id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
14 | 1902.00562v1 | 13 | [
314.1099853515625,
78.635986328125,
560.9039916992188,
239.2340087890625
] | \begin{table}[t]
\caption{\label{tab:Reg Model RMSE Compare}\label{tab:RegModelTable} Prediction Accuracy of Regression Models on Test Data}
\centering
\begin{tabular}{l|l|r|r|r|r}
\hline
Data & Model & RMSE & MAE & MSE & R2\\
\hline
1) Base & GLM & 446.35 & 221.16 & 199227.6 & 0.12\\
\hline
2) Zip & GLM & 426.93 & 206.49 & 182270.1 & 0.19\\
\hline
3) Spatial & GLM & 382.32 & 195.00 & 146170.5 & 0.35\\
\hline
1) Base & RF & 387.99 & 174.24 & 150536.3 & 0.33\\
\hline
2) Zip & RF & 475.20 & 190.33 & 225811.7 & 0.00\\
\hline
3) Spatial & RF & 430.92 & 180.17 & 185695.5 & 0.18\\
\hline
1) Base & GBM & 384.11 & 179.27 & 147543.5 & 0.35\\
\hline
2) Zip & GBM & 454.53 & 186.00 & 206593.1 & 0.09\\
\hline
3) Spatial & GBM & 406.70 & 170.97 & 165408.0 & 0.27\\
\hline
1) Base & ANN & 363.02 & 178.58 & 131782.5 & 0.42\\
\hline
2) Zip & ANN & 360.88 & 171.22 & 130232.2 & 0.42\\
\hline
3) Spatial & ANN & 337.94 & 158.91 & 114202.0 & 0.49\\
\hline
\end{tabular}
\end{table} | [
[
"Data",
"Model",
"RMSE",
"MAE",
"MSE",
"R2"
],
[
"1) Base",
"GLM",
"446.35",
"221.16",
"199227.6",
"0.12"
],
[
"2) Zip",
"GLM",
"426.93",
"206.49",
"182270.1",
"0.19"
],
[
"3) Spatial",
"GLM",
"382.32",
"195.00",
"146170.5",
"0.35"
],
[
"1) Base",
"RF",
"387.99",
"174.24",
"150536.3",
"0.33"
],
[
"2) Zip",
"RF",
"475.20",
"190.33",
"225811.7",
"0.00"
],
[
"3) Spatial",
"RF",
"430.92",
"180.17",
"185695.5",
"0.18"
],
[
"1) Base",
"GBM",
"384.11",
"179.27",
"147543.5",
"0.35"
],
[
"2) Zip",
"GBM",
"454.53",
"186.00",
"206593.1",
"0.09"
],
[
"3) Spatial",
"GBM",
"406.70",
"170.97",
"165408.0",
"0.27"
],
[
"1) Base",
"ANN",
"363.02",
"178.58",
"131782.5",
"0.42"
],
[
"2) Zip",
"ANN",
"360.88",
"171.22",
"130232.2",
"0.42"
],
[
"3) Spatial",
"ANN",
"337.94",
"158.91",
"114202.0",
"0.49"
]
] | 1 | null | null |
15 | 1902.00562v1 | 15 | [
61.46799850463867,
78.57847595214844,
287.51898193359375,
239.2340087890625
] | \begin{table}[t]
\caption{\label{tab:Class Model Compare}\label{tab:ClassModelTable} Prediction Accuracy of Classification Models on Test Data}
\centering
\begin{tabular}{l|l|r|r|r|r}
\hline
Data & Model & AUC & MSE & RMSE & R2\\
\hline
1) Base & GLM & 0.57 & 0.03 & 0.17 & 0.00\\
\hline
2) Zip & GLM & 0.58 & 0.03 & 0.17 & 0.00\\
\hline
3) Spatial & GLM & 0.50 & 0.03 & 0.17 & -0.01\\
\hline
1) Base & RF & 0.58 & 0.03 & 0.17 & -0.03\\
\hline
2) Zip & RF & 0.56 & 0.03 & 0.17 & -0.06\\
\hline
3) Spatial & RF & 0.78 & 0.03 & 0.17 & 0.00\\
\hline
1) Base & GBM & 0.61 & 0.03 & 0.17 & -0.03\\
\hline
2) Zip & GBM & 0.61 & 0.03 & 0.17 & -0.03\\
\hline
3) Spatial & GBM & 0.82 & 0.03 & 0.16 & 0.04\\
\hline
1) Base & ANN & 0.55 & 0.03 & 0.17 & -0.03\\
\hline
2) Zip & ANN & 0.57 & 0.03 & 0.17 & -0.04\\
\hline
