125,
602.5120239257812
] | \begin{table}[!ht]
\caption{Summary of cuts applied in the \xeff\ analysis depending on the brightness of the source.}
\begin{center}
\begin{tabular}{|c|ccc|}
\hline
% \rowcolor{gray!10}
Brightness &\phi12 & $\eta$ & \xeff\ \\% cut \\
% \rowcolor{gray!10}
&\diffi&& \\
\hline
\hline
Very Bright & $>10$ & 0.1 & $<0.3$ \\
% \hline
Bright & 1 ... 10 & 0.2 & $<0.3$ \\
% \hline
Medium & 0.5 ... 1 & 0.4 & $<0.3$\\
% \hline
Faint & $< 0.5 $ & 0.7 & $<0.3$ \\
% \hline
% Very faint & $< 0.1 $ & 0.8 & 0.3 \\
% $<1 \% $ Crab &&& \\
% \hline
\hline
\end{tabular}
\end{center}
\label{tabcuts}
\end{table} | [
[
"Brightness",
"Φ(1TeV).10-12 η X\ne f f\ncm-2.s-1.TeV -1"
],
[
"Very Bright\nBright\nMedium\nFaint",
"> 10 0.1 < 0.3\n1 ... 10 0.2 < 0.3\n0.5 ... 1 0.4 < 0.3\n< 0.5 0.7 < 0.3"
]
] | 0.58651 | null | null |
0 | 2104.04036v1 | 4 | [
65.74857221330915,
66.5419921875,
531.794416155134,
150.22802734375
] | \begin{table}[!ht]
\centering
\begin{tabular}{| L{3.26cm} | C{2.75cm}| C{2.75cm} | C{2.75cm} | C{2.75cm} | }
\hline
& Optimal Agent & Symmetric & Tabular Q & Deep-Q \\ \hline
Mean Wealth & 47.79 & 57.67 & 44.21 & 53.47 \\ \hline
Std. Dev. Wealth& 6.09 & 11.86 & 7.08 & 6.67 \\ \hline
Sharpe Ratio & 7.83 & 4.86 & 6.24 & 8.00 \\ \hline
Mean Cum. Reward & 22.46 & -7.17 & 19.19 & 29.04 \\ \hline
Utility Estimate& -2.63e-9 & -4.34e-6 & -1.49e-6 & -2.20e-10 \\ \hline
\end{tabular}
\caption{1000 simulations for $\beta = 0.5$}
\label{tab:table_strat_tr}
\end{table} | [
[
"",
"Optimal Agent",
"Symmetric",
"Tabular Q",
"Deep-Q"
],
[
"Mean Wealth",
"47.79",
"57.67",
"44.21",
"53.47"
],
[
"Std. Dev. Wealth",
"6.09",
"11.86",
"7.08",
"6.67"
],
[
"Sharpe Ratio",
"7.83",
"4.86",
"6.24",
"8.00"
],
[
"Mean Cum. Reward",
"22.46",
"-7.17",
"19.19",
"29.04"
],
[
"Utility Estimate",
"-2.63e-9",
"-4.34e-6",
"-1.49e-6",
"-2.20e-10"
]
] | 0.908068 | null | null |
0 | 1904.08994v1 | 3 | [
149.78399658203125,
136.18902587890625,
462.2149963378906,
180.62200927734375
] | \begin{table}[h!]
\centering
\begin{tabular}{c|l|l}
\hline
\textbf{Symbol} & \textbf{Meaning} & \textbf{Notes}\\
\hline
$p_{z}$ & Data distribution over noise input $z$ & Usually, just uniform. \\
$p_{g}$ & The generator's distribution over data $x$ & \\
$p_{r}$ & Data distribution over real sample $x$ & \\
\hline
\end{tabular}
\end{table} | [
[
"Symbol",
"Meaning",
"Notes"
],
[
"p\nz\np\ng\np\nr",
"Data distribution over noise input z\nThe generator’s distribution over data x\nData distribution over real sample x",
"Usually, just uniform."
]
] | 0.813056 | null | null |
1 | 1904.08994v1 | 5 | [
133.77200317382812,
287.04998779296875,
478.22698974609375,
353.3009948730469
] | \begin{table}[h!]
\centering
\begin{tabular}{c|p{10cm}}
\hline
\textbf{Term} & \textbf{Explanation} \\
\hline
Manifold & A topological space that locally resembles Euclidean space near each point. Precisely, when this Euclidean space is of dimension $n$, the manifold is referred as $n$-manifold. \\
Support & A real-valued function $f$ is the subset of the domain containing those elements which are not mapped to zero.\\
\hline
\end{tabular}
\end{table} | [
[
"Term",
"Explanation"
],
[
"Manifold\nSupport",
"A topological space that locally resembles Euclidean space near each\npoint. Precisely, when this Euclidean space is of dimension n, the\nmanifold is referred as n-manifold.\nA real-valued function f is the subset of the domain containing those\nelements which are not mapped to zero."
]
] | 0.974522 | null | null |
0 | 1907.09456v3 | 4 | [
49.28083292643229,
78.68798828125,
293.8931528727214,
124.3170166015625
] | \begin{table}[h]
\centering
\caption{Summary of \texttt{SCSF} Tuning Parameters}
\begin{tabular}{|c|l|c|} \hline
\textbf{Param.} & \textbf{Description} & \textbf{Value} \\
\hline
$k$ & Rank of the matrix factorization & $6$ \\
$\tau$ & Approximate quantile of the data to be fit & $0.85$ \\
$\mu_L$ & Weight of the smoothing term on the left matrix & $500$ \\
$\mu_R$ & Weight of the smoothing term on the right matrix & $1000$ \\
\hline
\end{tabular}
\label{tab:tuning-param}
\end{table} | [
[
"Param.",
"Description",
"Value"
],
[
"k\nτ\nµL\nµR",
"Rank of the matrix factorization\nApproximate quantile of the data to be fit\nWeight of the smoothing term on the left matrix\nWeight of the smoothing term on the right matrix",
"6\n0.85\n500\n1000"
]
] | 0.496788 | null | null |
1 | 1907.09456v3 | 4 | [
353.1228383382161,
670.615966796875,
522.1231892903646,
716.2449951171875
] | \begin{table}[b]
\centering
\caption{\texttt{SCSF} Tuning Parameter Grid Search}
\begin{tabular}{|c|c|c|c|} \hline
\textbf{Param.} & \textbf{Low Val.} & \textbf{Mid Val.} & \textbf{High Val.} \\
\hline
$k$ & $4$ & $6$ & $8$ \\
$\tau$ & $.8$ & $.85$ & $.9$ \\
$\mu_L$ & $1e2$ & $5e2$ & $1e3$ \\
$\mu_R$ & $5e2$ & $1e3$ & $5e3$ \\
\hline
\end{tabular}
\label{tab:tuning-study}
\end{table} | [
[
"Param.",
"Low Val.",
"Mid Val.",
"High Val."