3) Spatial & ANN & 0.76 & 0.03 & 0.17 & -0.01\\
\hline
\end{tabular}
\end{table} | [
[
"Data",
"Model",
"AUC",
"MSE",
"RMSE",
"R2"
],
[
"1) Base",
"GLM",
"0.57",
"0.03",
"0.17",
"0.00"
],
[
"2) Zip",
"GLM",
"0.58",
"0.03",
"0.17",
"0.00"
],
[
"3) Spatial",
"GLM",
"0.50",
"0.03",
"0.17",
"-0.01"
],
[
"1) Base",
"RF",
"0.58",
"0.03",
"0.17",
"-0.03"
],
[
"2) Zip",
"RF",
"0.56",
"0.03",
"0.17",
"-0.06"
],
[
"3) Spatial",
"RF",
"0.78",
"0.03",
"0.17",
"0.00"
],
[
"1) Base",
"GBM",
"0.61",
"0.03",
"0.17",
"-0.03"
],
[
"2) Zip",
"GBM",
"0.61",
"0.03",
"0.17",
"-0.03"
],
[
"3) Spatial",
"GBM",
"0.82",
"0.03",
"0.16",
"0.04"
],
[
"1) Base",
"ANN",
"0.55",
"0.03",
"0.17",
"-0.03"
],
[
"2) Zip",
"ANN",
"0.57",
"0.03",
"0.17",
"-0.04"
],
[
"3) Spatial",
"ANN",
"0.76",
"0.03",
"0.17",
"-0.01"
]
] | 1 | null | null |
16 | 1902.00562v1 | 15 | [
50.77521896362305,
282.0411376953125,
300.02203369140625,
352.6251220703125
] | \begin{table}[t]
\caption{\label{tab:Reg VarImp}\label{tab:RegVarImp} Feature Importance of Top Performing Regression Model}
\centering
\resizebox{\linewidth}{!}{
\begin{tabular}{l|l|r|l}
\hline
Variable & Description & Scaled Importance (Max = 1) & Cumulative \%\\
\hline
BuiltFAR & Floor area ratio built & 1.000 & 1.80\%\\
\hline
FacilFAR & Maximum Allowable Floor Area Ratio & 0.922 & 3.40\%\\
\hline
Last\_Sale\_Price\_Total & The previous sale price & 0.901 & 5.10\%\\
\hline
Last\_Sale\_Date & Date of last sale & 0.893 & 6.70\%\\
\hline
Last\_Sale\_Price & The previous sale price & 0.870 & 8.20\%\\
\hline
Years\_Since\_Last\_Sale & Number of years since last sale & 0.823 & 9.70\%\\
\hline
ResidFAR & Floor Area Ratio not yet built & 0.814 & 11.20\%\\
\hline
lon & Longitude & 0.773 & 12.60\%\\
\hline
Year & Year of record & 0.759 & 13.90\%\\
\hline
BldgDepth & Square feet from font to back & 0.758 & 15.30\%\\
\hline
\end{tabular}}
\end{table} | [
[
"Variable",
"Description",
"Scaled Importance (Max = 1)",
"Cumulative %"
],
[
"BuiltFAR",
"Floor area ratio built",
"1.000",
"1.80%"
],
[
"FacilFAR",
"Maximum Allowable Floor Area Ratio",
"0.922",
"3.40%"
],
[
"Last Sale Price Total",
"The previous sale price",
"0.901",
"5.10%"
],
[
"Last Sale Date",
"Date of last sale",
"0.893",
"6.70%"
],
[
"Last Sale Price",
"The previous sale price",
"0.870",
"8.20%"
],
[
"Years Since Last Sale",
"Number of years since last sale",
"0.823",
"9.70%"
],
[
"ResidFAR",
"Floor Area Ratio not yet built",
"0.814",
"11.20%"
],
[
"lon",
"Longitude",
"0.773",
"12.60%"
],
[
"Year",
"Year of record",
"0.759",
"13.90%"
],
[
"BldgDepth",
"Square feet from font to back",
"0.758",
"15.30%"
]
] | 0.947858 | null | null |
17 | 1902.00562v1 | 15 | [
313.4578857421875,
78.57847595214844,
563.0432739257812,
135.37764195033483
] | \begin{table}[t]
\caption{\label{tab:Class VarImp}\label{tab:ClassVarImp} Feature Importance of Top Performing Classification Model}
\centering
\resizebox{\linewidth}{!}{
\begin{tabular}{l|l|r|l}
\hline
Variable & Description & Scaled Importance (Max = 1) & Cumulative \%\\
\hline
Percent\_Neighbords\_Sold & Percent of Nearby Properties Sold in the Previous Year & 1.000 & 21.90\%\\
\hline
Percent\_Office & Percent of the build which is Office & 0.698 & 37.20\%\\
\hline
Percent\_Garage & Percent of the build which is Garage & 0.634 & 51.10\%\\
\hline
Percent\_Storage & Percent of the build which is Storage & 0.518 & 62.40\%\\
\hline
Building\_Age & The Age of the building & 0.225 & 67.40\%\\
\hline
Last\_Sale\_Price & Price of building last time is was sold & 0.165 & 71.00\%\\
\hline
Percent\_Retail & Percent of the build which is Retail & 0.147 & 74.20\%\\
\hline
Years\_Since\_Last\_Sale & Year since building last sold & 0.121 & 76.90\%\\
\hline
ExemptTot & Total tax exempted value of the building & 0.069 & 78.40\%\\
\hline
Radius\_Res\_Units\_Sold\_In\_Year & Residential units within 500 meters sold in past year & 0.056 & 79.60\%\\
\hline
\end{tabular}}
\end{table} | [
[
"Variable",
"Description",
"Scaled Importance (Max = 1)",
"Cumulative %"
],
[
"Percent Neighbords Sold",
"Percent of Nearby Properties Sold in the Previous Year",
"1.000",
"21.90%"
],
[
"Percent Office\nPercent Garage",
"Percent of the build which is Office\nPercent of the build which is Garage",
"0.698\n0.634",
"37.20%\n51.10%"
],
[
"Percent Storage",
"Percent of the build which is Storage",
"0.518",
"62.40%"
],
[
"Building Age",
"The Age of the building",
"0.225",
"67.40%"
],
[
"Last Sale Price",
"Price of building last time is was sold",
"0.165",
"71.00%"
],
[
"Percent Retail",
"Percent of the build which is Retail",
"0.147",
"74.20%"
],
[
"Years Since Last Sale",
"Year since building last sold",
"0.121",
"76.90%"
],
[
"ExemptTot\nRadius Res Units Sold In Year",
"Total tax exempted value of the building\nResidential units within 500 meters sold in past year",
"0.069\n0.056",
"78.40%\n79.60%"
]
] | 0.700201 | null | null |
0 | 1501.04038v2 | 5 | [
187.17799377441406,
111.3060302734375,
408.0979919433594,
213.62200927734375
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|l||l|l|l|l||l|l|l|} \hline
\textbf{Records} & \multicolumn{7}{c|}{\textbf{Bins}} \\ \hline
&\multicolumn{4}{c||}{$X$}&\multicolumn{3}{c|}{$Y$}\\
&$x_1$&$x_2$&...&$x_{50}$&$y_1$&$y_2$&$y_3$\\ \hline
$t_1$&0&1&...&0&0&0&1\\
$t_2$&0&0&...&0&0&1&0\\
$t_3$&0&0&...&1&0&0&1\\
$...$&$...$&$...$&$...$&$...$&$...$&$...$&$...$\\ \hline
\end{tabular}
\end{center}
\caption{\label{tbl:bitmap}An Example Bitmap Index}
\end{table} | [
[
"Records",
"Bins",
null,
null,
null,
null,
null,
null
],
[
"",
"X\nx x ... x\n1 2 50",
null,
null,
null,
"Y\ny y y\n1 2 3",
null,
null
],
[
"t\n1\nt\n2\nt\n3\n...",
"0\n0\n0\n...",
"1\n0\n0\n...",
"...\n...\n...\n...",
"0\n0\n1\n...",
"0\n0\n0\n...",
"0\n1\n0\n...",
"1\n0\n1\n..."