],
[
"k\nτ\nµL\nµR",
"4\n.8\n1e2\n5e2",
"6\n.85\n5e2\n1e3",
"8\n.9\n1e3\n5e3"
]
] | 0.666667 | null | null |
2 | 1907.09456v3 | 6 | [
320.7982116699219,
679.5830078125,
554.4480224609375,
716.2449951171875
] | \begin{table}[b]
\centering
\caption{Summary of site selection for both methods}
\begin{tabular}{|c|c|c|c|} \hline
& & & \textbf{Unique} \\
& \textbf{Included Sites}& \textbf{Excluded Sites} & \textbf{Excluded Sites} \\
\hline
\texttt{SCSF}& $551$ & $22$ & $19$ \\
\texttt{RdTools} & $387$ & $186$ & $183$\\
\hline
\end{tabular}
\label{tab:fleet-join}
\end{table} | [
[
"",
"Included Sites",
"Excluded Sites",
"Unique\nExcluded Sites"
],
[
"SCSF\nRdTools",
"551\n387",
"22\n186",
"19\n183"
]
] | 0.737968 | null | null |
0 | 2211.08064v2 | 3 | [
312,
287.80499267578125,
549.5800170898438,
522.9420166015625
] | \begin{table}[h]
\begin{tabular}{c|c}
\hline
Notations & Description \\ \hline
$u$ & state variables of the physical system \\ \hline
$\boldsymbol{x}$ & spatial or spatial-temporal coordinates \\ \hline
$x$ & spatial coordinates \\ \hline
$t$ & temporal coordinates \\ \hline
$\theta$ & parameters for a physical system \\ \hline
$w$ & weights of neural networks \\ \hline
$\frac{\partial}{\partial x_i}$ & partial derivatives operator \\ \hline
$\mathcal{D}^k_i$ & $\frac{\partial^k}{\partial x_i^k}$, $k$-order derivatives for variable $x_i$ \\ \hline
$\nabla$ & nabla operator (gradient) \\ \hline
$\Delta$ & Laplace operator \\ \hline
$\int$ & integral operator \\ \hline
$\mathcal{F}$ & differential operator representing the PDEs/ODEs \\ \hline
$\mathcal{I}$ & initial conditions (operator) \\ \hline
$\mathcal{B}$ & boundary conditions (operator) \\ \hline
$\Omega$ & spatial or spatial-temporal domain of the system \\ \hline
$\Theta$ & space of the parameters $\theta$ \\ \hline
$W$ & space of weights of neural networks \\ \hline
$\mathcal{L}$ & loss functions \\ \hline
$\mathcal{L}_r$ & residual loss \\ \hline
$\mathcal{L}_b$ & boundary condition loss \\ \hline
$\mathcal{L}_i$ & initial condition loss \\ \hline
$l_k$ & residual (error) terms \\ \hline
$\| \cdummy \|$ & norm of a vector or a function \\ \hline
\end{tabular}
\caption{A table of mathematical notations.}
\label{tb1}
\end{table} | [
[
"Notations",
"Description"
],
[
"u",
"state variables of the physical system"
],
[
"x",
"spatial or spatial-temporal coordinates"
],
[
"x",
"spatial coordinates"
],
[
"t",
"temporal coordinates"
],
[
"θ",
"parameters for a physical system"
],
[
"w",
"weights of neural networks"
],
[
"∂\n∂xi",
"partial derivatives operator"
],
[
"k\nDi",
"∂∂ xk k, k-order derivatives for variable xi\ni"
],
[
"∇",
"nabla operator (gradient)"
],
[
"∆",
"Laplace operator"
],
[
"R",
"integral operator"
],
[
"F",
"differential operator representing the PDEs/ODEs"
],
[
"I",
"initial conditions (operator)"
],
[
"B",
"boundary conditions (operator)"
],
[
"Ω",
"spatial or spatial-temporal domain of the system"
],
[
"Θ",
"space of the parameters θ"
],
[
"W",
"space of weights of neural networks"
],
[
"L",
"loss functions"
],
[
"Lr",
"residual loss"
],
[
"Lb",
"boundary condition loss"
],
[
"Li",
"initial condition loss"
],
[
"lk",
"residual (error) terms"
],
[
"∥· ∥",
"norm of a vector or a function"
]
] | 0.881761 | null | null |
0 | 1903.07639v2 | 2 | [
85.03900146484375,
435.23699951171875,
505.79998779296875,
630.1060180664062
] | \begin{table}[ht!]
\caption{\textbf{Elements of a data analysis.} This table describes eight elements that are used by the data analyst to build the data analysis.}
\label{table-elements}
\begin{tabular}{p{3cm}|p{11cm}}
\hline
\textbf{Element} & \textbf{Description} \\
\hline
Narrative text & Expository phrases or sentences that describe what is happening in the data analysis in a human readable format \\
\hline
Code & A series of programmatic instructions to execute a particular programming or scripting language \\
\hline
Code comment & Non-executable code or text near or inline with code that describes the expected action/result of the surrounding code or provides context \\
\hline
Data visualization & A plot, figure or graph illustrating a visual representation of the data. \\
\hline
Narrative diagram & A diagram or flowchart without data \\
\hline
Summary statistics & Numerical quantities derived from the data, such as the mean, standard deviation, etc. \\
\hline
Table & An ordered arrangement of data or summaries of data in rows and columns \\
\hline
Statistical model or computational algorithm & Mathematical model or algorithm concerning the underlying data phenomena or data-generation process, predictive ability, or computational algorithm \\
\hline
\end{tabular}
\end{table} | [
[
"Element",
"Description"
],
[
"Narrative text",
"Expository phrases or sentences that describe what is happening in the\ndata analysis in a human readable format"
],
[
"Code",
"A series of programmatic instructions to execute a particular program-\nming or scripting language"
],
[
"Code comment",
"Non-executable code or text near or inline with code that describes the\nexpected action/result of the surrounding code or provides context"
],
[
"Data visualization",
"A plot, figure or graph illustrating a visual representation of the data."
],
[
"Narrative diagram",
"A diagram or flowchart without data"
],
[
"Summary statistics",
"Numerical quantities derived from the data, such as the mean, standard\ndeviation, etc."
],
[
"Table",
"An ordered arrangement of data or summaries of data in rows and\ncolumns"
],
[
"Statistical model\nor computational\nalgorithm",
"Mathematical model or algorithm concerning the underlying data phe-\nnomena or data-generation process, predictive ability, or computational\nalgorithm"
]
] | 0.997838 | null | null |
0 | 2103.03739v1 | 14 | [
374.0275390625,
134.90832010904947,
480.1824951171875,
178.17041015625
] | \begin{table}[t!]
\centering
\caption{Threat prioritization depending on likelihood and impact.}
\label{tab:lin:threat-table:priorities}
\scalebox{0.92}{
\begin{tabular}{|c|c|c|}
\hline
Likelihood & Impact & Priority \\
\hline \hline
low & low & \multirow{3}{*}{low} \\
low & medium & \\
medium & low & \\
\hline
\end{tabular}
%
\quad
%
\begin{tabular}{|c|c|c|}
\hline
Likelihood & Impact & Priority \\
\hline \hline
low & high & \multirow{3}{*}{medium}\\
medium & medium & \\
high & low & \\
\hline
\end{tabular}
%
\quad
%
\begin{tabular}{|c|c|c|}
\hline
Likelihood & Impact & Priority \\
\hline \hline
medium & high & \multirow{3}{*}{high} \\
high & medium & \\
high & high & \\
\hline
\end{tabular}
}
\end{table} | [
[
"Likelihood",
"Impact",
"Priority"
],
[
"medium\nhigh\nhigh",
"high\nmedium\nhigh",
"high"
]
] | 0.47619 | null | null |
1 | 2103.03739v1 | 15 | [
141.84440994262695,
145.88299560546875,
473.51158142089844,
328
] | \begin{table}[t]
\centering
\caption{Overview of threat prioritization. Threats that are not effective due to our assumptions are not included in the table.}
\label{tab:lin:threat-table:prioritization}
\begin{tabular}{ | m{.6\textwidth}<{\raggedleft} || c | c || c | }
\hline
\multicolumn{1}{|c||}{Threat} & Likelihood & Impact & Priority \\
\hline \hline
Linkability in one or more storages
& medium & medium & medium \\
\hline
Identifiability in one or more storages
& low & high & medium \\
\hline
Detectability of data existence
& medium & low & low \\
\hline
Detectability in communication between different trust domains
& low & low & low \\
\hline
Linkability of IP addresses in communication between different trust domains
& low & medium & low \\
\hline
Linkability of IP addresses in communication between different trust domains leads to identifiability
& low & high & medium\\
\hline
Non-repudiation of encrypted data
& low & low & low \\
\hline
Non-repudiation of communication between different trust domains
& low & low & low \\
\hline
Unawareness of the data owner
& low & high & medium \\
\hline
Non deletion of data in cloud storage
& low & low & low \\
\hline
\end{tabular}
\end{table} | [
[
"Threat",
"Likelihood",
"Impact",
"Priority"
],
[
"Linkability in one or more storages",
"medium",
"medium",
"medium"
],
[
"Identifiability in one or more storages",
"low",
"high",
"medium"
],
[
"Detectability of data existence",
"medium",
"low",
"low"
],
[
"Detectability in communication between different\ntrust domains",
"low",
"low",
"low"
],
[
"Linkability of IP addresses in communication\nbetween different trust domains",
"low",
"medium",
"low"
],
[
"Linkability of IP addresses in communication\nbetween different trust domains leads to\nidentifiability",
"low",
"high",
"medium"
],
[
"Non-repudiation of encrypted data",
"low",
"low",
"low"
],
[
"Non-repudiation of communication between\ndifferent trust domains",
"low",
"low",
"low"
],
[
"Unawareness of the data owner",
"low",
"high",
"medium"
],
[
"Non deletion of data in cloud storage",
"low",
"low",
"low"
]
] | 0.996426 | null | null |
0 | 2003.09758v1 | 11 | [
69.33112621307373,
516.2634948730469,
277.2290344238281,
581.260009765625
] | \begin{table}[htb!]