]
] | 0.487805 | null | null |
1 | 1501.04038v2 | 10 | [
202.0590057373047,
111.3060302734375,
393.2170104980469,
200.37200927734375
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Attr. & \# Bins & Attr. & \# Bins \\
\hline
Year & 11 & Month & 12 \\
\hline
Day & 31 & Hour & 24 \\
\hline
Min. & 60 & Sec. & 60 \\
\hline
mSec. & 10 & $\Phi$ & $20\times 23$ \\
\hline
$V$ & $20\times 36$ & $\Delta$ & $20\times 180$ \\
\hline
\end{tabular}
\end{center}
\caption{\label{table:bins}Bins}
\end{table} | [
[
"Attr.",
"# Bins",
"Attr.",
"# Bins"
],
[
"Year",
"11",
"Month",
"12"
],
[
"Day",
"31",
"Hour",
"24"
],
[
"Min.",
"60",
"Sec.",
"60"
],
[
"mSec.",
"10",
"Φ",
"20 23\n×"
],
[
"V",
"20 36\n×",
"∆",
"20 180\n×"
]
] | 0.812261 | null | null |
2 | 1501.04038v2 | 12 | [
64.51200103759766,
112.30303955078125,
538.7020263671875,
374.5190124511719
] | \begin{table}[ht]
\small
\begin{center}
\begin{tabular}{|c||p{4.8cm}|p{2.3cm}|p{2.3cm}|p{2.3cm}|p{2cm}|} \hline
\textbf{ID} & \textbf{Selection Criteria} & \textbf{Linear Scan (sec)}& \textbf{MySQL (sec)} &\textbf{Bitmap (sec)} &\textbf{Records Retrieved}\\
\hline
\hline
1 & Find all records where PMU1 has a magnitude Voltage Magnitude of 533.
& 25.859666 & 22.469 & 0.379387 & 160
\\\hline
2 & Find all records that occurred on exactly June 24, 2013 at 21:05 hours.
& 25.350993 & 0.353 & 0.854952 & 3600
\\\hline
3 & Find all records that occurred on exactly June 24, 2013 at 21:06 hours.
& 28.001001 & 0.396 & 0.922941 & 3600
\\\hline
4 & Find all records that occurred on exactly June 24, 2013 at 21:07 hours.
& 26.133607 & 0.225 & 0.785588 & 3600
\\\hline
5 & Find all records that occurred on exactly June 24, 2013 at 21:06 hours with PMU having a Voltage Magnitude of 533.
& 28.019449 & 0.046 & 0.001772 & 0
\\\hline
6 & Find all records in 2012.
& 26.720291 & 23.714 & 0.0000601 & 0
\\\hline
\end{tabular}
\end{center}
\caption{\label{table:querycomp}Query Performance}
\end{table} | [
[
"ID",
"Selection Criteria",
"Linear Scan\n(sec)",
"MySQL (sec)",
"Bitmap (sec)",
"Records Re-\ntrieved"
],
[
"1",
"Find all records where PMU1\nhas a magnitude Voltage Mag-\nnitude of 533.",
"25.859666",
"22.469",
"0.379387",
"160"
],
[
"2",
"Find all records that occurred\non exactly June 24, 2013 at\n21:05 hours.",
"25.350993",
"0.353",
"0.854952",
"3600"
],
[
"3",
"Find all records that occurred\non exactly June 24, 2013 at\n21:06 hours.",
"28.001001",
"0.396",
"0.922941",
"3600"
],
[
"4",
"Find all records that occurred\non exactly June 24, 2013 at\n21:07 hours.",
"26.133607",
"0.225",
"0.785588",
"3600"
],
[
"5",
"Find all records that occurred\non exactly June 24, 2013 at\n21:06 hours with PMU having\na Voltage Magnitude of 533.",
"28.019449",
"0.046",
"0.001772",
"0"
],
[
"6",
"Find all records in 2012.",
"26.720291",
"23.714",
"0.0000601",
"0"
]
] | 0.970752 | null | null |
0 | 2106.14251v3 | 15 | [
66.61399841308594,
71.04255676269531,
528.6754372336648,
409.6402282714844
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{3.42cm}|p{3.32cm}|p{3.0cm}|p{3.25cm}|p{3.28cm}|} %{|l|l|l|l|l|}
\hline
\textbf{Generic model Kurgan and Musilek} \cite{km06} & \textbf{Shmueli and Koppius }\cite{sk11} &\textbf{Chambers and Dinsmore }\cite{cd14} & \textbf{Goodfellow et al.} \cite{g16} & \textbf{Data science development process}\\ \hline
Application domain understanding& Goal definition & Defines business needs &Determination of goals & Problem understanding \\ \hline
Data understanding& Data collection and study design & \multirow{2}{3.0cm}{Build analysis data set} & Establish a working end-to-end pipeline& Data collection\\ \cline{1-2}\cline{5-5}
\multirow{2}{3.42cm}{Data preparation and identification of data mining technology}& Data preparation& & & Data engineering \\ \cline{2-2}
& Exploratory data analysis & & & \\ \cline{2-2}
& Choice of variables & & & \\ \hline
Data mining& Choice of potential methods & \multirow{2}{3.25cm}{Build predictive model} & Instrument the system well to determine bottlenecks in performance & Model training \\ \cline{1-2}\cline{4-5}
Evaluation& Evaluation, validation and model selection & & Repeatedly make incremental changes such as gathering new data, adjusting hyperparameters, or changing algorithms& Model optimization\\ \hline
Knowledge consolidation and deployment& Model use and reporting & Deploy predictive model & \textit{Beyond discussion} & \textit{Model Integration }\\ \hline
\textit{Beyond discussion}& \textit{Beyond discussion}& \textit{Beyond discussion}& \textit{Beyond discussion}& Analytical decision making \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Data science development processes.}
\label{tab:mldevproc}
\end{table} | [
[
"Generic model\nKurgan and\nMusilek [117]",
"Shmueli and\nKoppius [183]",
"Chambers and\nDinsmore [39]",
"Goodfellow et al.\n[78]",
"Data science\ndevelopment\nprocess"
],
[
"Application domain\nunderstanding",
"Goal definition",
"Defines business\nneeds",
"Determination of\ngoals",
"Problem under-\nstanding"
],
[
"Data understanding",
"Data collection and\nstudy design",
"Build analysis\ndata set",
"Establish a working\nend-to-end pipeline",
"Data collection"
],
[
"Data preparation\nand identification of\ndata mining\ntechnology",
"Data preparation",
null,
null,
"Data engineering"
],
[
null,
"Exploratory data\nanalysis",
null,
null,
null
],
[
null,
"Choice of variables",
null,
null,
null
],
[
"Data mining",
"Choice of potential\nmethods",
"Build predictive\nmodel",
"Instrument the sys-\ntem well to deter-\nmine bottlenecks in\nperformance",
"Model training"
],
[
"Evaluation",
"Evaluation, valida-\ntion and model se-\nlection",
null,
"Repeatedly make\nincremental\nchanges such\nas gathering new\ndata, adjusting\nhyperparame-\nters, or changing\nalgorithms",
"Model optimization"
],
[
"Knowledge consoli-\ndation and deploy-\nment",