\small
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\rowcolor[HTML]{EFEFEF}
\textbf{Dataset} & \textbf{\begin{tabular}[c]{@{}c@{}}Score \\ change\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Speed \\ (x faster)\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Tables \\ removed\end{tabular}} & \textbf{$\tau$} \\ \hline
Taxi & -0.04\% & 3.18 & 10 & 24 \\ \hline
Pickup & -15.35\% & 3.50 & 17 & 17 \\ \hline
Poverty & -1.19\% & 5.87 & 36 & 15 \\ \hline
School (S) & -1\% & 1.14 & 2 & 15 \\ \hline
School (L) & -5\% & 1.32 & 39 & 17 \\ \hline
\end{tabular}
\caption{Performance of ARDA with \textsf{RIFS} and Tuple Rule as a table filtering step for real world datasets. Hyperparameter $\tau$ was optimized for each dataset.}
\label{tab:TR_RIFS_prefilter}
\end{table} | [
[
"Dataset",
"Score",
"Speed",
"Tables",
"τ"
],
[
null,
"change",
"(x faster)",
"removed",
null
],
[
"Taxi",
"-0.04%",
"3.18",
"10",
"24"
],
[
"Pickup",
"-15.35%",
"3.50",
"17",
"17"
],
[
"Poverty",
"-1.19%",
"5.87",
"36",
"15"
],
[
"School (S)",
"-1%",
"1.14",
"2",
"15"
],
[
"School (L)",
"-5%",
"1.32",
"39",
"17"
]
] | 0.493256 | null | null |
0 | 1305.2505v1 | 18 | [
323.3190002441406,
67.260009765625,
525.5609893798828,
117.072998046875
] | \begin{table}[t]
\centering
\begin{tabular}{|c|c|}
\hline
Hypothesis class & Rademacher Complexity\\\hline
$\B_q(\norm{\W}_q)$ & $2\norm{\X}_p\norm{\W}_q\sqrt{\frac{p - 1}{n}}$\\\hline
$\B_1(\norm{\W}_1)$& $2\norm{\X}_\infty \norm{\W}_1\sqrt{\frac{e\log d}{n}}$\\\hline
\end{tabular}
\caption{Rademacher complexity bounds for AUC maximization. We have $1/p+1/q = 1$ and $q > 1$.}
\label{tab:rad-bounds-auc}
\end{table} | [
[
"Hypothesis class",
"Rademacher Complexity"
],
[
"( )\nBq ∥W∥q",
"q\n2 p−1\n∥X∥p ∥W∥q n"
],
[
"( )\nB1 ∥W∥1",
"q\n2 e log d\n∥X∥ ∞∥W∥1 n"
]
] | 0.47138 | null | null |
1 | 1305.2505v1 | 20 | [
68.20600128173828,
67.260009765625,
276.67498779296875,
111.15899658203125
] | \begin{table}[t]
\centering
\begin{tabular}{|c|c|}
\hline
Hypothesis Class & Rademacher Avg. Bound\\\hline
$\S_2(1)$ & $\kappa^2\sqrt{\frac{p}{n}}$\\\hline
$\Delta(1)$ & $\kappa^2\sqrt{\frac{e\log p}{n}}$\\\hline
\end{tabular}
\caption{Rademacher complexity bounds for Multiple kernel learning}
\label{tab:mkl-rad-bounds}
\end{table} | [
[
"Hypothesis Class",
"Rademacher Avg. Bound"
],
[
"(1)\nS2",
"κ2pp\nn"
],
[
"∆(1)",
"q\nκ2 e log p\nn"
]
] | 0.506438 | null | null |
0 | 2102.06826v3 | 4 | [
322.04100036621094,
76.9420166015625,
553.9599914550781,
120.79264322916667
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\caption{Task difference between the three DNNs $F_w$, $F_{w_1}$ and $F_{w_2}$.}
\centering
\begin{tabular}{c|ccc}
\hline\hline
DNN & Style Transfer & Data Embedding & Data Extraction\\
\hline
$F_w$ & $\surd$ & $\surd$ & $\surd$\\
\hline
$F_{w_1}$ & $\surd$ & $\times$ & $\times$\\
\hline
$F_{w_2}$ & $\times$ & $\surd$ & $\surd$\\
\hline\hline
\end{tabular}
\end{table} | [
[
"DNN",
"Style Transfer Data Embedding Data Extraction"
],
[
"Fw",
"√ √ √"
],
[
"Fw1",
"√\n× ×"
],
[
"Fw2",
"√ √\n×"
]
] | 0.741935 | null | null |
1 | 2102.06826v3 | 4 | [
322.04100036621094,
167.3673299153646,
553.9599914550781,
220.71964518229166
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\caption{The mean PSNR (dB) and mean SSIM (on 5000 test images).}
\centering
\begin{tabular}{c|cccccc}
\hline\hline
DNN/AL & $0$ & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\
\hline
$F_{w_1}$: PSNR & 28.13 & $-$ & $-$ & $-$ & $-$ & $-$\\
$F_{w_1}$: SSIM & 0.865 & $-$ & $-$ & $-$ & $-$ & $-$\\
\hline
$F_w$: PSNR & $-$ & 27.63 & 25.31 & 25.28 & 25.25 & 24.96\\
$F_w$: SSIM & $-$ & 0.860 & 0.800 & 0.800 & 0.796 & 0.776\\
\hline\hline
\end{tabular}
\end{table} | [
[
"DNN/AL",
"0 82 162 322 642 1282"
],
[
"Fw1: PSNR\nFw1: SSIM",
"28.13 − − − − −\n0.865 − − − − −"
],
[
"Fw: PSNR\nFw: SSIM",
"− 27.63 25.31 25.28 25.25 24.96\n− 0.860 0.800 0.800 0.796 0.776"
]
] | 0.802469 | null | null |
2 | 2102.06826v3 | 4 | [
312,
267.29400634765625,
565.6409912109375,
320.64666748046875
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\caption{The mean PSNR (dB) and mean BER (on 5000 test images).}
\centering
\begin{tabular}{c|ccccc}
\hline\hline
DNN/AL & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\
\hline
$F_{w_2}$: PSNR & 38.29 & 37.36 & 37.18 & 36.31 & 34.83\\
$F_{w_2}$: BER & 0 & 0 & 0 & $5.28\times 10^{-5}$ & $4.10\times 10^{-4}$\\
\hline
$F_w$: PSNR & 37.00 & 36.68 & 36.49 & 36.20 & 31.45\\
$F_w$: BER & 0 & 0 & 0 & $7.48\times 10^{-5}$ & $4.62\times 10^{-4}$\\
\hline\hline
\end{tabular}
\end{table} | [
[
"DNN/AL",
"82 162 322 642 1282"
],
[
"Fw2: PSNR\nFw2: BER",
"38.29 37.36 37.18 36.31 34.83\n0 0 0 5.28 × 10−5 4.10 × 10−4"
],
[
"Fw: PSNR\nFw: BER",
"37.00 36.68 36.49 36.20 31.45\n0 0 0 7.48 × 10−5 4.62 × 10−4"
]
] | 0.81383 | null | null |
3 | 2102.06826v3 | 4 | [
337.4110107421875,
367.22100830078125,
538.5900268554688,
400.77301025390625
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\caption{Classification accuracy with the steganalysis method in \cite{xu:net}.}
\centering
\begin{tabular}{c|ccccc}
\hline\hline
DNN/AL & $8^2$ & $16^2$ & $32^2$ & $64^2$ & $128^2$\\
\hline
$F_{w_2}$ & 0.906 & 0.925 & 0.939 & 0.975 & 0.995\\
\hline
$F_w$ & 0.913 & 0.9375 & 0.941 & 0.981 & 0.998\\
\hline\hline
\end{tabular}
\end{table} | [
[
"DNN/AL",
"82 162 322 642 1282"
],
[
"Fw2",
"0.906 0.925 0.939 0.975 0.995"
],
[
"Fw",
"0.913 0.9375 0.941 0.981 0.998"
]
] | 1 | null | null |
4 | 2102.06826v3 | 6 | [
49.27399826049805,
85.57432047526042,
298.72601318359375,
138.52801513671875
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\centering
\caption{Quantitative results by using the L2-norm loss. The PSNRs, SSIMs and BERs shown in this Table are mean values (on 5000 test images).}
\begin{tabular}{c|c|c|c|c}
\hline\hline
\multicolumn{1}{c|}{\multirow{2}{*}{AL}} &
\multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\
\cline{2-5}
& PSNR (dB) & SSIM & PSNR (dB) & BER \\
\hline