"Model use and re-\nporting",
"Deploy predictive\nmodel",
"Beyond discussion",
"Model Integration"
],
[
"Beyond discussion",
"Beyond discussion",
"Beyond discus-\nsion",
"Beyond discussion",
"Analytical decision\nmaking"
]
] | 0.745315 | null | null |
1 | 2106.14251v3 | 26 | [
66.61399841308594,
71.05728149414062,
528.6845703125,
359.6346435546875
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{4.23cm}|p{3.75cm}|p{7.75cm}|} %{|l|l|l|l|l|}
\hline
\textbf{Data Science Main Phases} & \textbf{Sub-Phases} &\textbf{Conceptual Modeling Concepts, Methods and Tools} \\ \hline
\multirow{2}{4.23cm}{Problem understanding}&Problem statement & Business requirements, goal model\\ \cline{2-3}
& Problem analysis & Business requirements, goal model; legal and ethical requirements; Data requirements \\ \hline
Data collection& &Data requirements; Data quality; legal and ethical requirements, business requirements \\ \hline
\multirow{3}{4.23cm}{Data engineering}& Data exploration& Data requirements; Legal requirements
\\ \cline{2-3}
& Data preparation& Ontologies; Domain models
\\ \cline{2-3}
& Feature engineering& Ontologies; Domain models\\ \hline
\multirow{3}{4.23cm}{Model training}&Selection& Business requirements, legal requirements, performance requirements and conditions for acceptance \\ \cline{2-3}
& Training& Performance requirements \\ \cline{2-3}
& Validation& Performance requirements\\ \hline
\multirow{3}{4.23cm}{Model optimization}& Parameter optimization& Domain model, resilience requirements\\ \cline{2-3}
& Performance Optimization&Domain model, resilience requirements \\ \hline
Model integration& & \multirow{2}{7.75cm}{Business requirements;Goal model; Legal requirements; Ethical requirements; Data requirements}
\\ \cline{1-2}
Analytical decision making& & \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Framework for incorporating conceptual models into data science projects.}
\label{tab:framework}
\end{table} | [
[
"Data Science Main\nPhases",
"Sub-Phases",
"Conceptual Modeling Concepts, Meth-\nods and Tools"
],
[
"Problem understanding",
"Problem statement",
"Business requirements, goal model"
],
[
null,
"Problem analysis",
"Business requirements, goal model; legal and\nethical requirements; Data requirements"
],
[
"Data collection",
"",
"Data requirements; Data quality; legal and eth-\nical requirements, business requirements"
],
[
"Data engineering",
"Data exploration",
"Data requirements; Legal requirements"
],
[
null,
"Data preparation",
"Ontologies; Domain models"
],
[
null,
"Feature engineering",
"Ontologies; Domain models"
],
[
"Model training",
"Selection",
"Business requirements, legal requirements, per-\nformance requirements and conditions for ac-\nceptance"
],
[
null,
"Training",
"Performance requirements"
],
[
null,
"Validation",
"Performance requirements"
],
[
"Model optimization",
"Parameter optimiza-\ntion",
"Domain model, resilience requirements"
],
[
null,
"Performance Opti-\nmization",
"Domain model, resilience requirements"
],
[
"Model integration",
"",
"Business requirements;Goal model; Legal\nrequirements; Ethical requirements; Data\nrequirements"
],
[
"Analytical decision mak-\ning",
"",
null
]
] | 0.563752 | null | null |
2 | 2106.14251v3 | 29 | [
66.61399841308594,
71.05497741699219,
528.67724609375,
472.21392822265625
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{2.25cm}|p{9.23cm}|p{4.5cm}|} %{|l|l|l|l|l|}
\hline
\textbf{Topic} & \textbf{Definition} &\textbf{Example specification languages}\\ \hline
Business & description of business process that are related to the strategy and the rationale of on organization& I*, BPMB, UML, BIM, URN/GRL \cite{a10}, BMM \cite{OMG}, DSML \cite{gmp09}
\\ \hline
Legal& Goals that choices made during the ML development are compliant with the law (based on \cite{s09})
&
Nomos, Legal GRL \cite{gar14}
\\ \hline
Ethical \cite{by14}
&
Compliance with principles, such as transparency, justice and fairness, non-maleficence, responsibility and privacy \cite{jiv19}.