$16^2$ & 25.60 & 0.814 & 36.63 & 0\\
$64^2$ & 25.17 & 0.793 & 36.08 & $7.97\times 10^{-5}$\\
$128^2$ & 25.01 & 0.770 & 31.94 & $4.58\times 10^{-4}$\\
\hline\hline
\end{tabular}
\end{table} | [
[
"AL",
"Style Transfer",
null,
"Data Embedding",
"Data Extraction"
],
[
null,
"PSNR (dB)",
"SSIM",
"PSNR (dB)",
"BER"
],
[
"162\n642\n1282",
"25.60\n25.17\n25.01",
"0.814\n0.793\n0.770",
"36.63\n36.08\n31.94",
"0\n7.97 × 10−5\n4.58 × 10−4"
]
] | 0.632708 | null | null |
5 | 2102.06826v3 | 6 | [
313.27398681640625,
273.6723225911458,
562.7260131835938,
326.6260070800781
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\centering
\caption{Quantitative results by using a pre-trained DNN to generate the ground-truth images for the style transfer task. The PSNRs, SSIMs and BERs shown in this Table are mean values (on 5000 test images).}
\begin{tabular}{c|c|c|c|c}
\hline\hline
\multicolumn{1}{c|}{\multirow{2}{*}{AL}} &
\multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\
\cline{2-5}
& PSNR (dB) & SSIM & PSNR (dB) & BER \\
\hline
$16^2$ & 35.04 & 0.876 & 41.12 & 0\\
$64^2$ & 34.99 & 0.875 & 41.05 & $4.60\times 10^{-5}$\\
$128^2$ & 34.73 & 0.869 & 37.42 & $2.66\times 10^{-4}$\\
\hline\hline
\end{tabular}
\end{table} | [
[
"AL",
"Style Transfer",
null,
"Data Embedding",
"Data Extraction"
],
[
null,
"PSNR (dB)",
"SSIM",
"PSNR (dB)",
"BER"
],
[
"162\n642\n1282",
"35.04\n34.99\n34.73",
"0.876\n0.875\n0.869",
"41.12\n41.05\n37.42",
"0\n4.60 × 10−5\n2.66 × 10−4"
]
] | 0.648794 | null | null |
6 | 2102.06826v3 | 7 | [
49.27399826049805,
85.57432047526042,
298.72601318359375,
138.52801513671875
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.1}
\centering
\caption{Quantitative results for the method in \cite{DH:TPAMI}. The PSNRs and BERs shown in this Table are mean values (on 5000 test images).}
\begin{tabular}{c|c|c|c|c}
\hline\hline
\multicolumn{1}{c|}{\multirow{2}{*}{AL}} &
\multicolumn{2}{c|}{Style Transfer} & \multicolumn{1}{c|}{Data Embedding} & \multicolumn{1}{c}{Data Extraction} \\
\cline{2-5}
& PSNR (dB) & SSIM & PSNR (dB) & BER \\
\hline
$16^2$ & $-$ & $-$ & 38.50 & 0\\
$64^2$ & $-$ & $-$ & 37.79 & $1.74\times 10^{-6}$\\
$128^2$ & $-$ & $-$ & 35.12 & $4.03\times 10^{-5}$\\
\hline\hline
\end{tabular}
\end{table} | [
[
"AL",
"Style Transfer",
null,
"Data Embedding",
"Data Extraction"
],
[
null,
"PSNR (dB)",
"SSIM",
"PSNR (dB)",
"BER"
],
[
"162\n642\n1282",
"−\n−\n−",
"−\n−\n−",
"38.50\n37.79\n35.12",
"0\n1.74 × 10−6\n4.03 × 10−5"
]
] | 0.683077 | null | null |
7 | 2102.06826v3 | 7 | [
105.36599731445312,
188.0903523763021,
242.63400268554688,
213.14398193359375
] | \begin{table}[!t]
\renewcommand{\arraystretch}{1.2}
\caption{Classification accuracy for detecting the method in \cite{DH:TPAMI} with XuNet.}
\centering
\begin{tabular}{c|ccc}
\hline\hline
DNN/AL & $16^2$ & $64^2$ & $128^2$\\
\hline
\cite{DH:TPAMI} & 0.935 & 0.966 & 0.990\\
\hline\hline
\end{tabular}
\end{table} | [
[
"DNN/AL",
"162 642 1282"
],
[
"[27]",
"0.935 0.966 0.990"
]
] | 0.863636 | null | null |
0 | 1811.09248v1 | 3 | [
54.18091028386896,
201.4642333984375,
298.14232381184894,
285.3999938964844
] | \begin{table}[tb]
\footnotesize
%FIGURE 2: data context
\begin{tabular}{|l|l|l|l|l|l|l|}
\cline{1-2}
\multicolumn{2}{|c|}{Price paid data} \\
\hline
price\_paid & saon & paon & street & postcode & town\\
\hline
155000 & Flat 6 & 25 & Bournem. Rd & SE15 4UJ & London\\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\cline{1-2}
\multicolumn{2}{|l|}{Address data} \\
\hline
pao & street.name & town.name & postcode.name\\
\hline
14 & Heron Lane & Scarborough & YO12 4TW\\
\hline
\end{tabular}
\quad
\begin{tabular}{|l|l|l|l|l|l|l|}
\cline{1-1}
Master data \\
\hline
street\_nr & paon & city & postcode & price\\
\hline
Redhill street & 8 & London & E14 3NE & 125.000£\\
\hline
\end{tabular}
\caption{Data context information: price paid data (examples), address data (reference data) and master data}
\label{tab:datacontext}
\end{table} | [
[
"Price paid data",
null,
null,
null,
"",
null,
null,
null,
null,
null,
null
],
[
"price paid",
null,
"saon",
null,
"paon",
null,
"street",
null,
null,
"postcode",
"town"
],
[
"155000",
null,
"Flat 6",
null,
"25",
null,
"Bournem. Rd",
null,
null,
"SE15 4UJ",
"London"
],
[
"Address data",
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
"pao",
"street.name",
null,
null,
"town.name",
null,
null,
null,
"postcode.name",
null,
null
],
[
"14",
"Heron Lane",
null,
null,
"Scarborough",
null,
null,
null,
"YO12 4TW",
null,
null
],
[
"Master data",
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
"street nr",
null,
null,
"paon",
null,
"city",
null,
"postcode",
null,
"price",
null
],
[
"Redhill street",
null,
null,
"8",
null,
"London",
null,
"E14 3NE",
null,
"125.000",
null
]
] | 0.411273 | null | null |
1 | 1811.09248v1 | 3 | [
315.18091375177556,
201.4642333984375,
550.1184581409801,
295.1629943847656
] | \begin{table}[t]
\begin{tabular}{|m{0.6cm}|m{2cm}|m{1cm}|m{1.5cm}|m{1cm}|}
\hline
tuple&street&city&postcode&price\\
\hline
$t_1$&Whitfield Street & London & W1T 5EF &137,495\\
$t_2$&Biscayne Ave & London & E14 9BE&189,950\\
$t_3$&Canton Street & London & E14 6JW&595,000\\
$t_4$&South Drive & London & W1A 0AA&575,000\\
\hline
\end{tabular}
\begin{tabular}{|m{0.6cm}|m{3cm}|m{1.5cm}|m{1.45cm}|}
\hline
tuple& agency & contact & crimestats\\
\hline
$t_1$&Leaders&898756 & 136\\
$t_2$&ReedsRains&8654789 & 45\\
$t_3$&Belvoir London LTD&E14 3NE& 34\\
$t_4$&Belvoir London LTD&E14 3NE& 78\\
\hline
\end{tabular}
\caption{Transformed, integrated and repaired records}
\label{tab:transformdata}
\normalsize
\end{table} | [
[
"tuple",
"street",
"city",
null,
"postcode",
null,
"price"
],
[
"t1\nt2\nt3\nt4",
"Whitfield Street\nBiscayne Ave\nCanton Street\nSouth Drive",
"London\nLondon\nLondon\nLondon",
null,
"W1T 5EF\nE14 9BE\nE14 6JW\nW1A 0AA",
null,
"137,495\n189,950\n595,000\n575,000"
],
[
"tuple",
"agency",
null,
"contact",
null,
"crimestats",
null
],
[
"t1\nt2\nt3\nt4",
"Leaders\nReedsRains\nBelvoir London LTD\nBelvoir London LTD",
null,
"898756\n8654789\nE14 3NE\nE14 3NE",
null,
"136\n45\n34\n78",
null
]
] | 0.443609 | null | null |
0 | 1902.06818v1 | 3 | [
344.0050048828125,
124.15399169921875,
527.95703125,
201.2650146484375
] | \begin{table}
\centering
\caption{Classification accuracies obtained on the test partitions of movie review and UCI dataset using the various classifiers. Performance yielded by $C_f$ are significantly better than chance (using a binomial proportions test at $<$5\% significance level.)}
\begin{tabular}{ l|cc }
\hline
Classifiers used & UCI dataset & Movie review\\
Chance & 50.0 & 50.0 \\
$C_b$ & 63.3 & 72.0 \\
$C_f$ & 56.3 & 55.7 \\
$C_t$ & 63.9 & 62.6\\
$C_b, C_f$ & 64.3 & 73.2 \\
$C_b, C_f, C_t$ & 64.5 & 74.0 \\ \hline
\end{tabular}
\label{tab:results2}
\vspace{-5mm}
\end{table} | [
[
"Classifiers used\nChance\nC\nb\nC\nf\nC\nt\nC , C\nb f\nC , C , C\nb f t",
"UCI dataset Movie review\n50.0 50.0\n63.3 72.0\n56.3 55.7\n63.9 62.6\n64.3 73.2\n64.5 74.0"
]
] | 0.675585 | null | null |
0 | 1706.00857v2 | 17 | [
95.68000030517578,
258.6303304036458,
516.3209838867188,
572.7589925130209
] | \begin{table}[htbp]
\footnotesize
\caption{\label{tab4}{\bf
Grouping Results for The Index Coefficients for SMB, HML and
\centerline{Link Functions of 49 Industrial Portfolios}}}
\begin{center}
\begin{tabular}{c|cccccccccc}
\hline
\hline
& Agric & Food & Soda & Beer & Smoke & Toys & Fun & Books & Hshld & Clths\tabularnewline
SMB & 6 & 5 & 6 & 4 & 2 & 8 & 9 & 7 & 6 & 6\tabularnewline
HML & 4 & 4 & 4 & 3 & 4 & 5 & 3 & 4 & 5 & 6\tabularnewline
Function & ii & i & ii & ii & i & i & i & i & i & ii\tabularnewline
\hline
& Hth & MedEq & Drugs & Chems & Rubbr & Txtls & BldMt & Cnstr & Steel & FabPr\tabularnewline
SMB & 9 & 8 & 9 & 7 & 7 & 8 & 8 & 8 & 9 & 10\tabularnewline
HML & 2 & 2 & 1 & 6 & 4 & 4 & 6 & 6 & 9 & 7\tabularnewline
Function & i & i & i & i & i & i & i & i & i & ii\tabularnewline
\hline
& Mach & ElcEq & Autos & Aero & Ships & Guns & Gold & Mines & Coal & Oil\tabularnewline
SMB & 8 & 9 & 7 & 6 & 8 & 6 & 10 & 9 & 11 & 9 \tabularnewline
HML & 8 & 6 & 6 & 6 & 7 & 4 & 10 & 7 & 11 & 9 \tabularnewline
Function & i & i & i & i & i & i & ii & i & ii & i\tabularnewline
\hline
& Util & Telcm & PerSv & BusSv & Hardw & Softw & Chips & LabEq & Paper & Boxes\tabularnewline
SMB & 4 & 8 & 8 & 7 & 8 & 8 & 7 & 7 & 6 & 6 \tabularnewline
HML & 5 & 4 & 5 & 4 & 5 & 3 & 5 & 5 & 5 & 6\tabularnewline
Function & i & i & i & i & i & i & i & i & i & i \tabularnewline
\hline
& Trans & Whlsl & Rtail & Meals & Banks & Insur & RIEst & Fin & Other & \tabularnewline
SMB & 7 & 7 & 7 & 7 & 7 & 6 & 7 & 6 & 7 & \tabularnewline
HML & 6 & 6 & 4 & 3 & 6 & 5 & 5 & 5 & 6 & \tabularnewline
Function & i & i & i & i & i & i & i & i & ii & \tabularnewline
\hline
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"SMB\nHML\nFunction",
"Agric Food Soda Beer Smoke Toys Fun Books Hshld Clths\n6 5 6 4 2 8 9 7 6 6\n4 4 4 3 4 5 3 4 5 6\nii i ii ii i i i i i ii"
],
[
"SMB\nHML\nFunction",
"Hth MedEq Drugs Chems Rubbr Txtls BldMt Cnstr Steel FabPr\n9 8 9 7 7 8 8 8 9 10\n2 2 1 6 4 4 6 6 9 7\ni i i i i i i i i ii"
],
[
"SMB\nHML\nFunction",
"Mach ElcEq Autos Aero Ships Guns Gold Mines Coal Oil\n8 9 7 6 8 6 10 9 11 9\n8 6 6 6 7 4 10 7 11 9\ni i i i i i ii i ii i"
],
[
"SMB\nHML\nFunction",
"Util Telcm PerSv BusSv Hardw Softw Chips LabEq Paper Boxes\n4 8 8 7 8 8 7 7 6 6\n5 4 5 4 5 3 5 5 5 6\ni i i i i i i i i i"
],
[
"SMB\nHML\nFunction",
"Trans Whlsl Rtail Meals Banks Insur RIEst Fin Other\n7 7 7 7 7 6 7 6 7\n6 6 4 3 6 5 5 5 6\ni i i i i i i i ii"
]
] | 0.467324 | null | null |
1 | 1706.00857v2 | 19 | [
72,
312.1470031738281,
562.0870361328125,
439.3926696777344
] | \begin{table}[htbp]
\footnotesize
\begin{center}
\caption{{\bf Grouping Results for The Index Coefficients for RAIN,
SUN and
\centerline{Link Functions at 16 Locations}}}
\label{tab6}
\vspace{0.3cm}
\begin{tabular}{c|cccccccc}
\hline
\hline
& Waddington & Sheffield & Shawbury & Ross-On-Wye & Paisley & Oxford & Leuchars & Lerwick\tabularnewline
RAIN & 4 & 4 & 4 & 3 & 4 & 3 & 4 & 4 \tabularnewline
SUN & 1 & 1 & 2 & 2 & 3 & 2 & 3 & 4 \tabularnewline
Function & i & i & i & ii & i & i & i & i \tabularnewline
\hline
& Hurn & Heathrow & Eskdalemuir & Eastbourne & Cambridge & Camborne & Bradford & Armagh \tabularnewline
RAIN & 3 & 4 & 3 & 3 & 3 & 3 & 3 & 4 \tabularnewline
SUN & 2 & 1 & 2 & 2 & 1 & 3 & 2 & 2 \tabularnewline
Function & i & i & ii & i & i & i & i & ii \tabularnewline
\hline
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"RAIN\nSUN\nFunction",
"Waddington Sheffield Shawbury Ross-On-Wye Paisley Oxford Leuchars Lerwick\n4 4 4 3 4 3 4 4\n1 1 2 2 3 2 3 4\ni i i ii i i i i"
],
[
"RAIN\nSUN\nFunction",
"Hurn Heathrow Eskdalemuir Eastbourne Cambridge Camborne Bradford Armagh\n3 4 3 3 3 3 3 4\n2 1 2 2 1 3 2 2\ni i ii i i i i ii"
]
] | 0.37408 | null | null |
0 | 2005.00745v1 | 4 | [
40.78441556294759,
78.63702392578125,
263.9496790568034,
183.842041015625
] | \begin{table}[!h]
\caption{Channel Measurement Parameters.}\label{tab1}
\begin{tabular}{| m{5 cm} | m{2cm}|}
\hline
\bfseries Parameters & \bfseries Values \\
\hline
Distance (m)& 1-40 \\
\hline
Frequency (GHz) & 28 \\
\hline
Bandwidth (MHz) & 800\\
\hline
TXPower (dBm) & 300\\
\hline
Scenario & UMi \\
\hline
Polarization & Co-Pol \\
\hline
TxArrayType & ULA \\
\hline
RxArrayType & ULA \\
\hline
Antena & SISO \\
\hline
Tx/Rx antenna Azimuth and Elevation (red) & 10\\
\hline
\end{tabular}
\end{table} | [
[
"Parameters",
"Values"
],
[
"Distance (m)",
"1-40"
],
[
"Frequency (GHz)",
"28"
],
[
"Bandwidth (MHz)",
"800"
],
[
"TXPower (dBm)",
"300"
],
[
"Scenario",
"UMi"
],
[
"Polarization",
"Co-Pol"
],
[
"TxArrayType",
"ULA"
],
[
"RxArrayType",
"ULA"
],
[
"Antena",
"SISO"
],
[
"Tx/Rx antenna Azimuth and Elevation (red)",
"10"
]
] | 0.919283 | null | null |
1 | 2005.00745v1 | 4 | [
303.7864292689732,
518.06005859375,
544.9984043666294,
581.3040161132812
] | \begin{table}[!h]
\caption{Communication Scenarios Comparison .}\label{tab1}
\begin{tabular}{| m{3.5 cm} | m{2.10cm}| m{1.60cm}|}
\hline
\vspace{0.2mm}
\bfseries Environment Scenario & \bfseries UMi & \bfseries UMa \\
\hline
\textbf{MAE} & 8.92& 6.66 \\
\hline
\textbf{MSE} & 126.60 & 74.32 \\
\hline
\textbf{RMSE}& 11.25 & 8.62 \\
\hline
\textbf{R Square}& 0.21 & 0.533 \\
\hline
\textbf{Confidence}& 0.21 & 0.533 \\
\hline
\end{tabular}
\end{table} | [
[
"Environment Scenario",
"UMi",
"UMa"
],
[
"MAE",
"8.92",
"6.66"
],
[
"MSE",
"126.60",
"74.32"
],
[
"RMSE",
"11.25",
"8.62"
],
[
"R Square",
"0.21",
"0.533"
],
[
"Confidence",
"0.21",
"0.533"
]
] | 0.876404 | null | null |
2 | 2005.00745v1 | 5 | [
40.76957803023489,
78.63702392578125,
288.6707810621995,
170.4410400390625
] | \begin{table}[!h]
\caption{Channel Measurement Parameters for UMi Communication.}\label{tab1}
\begin{tabular}{| m{3.55 cm} | m{1.150cm}| m{1.150cm}| m{1.150cm}|}
\hline
\vspace{0.2mm}
\bfseries Test & \bfseries LR & \bfseries MLR &\bfseries MLR \\
\hline
\textbf{T-R Separation Distance (m) } & 0.56& 0.46 & 0.48\\
\hline
\textbf{Time Delay (ns)} & - & -0.08 &-0.09 \\
\hline
\textbf{Received Power (dBm)}& - & -0.69 &-0.69\\
\hline
\textbf{RMS Delay Spread (ns)}& -& -& 0.29\\
\hline
\textbf{Elevation AoD (degree)} & -& -&-0.10 \\
\hline
\textbf{Azimuth AoD (degree)} & -& - &-0.002\\
\hline
\textbf{Azimuth AoA (degree)}& - & - &-0.004\\
\hline
\textbf{Elevation AoA (degree)}& -& - & -0.001\\
\hline
\end{tabular}
\end{table} | [
[
"Test",
"LR",
"MLR",
"MLR"
],
[
"T-R Separation Distance (m)",
"0.56",
"0.46",
"0.48"
],
[
"Time Delay (ns)",
"-",
"-0.08",
"-0.09"
],
[
"Received Power (dBm)",
"-",
"-0.69",
"-0.69"
],
[
"RMS Delay Spread (ns)",
"-",
"-",
"0.29"
],
[
"Elevation AoD (degree)",
"-",
"-",
"-0.10"
],
[
"Azimuth AoD (degree)",
"-",
"-",
"-0.002"
],
[
"Azimuth AoA (degree)",
"-",
"-",
"-0.004"
],
[
"Elevation AoA (degree)",
"-",
"-",
"-0.001"
]
] | 0.931373 | null | null |
3 | 2005.00745v1 | 5 | [
40.76957803023489,
212.217041015625,
288.6707810621995,
237.20404052734375
] | \begin{table}[!h]
\caption{Linear Regression Model.}\label{tab1}
\begin{tabular}{| m{3.55 cm} | m{1.150cm}| m{1.150cm}| m{1.150cm}|}
\hline
\vspace{0.2mm}
\bfseries Environment & \bfseries $\alpha$ & \bfseries $L_0[dB]$ &\bfseries $X_\sigma{}[dB]$ \\
\hline
\textbf{Outdoor Micro Urban } & 9.7 & .61 & 13.6 \\
\hline
\end{tabular}
\end{table} | [
[
"Environment",
"α",
"L0[dB]",
"Xσ[dB]"
],
[
"Outdoor Micro Urban",
"9.7",
".61",
"13.6"
]
] | 0.70303 | null | null |
4 | 2005.00745v1 | 5 | [
40.76957803023489,
528.2139892578125,
275.4933268229167,
626.1700439453125
] | \begin{table}[!h]
\caption{Micro Urban Channel Measurement Parameters.}\label{tab1}
\begin{tabular}{| m{1.125 cm} | m{2.210cm}| m{1.60cm}| m{1.60cm}|}
\hline
\bfseries Test & \bfseries Linear Regression & \bfseries Multiple Linear Regression (3 Feature) &\bfseries Multiple Linear Regression (7 Feature)\\
\hline
\vspace{0.2mm}
\textbf{MAE} & 8.92& 6.66 &5.10 \\
\hline
\vspace{0.2mm}
\textbf{MSE} & 126.60 & 74.32 &44.51 \\
\hline
\vspace{0.2mm}
\textbf{RMSE}& 11.25 & 8.62 &6.67\\
\hline
\vspace{0.2mm}
\textbf{R Square}& 0.21 & 0.533 & 0.72\\
\hline
\end{tabular}
\end{table} | [
[
"Test",
"Linear Regression",
"Multiple\nLinear\nRegression\n(3 Feature)",
"Multiple\nLinear\nRegression\n(7 Feature)"
],
[
"MAE",
"8.92",
"6.66",
"5.10"
],
[
"MSE",
"126.60",
"74.32",
"44.51"
],
[
"RMSE",
"11.25",
"8.62",
"6.67"
],
[
"R Square",
"0.21",
"0.533",
"0.72"
]
] | 0.862385 | null | null |
0 | 1905.05494v3 | 34 | [
85.2468318939209,
321.36700439453125,
463.13308160955256,
468.864013671875
] | \begin{table}[ht]
\begin{tabular}{|c||c|c|c||c|c|c||c|c|c|}\hline
& \multicolumn{3}{c||}{no rounding ($C$ is a ball)} &
\multicolumn{3}{c||}{rounding} &
\multicolumn{3}{c|}{H-polytope approx.}\\ \hline
\centering Z-polytope & $k$ & Refl & time & $k$ & Refl & time & $k$ & Refl & time \\ \hline\hline
$Z_{\mathcal{U}}$-$30$-$60$ & 3 & 3.09e+04 & 54 & 1 & 2.80e+04 & 50 & \textbf{1} & \textbf{1.57e+04} & \textbf{35.9} \\ \hline
$Z_{\mathcal{U}}$-$40$-$80$ & 4 & 4.23e+04 & 126 & 1 & 3.89e+04 & 115 & \textbf{1} & \textbf{1.71e+04} & \textbf{67.1} \\ \hline
$Z_{\mathcal{U}}$-$50$-$100$ & 5 & 5.53e+04 & 282 & 1 & 5.10e+04 & 270 & \textbf{1} & \textbf{1.84e+04} & \textbf{133} \\ \hline
$Z_{\mathcal{U}}$-$60$-$120$ & 7 & 9.04e+04 & 825 & 1 & 6.61e+04 & 575 & \textbf{2} & \textbf{3.52e+04} & \textbf{369} \\ \hline\hline
$Z_{\mathcal{U}}$-$30$-$150$ & \textbf{1} & \textbf{7.01e+03} & \textbf{57} & 1 & 1.61e+04 & 111 & 1 & 7.24e+03 & 64 \\ \hline
$Z_{\mathcal{U}}$-$40$-$200$ & \textbf{1} & \textbf{7.79e+03} & \textbf{126} & 1 & 2.07e+04 & 323 & 1 & 7.81e+03 & 163 \\ \hline
$Z_{\mathcal{U}}$-$50$-$250$ & \textbf{1} & \textbf{8.33e+03} & \textbf{319} & 1 & 2.67e+04 & 858 & 2 & 1.24e+04 & 414 \\ \hline
$Z_{\mathcal{U}}$-$60$-$300$ & \textbf{1} & \textbf{9.53e+03} & \textbf{721} & 1 & 3.35e+04 & 2121 & 2 & 1.37e+04 & 1168 \\ \hline
%$rvc$-$30$-$60$ & 3 & 4.74e+04 & 72 & \textbf{1} & \textbf{2.11e+04} & \textbf{29} & 1 & 4.22e+04 & 63 \\ \hline
%$rvc$-$40$-$80$ & 4 & 7.39e+04 & 185 & \textbf{2} & \textbf{3.37e+04} & \textbf{82} & 2 & 6.73e+04 & 175 \\ \hline
%$rvc$-$50$-$100$ & 5 & 1.07e+05 & 456 & \textbf{2} & \textbf{4.03e+04} & \textbf{173} & 2 & 9.06e+04 & 365 \\ \hline
%$rvc$-$60$-$120$ & 7 & 1.44e+05 & 849 & \textbf{3} & \textbf{5.32e+04} & \textbf{331} & 3 & 1.24e+05 & 779 \\ \hline
%$rvc$-$70$-$140$ & 8 & 1.66e+05 & 2382 & \textbf{3} & \textbf{5.93e+04} & \textbf{582} & 4 & 1.60e+05 & 1412 \\ \hline
\end{tabular}
\caption{Comparisons between rounding and the H-polytope approximation used as body in MMC of Section~\ref{sec:rounding}.
For each Z-polytope \volalg\ performs 10 runs.
$k$: average number of bodies in MMC;
Refl: average number of reflection (or boundary oracle calls) performed by \billiard;
time: average runtime of \volalg\ in seconds.
We set $\epsilon = 0.1$ in all cases.
Bold marks best runtimes.
The volumes for each Z-polytope agree up to at most $\epsilon = 0.05$ and thus omitted. \label{tab:r_nr_hp2} }
\end{table} | [
[
"",
null,
"no rounding (C is a ball)",
null,
null,
"rounding",
null,
null,
"H-polytope approx.",
null,
null
],
[
"Z-polytope",
null,
"k",
"Refl",
"time",
"k",
"Refl",
"time",
"k",
"Refl",
"time"
],
[
"Z -30-60\nU",
null,
"3",
"3.09e+04",
"54",
"1",
"2.80e+04",
"50",
"1",
"1.57e+04",
"35.9"
],
[
"Z -40-80\nU",
null,
"4",
"4.23e+04",
"126",
"1",
"3.89e+04",
"115",
"1",
"1.71e+04",
"67.1"
],
[
"Z -50-100\nU",
null,
"5",
"5.53e+04",
"282",
"1",
"5.10e+04",
"270",
"1",
"1.84e+04",
"133"
],
[
"Z -60-120\nU",
null,
"7",
"9.04e+04",
"825",
"1",
"6.61e+04",
"575",
"2",
"3.52e+04",
"369"
],
[
"Z -30-150\nU",
null,
"1",
"7.01e+03",
"57",
"1",
"1.61e+04",
"111",
"1",
"7.24e+03",
"64"
],
[
"Z -40-200\nU",
null,
"1",
"7.79e+03",
"126",
"1",
"2.07e+04",
"323",
"1",
"7.81e+03",
"163"
],
[
"Z -50-250\nU",
null,
"1",
"8.33e+03",
"319",
"1",
"2.67e+04",
"858",
"2",
"1.24e+04",
"414"
],
[
"Z -60-300\nU",
null,
"1",
"9.53e+03",
"721",
"1",
"3.35e+04",
"2121",
"2",
"1.37e+04",
"1168"
],
[
"",
"Table 6 Comparisons between rounding and the H-polytope approximation used as bo",
null,
null,
null,
null,
null,
null,
null,
null,
null
]
] | 0.450772 | null | null |
0 | 2008.11081v1 | 2 | [
57.0620002746582,
467.2146708170573,
293.968994140625,
503.9429931640625
] | \begin{table}[htbp]
\caption{Sample Clinical notes}
\begin{center}
%\begin{tabular}{|c|c|c|c|}
%\begin{tabular}{p{1.25cm} | p{2cm} |p{2cm}| p{2cm} }
\begin{tabular}{p{2.0cm} | p{5.5cm} }
%\begin{tabularx}{8cm}{|X|X|X|X|}
\hline
%\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\
%\cline{2-4}
\cline{2-2}
%\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\
%\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant
%(Exclusive)}}& \textbf{\textbf{Pain Irrelevant
%(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\
\textbf{\textbf{Pain Relevance}}& \textbf{\textbf{Sample Clinical Note}} \\
\hline
YES & Patient pain increased from 8/10 to 9/10 in chest. \\
\hline
NO & Discharge home
\vspace*{-\baselineskip}
%\vspace{-2em}
%$^{\mathrm{a}}$& & \\
%$^{\mathrm{}}$& & \\
%\hline
%\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.}
\end{tabular}
%\end{tabularx}
\label{tab1}
\end{center}
\vspace{-4mm}
\end{table} | [
[
"Pain Relevance",
"Sample Clinical Note"
],
[
"YES",
"Patient pain increased from 8/10 to 9/10 in chest."
],
[
"NO",
"Discharge home"
]
] | 0.413793 | null | null |
1 | 2008.11081v1 | 2 | [
328.197998046875,
609.9216715494791,
539.1920166015625,
691.083984375
] | \begin{table}[htbp]
\caption{Top 10 Unigrams}
\begin{center}
%\begin{tabular}{|c|c|c|c|}
%\begin{tabular}{p{1.25cm} | p{2cm} |p{2cm}| p{2cm} }
\begin{tabular}{p{2.15cm} |p{2cm}| p{2cm} }
%\begin{tabularx}{8cm}{|X|X|X|X|}
\hline
%\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\
%\cline{2-4}
\cline{2-3}
%\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\
%\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant
%(Exclusive)}}& \textbf{\textbf{Pain Irrelevant
%(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\
\textbf{\textbf{Pain Relevant
(Exclusive)}}& \textbf{\textbf{Pain Irrelevant
(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\
\hline
emar, intervention, increase, dose, expressions, chest, regimen, alteration, toradol, medication & home, wheelchair, chc, fatigue, bedside, parent, discharge, warm, relief, mother & pain, pca, plan, develop, control, altered, patient, level, comfort, manage
%$^{\mathrm{a}}$& & \\
%$^{\mathrm{}}$& & \\
%\hline
%\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.}
\end{tabular}
%\end{tabularx}
\label{tab1}
\end{center}
\vspace{-4mm}
\end{table} | [
[
"Pain Relevant\n(Exclusive)",
"Pain Irrelevant\n(Exclusive)",
"Pain Relevant\nAND Pain\nIrrelevant"
],
[
"emar, intervention,\nincrease, dose,\nexpressions,\nchest, regimen,\nalteration, toradol,\nmedication",
"home,\nwheelchair,\nchc, fatigue,\nbedside, parent,\ndischarge, warm,\nrelief, mother",
"pain, pca, plan,\ndevelop, control,\naltered, patient,\nlevel, comfort,\nmanage"
]
] | 0.704545 | null | null |
2 | 2008.11081v1 | 3 | [
53.79800033569336,
572.7586466471354,
307.3110046386719,
636.385986328125
] | \begin{table}[htbp]
\vspace{1 mm}
\caption{Topic distribution based on pain relevance}
\begin{center}
\vspace{-4 mm}
%\begin{tabular}{|c|c|c|c|}
\begin{tabular}{p{1.25cm} | p{3.2cm} | p{3.2cm}}
%\begin{tabular}{p{2cm} | p{5cm} }
%\begin{tabularx}{8cm}{|X|X|X|X|}
\hline
%\textbf{Table}&\multicolumn{3}{|c|}{\textbf{Table Column Head}} \\
\cline{2-3}
%\cline{2-2}
%\textbf{\textbf{N-grams}} & \textbf{\textit{Table column subhead}}& \textbf{\textit{Subhead}}& \textbf{\textit{Subhead}} \\
%\textbf{\textbf{N-grams}} & \textbf{\textbf{Pain Relevant
%(Exclusive)}}& \textbf{\textbf{Pain Irrelevant
%(Exclusive)}}& \textbf{\textit{Pain Relevant AND Pain Irrelevant}} \\
\textbf{\textbf{Pain Relevance}}& \textbf{Most Prevalent Words in Topic-1} & \textbf{Most Prevalent Words in Topic-2} \\
\hline
YES & progress, pain, improve, decrease, knowledge, control%, management, satisfaction
& patient, pain, medication, knowledge, goal, state%, improve, regimen
\\
\hline
NO & note, admission, discharge, patient, home, ability%, respiratory, mother
& pain, goal, admission, outcome, relief, continue %, home, ability
\vspace*{-\baselineskip}
%$^{\mathrm{a}}$& & \\
%$^{\mathrm{}}$& & \\
%$^{\mathrm{}}$& & \\
%\hline
%\multicolumn{4}{l}{$^{\mathrm{a}}$Sample of a Table footnote.}
\end{tabular}
%\end{tabularx}
\label{tab1}
\end{center}
\vspace{-4mm}
\end{table} | [
[
"Pain Rele-\nvance",
"Most Prevalent Words in\nTopic-1",
"Most Prevalent Words in\nTopic-2"
],
[
"YES",
"progress, pain, improve, de-\ncrease, knowledge, control",
"patient, pain, medication,\nknowledge, goal, state"
],
[
"NO",
"note, admission, discharge,\npatient, home, ability",
"pain, goal, admission, out-\ncome, relief, continue"
]
] | 0.602083 | null | null |
0 | 1810.08323v1 | 5 | [
67.66499710083008,
72.198974609375,
284.96475982666016,
103.28302001953125
] | \begin{table}[t]
\centering
\fontsize{8}{10pt}\selectfont
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& Barbara & Boat & Man & Couple & Puffins \\
\hline
Single Pass & 22.67 & 23.26 & 23.25 & 22.97 & 23.92 \\
\hline
Two Passes & 23.00 & 23.60 & 23.39 & 23.26 & 24.29 \\
\hline
\end{tabular}
\caption{Denoised PSNR values (in dB) for the adaptive DeepResT algorithm using a single pass and two passes with $L=5$ layers and $\sigma=100$.}
\label{tab2}
%\vspace{-0.1in}
\end{table} | [
[
"",
"Barbara",
"Boat",
"Man",
"Couple",
"Puffins"
],
[
"Single Pass",
"22.67",
"23.26",
"23.25",
"22.97",
"23.92"
],
[
"Two Passes",
"23.00",
"23.60",
"23.39",
"23.26",
"24.29"
]
] | 0.614555 | null | null |
0 | 2307.06450v1 | 15 | [
73.40999984741211,
159.718017578125,
537.1799926757812,
185.84002685546875
] | \begin{table}[H]
\caption{Parameters for CARA case of competition between portfolio managers with delayed tax effects.}\label{table param CARA no consump}
\centering
\begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | }
\hline
Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ \\
\hline
Value & 10 & 10.0 & 0.08 & 0.2 & 0.04 & 2.0 & 0.01 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $2 + \frac{1}{10}(i-1)$ \\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"N",
"T",
"µ\n1",
"σ",
"r",
"λ",
"µ\n2",
"δ\ni",
"θ\ni",
"Xi = xi\n(−∞,0] 0"
],
[
"Value",
"10",
"10.0",
"0.08",
"0.2",
"0.04",
"2.0",
"0.01",
"0.3 + 4 9(i −1)",
"0.3 + 4 9(i −1)",
"2 + 11 0(i −1)"
]
] | 0.770318 | null | null |
1 | 2307.06450v1 | 15 | [
79.802001953125,
230.958984375,
531.0701904296875,
257.08099365234375
] | \begin{table}[H]
\caption{Parameters for CRRA case of competition between portfolio managers with delayed tax effects.}\label{table param CRRA no consump}
\centering
\begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | }
\hline
Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ \\
\hline
Value & 10 & 1.0 & 0.08 & 0.2 & 0.04 & 1.0 & 0.2 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $1 + \frac{1}{20}(i-1)$ \\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"N",
"T",
"µ\n1",
"σ",
"r",
"λ",
"µ\n2",
"δ\ni",
"θ\ni",
"Xi = xi\n(−∞,0] 0"
],
[
"Value",
"10",
"1.0",
"0.08",
"0.2",
"0.04",
"1.0",
"0.2",
"0.3 + 4 9(i −1)",
"0.3 + 4 9(i −1)",
"1 + 21 0(i −1)"
]
] | 0.759857 | null | null |
2 | 2307.06450v1 | 15 | [
73.40999984741211,
302.20098876953125,
559.0450032552084,
328.3219909667969
] | \begin{table}[H]
\caption{Parameters for consumption and portfolio allocation game with delayed tax effects.} \label{table param CRRA w consump}
\centering
\begin{tabular}{| c || c | c | c | c | c | c | c | c | c | c | c | }
\hline
Parameter & $N$ & $T$ & $\mu_1$ & $\sigma$ & $r$ & $\lambda$ & $\mu_2$ & $\delta_i$ & $\theta_i$ & $X^i_{(-\infty,0]} = x^i_0$ & $\epsilon_i$ \\
\hline
Value & 10 & 2.0 & 0.08 & 0.2 & 0.04 & 1.0 & 0.01 & $0.3 + \frac{4}{9}(i-1)$ & $0.3 + \frac{4}{9}(i-1)$ & $1 + \frac{1}{20}(i-1)$ & 50.0 \\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"N",
"T",
"µ\n1",
"σ",
"r",
"λ",
"µ\n2",
"δ\ni",
"θ\ni",
"Xi = xi\n(−∞,0] 0",
"ϵ\ni"
],
[
"Value",
"10",
"2.0",
"0.08",
"0.2",
"0.04",
"1.0",
"0.01",
"0.3 + 4 9(i −1)",
"0.3 + 4 9(i −1)",
"1 + 21 0(i −1)",
"50.0"
]
] | 0.75 | null | null |
3 | 2307.06450v1 | 15 | [
146.2469940185547,
373.4419860839844,
466.31239013671876,
398.14898681640625
] | \begin{table}[H]
\caption{Parameters for inter-bank lending model.} \label{table iblwd params}
\centering
\begin{tabular}{| c || c | c | c | c | c | c | c | c | }
\hline
Parameter & $N$ & $T$ & $\sigma$ & $q$ & $\epsilon$ & $c$ & $\tau$ & $X^i_0 = \xi^i$ \\
\hline
Value & 10 & 1.0 & .05 & 1.0 & 2.0 & 0.25 & 0.25 & $1+0.1 \cdot 1.15^{i-1}$\\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"N",
"T",
"σ",
"q",
"ϵ",
"c",
"τ",
"X 0i = ξi"
],
[
"Value",
"10",
"1.0",
".05",
"1.0",
"2.0",
"0.25",
"0.25",
"1 + 0.1 1.15i−1\n·"
]
] | 0.810811 | null | null |
0 | 1507.08340v1 | 4 | [
150.9679946899414,
137.9530029296875,
464.3870086669922,
267.7659912109375
] | \begin{table}[!ht]
\renewcommand{\arraystretch}{1.3}
\caption{Benchmarks.}
\label{Benchmarks}
\centering
\begin{tabular}{p{2cm}p{2cm}|p{3cm}|p{3cm}}
\hline
\multicolumn{2}{l|}{\textbf{Benchmarks}} & \textbf{Transformations} & \textbf{Actions} \\ \hline
\multicolumn{1}{l|}{Micro-benchmarks} & Word count & map, reduceByKey & saveAsTextFile \\\cline{2-4}
\multicolumn{1}{l|}{} & Grep & filter & saveAsTextFile \\ \cline{2-4}
\multicolumn{1}{l|}{} & Sort & map, sortByKey & saveAsTextFile \\ \hline
\multicolumn{1}{l|}{Classification} & Naive Bayes & map & collect \\
\multicolumn{1}{l|}{} & & & saveAsTextFile \\ \hline
\multicolumn{1}{l|}{Clustering} & K-Means & map, filter & takeSample \\
\multicolumn{1}{l|}{} & & mapPartitions & collectAsMap \\
\multicolumn{1}{l|}{} & & reduceByKey & collect \\ \hline
\end{tabular}
\end{table} | [
[
"Benchmarks",
null,
"Transformations",
"Actions"
],
[
"Micro-benchmarks",
"Word count",
"map, reduceByKey",
"saveAsTextFile"
],
[
null,
"Grep",
"filter",
"saveAsTextFile"
],
[
null,
"Sort",
"map, sortByKey",
"saveAsTextFile"
],
[
"Classification",
"Naive Bayes",
"map",
"collect\nsaveAsTextFile"
],
[
"Clustering",
"K-Means",
"map, filter\nmapPartitions\nreduceByKey",
"takeSample\ncollectAsMap\ncollect"
]
] | 0.826953 | null | null |
1 | 1507.08340v1 | 4 | [
150.9679946899414,
301.02398681640625,
464.3870086669922,
485.73101806640625
] | \begin{table}[!ht]
\renewcommand{\arraystretch}{1.3}
\caption{Machine Details.}
\label{hardware}
\centering
\begin{tabular}{l|l|p{6.5cm}}
\hline
\textbf{Component} & \multicolumn{2}{c}{\textbf{Details}} \\ \hline
Processor & \multicolumn{2}{l}{Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture} \\ \hline
\multirow{6}{*}{} & Cores & 12 @ 2.7 GHz (Turbo upto 3.5 GHz) \\ \cline{2-3}
& Threads & 2 per core \\ \cline{2-3}
& Sockets & 2 \\ \cline{2-3}
& L1 Cache & 32 KB for instructions and 32 KB for data per core \\ \cline{2-3}
& L2 Cache & 256 KB per core \\ \cline{2-3}
& L3 Cache (LLC) & 30 MB per socket \\ \hline
Memory & \multicolumn{2}{l}{2 x 32 GB, 4 DDR3 channels, Max BW 60 GB/s} \\ \hline
OS & \multicolumn{2}{l}{Linux kernel version 2.6.32} \\ \hline
JVM & \multicolumn{2}{l}{Oracle Hotspot JDK version 7u71} \\ \hline
Spark & \multicolumn{2}{l}{Version 1.3.0} \\ \hline
\end{tabular}
\end{table} | [
[
"Component",
"Details",
null
],
[
"Processor",
"Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture",
null
],
[
"",
"Cores",
"12 @ 2.7 GHz (Turbo upto 3.5 GHz)"
],
[
null,
"Threads",
"2 per core"
],
[
null,
"Sockets",
"2"
],
[
null,
"L1 Cache",
"32 KB for instructions and 32 KB for data per\ncore"
],
[
null,
"L2 Cache",
"256 KB per core"
],
[
null,
"L3 Cache (LLC)",
"30 MB per socket"
],
[
"Memory",
"2 x 32 GB, 4 DDR3 channels, Max BW 60 GB/s",
null
],
[
"OS",
"Linux kernel version 2.6.32",
null
],
[
"JVM",
"Oracle Hotspot JDK version 7u71",
null
],
[
"Spark",
"Version 1.3.0",
null
]
] | 0.888393 | null | null |