&
textual
\\ \hline
Data \cite{vb19}
&
Requirements on semantics, quantity and quality of data &ER, UML, RDF, OWL, UFO, OCL
\\ \hline
ML Model \cite{jm15}
&
selection of architectural elements, their interactions, and the constraints on those elements and their interactions necessary to provide a framework in which to satisfy the requirements and serve as a basis for the design \cite{pw92}.
&
Finite state processes, labeled transition systems \cite{v03}
\\ \hline
Functional & statements of services the system should provide, how the system should react to particular inputs, and how the system should behave in particular situations. \cite{s04}
&
BPMN, UML, EPC, KAOS, DSML \cite{f13} \cite{gmp09}
\\ \hline
Non-functional & A non-functional requirement is an attribute of a constraint on a system \cite{glinz2007non}
&
UML, KAOS
\\ \hline
Performance & expressed as the quantitative part of a requirement to indicate how well each product function is expected to be accomplished \cite{c12}
&
Rules quantified by metrics
\\ \hline
Interpretability & Interpretable systems are explainable if their operations can be understood by humans. \cite{ab18}
&
Qualitative rules
\\ \hline
Resilience& ML models that gracefully degrade in performance under the influence of disturbances and resource limitations & Rules quantified by metrics
\\ \hline
\end{tabular}
\end{adjustbox}
\caption{Specification languages.}
\label{tab:spec}
\end{table} | [
[
"Topic",
"Definition",
"Example specification\nlanguages"
],
[
"Business",
"description of business process that are related to the\nstrategy and the rationale of on organization",
"I*, BPMB, UML, BIM,\nURN/GRL [7], BMM\n[156], DSML [74]"
],
[
"Legal",
"Goals that choices made during the ML development\nare compliant with the law (based on [185])",
"Nomos, Legal GRL [73]"
],
[
"Ethical [26]",
"Compliance with principles, such as transparency, jus-\ntice and fairness, non-maleficence, responsibility and\nprivacy [108].",
"textual"
],
[
"Data [209]",
"Requirements on semantics, quantity and quality of\ndata",
"ER, UML, RDF, OWL,\nUFO, OCL"
],
[
"ML Model\n[109]",
"selection of architectural elements, their interactions,\nand the constraints on those elements and their inter-\nactions necessary to provide a framework in which to\nsatisfy the requirements and serve as a basis for the de-\nsign [164].",
"Finite state processes, la-\nbeled transition systems\n[205]"
],
[
"Functional",
"statements of services the system should provide, how\nthe system should react to particular inputs, and how\nthe system should behave in particular situations. [192]",
"BPMN, UML, EPC,\nKAOS, DSML [66] [74]"
],
[
"Non-\nfunctional",
"A non-functional requirement is an attribute of a con-\nstraint on a system [75]",
"UML, KAOS"
],
[
"Performance",
"expressed as the quantitative part of a requirement to\nindicate how well each product function is expected to\nbe accomplished [46]",
"Rules quantified by metrics"
],
[
"Interpretability",
"Interpretable systems are explainable if their operations\ncan be understood by humans. [2]",
"Qualitative rules"
],
[
"Resilience",
"ML models that gracefully degrade in performance un-\nder the influence of disturbances and resource limita-\ntions",
"Rules quantified by metrics"
]
] | 0.502706 | null | null |
3 | 2106.14251v3 | 33 | [
66.61399841308594,
71.02877044677734,
528.6655731201172,
261.3982849121094
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|} %{|l|l|l|l|l|}
\hline
Pregnancies (number)
& Glucose (Plasma glucose concentration at 2 hours in an oral glucose tolerance test) & Blood-Pressure (Diastolic blood pressure (mm Hg)
)
& Skin-Thickness (Triceps skin fold thickness (mm)
)
& Insulin
(2-Hour serum insulin (mu U/ml)
)
& BMI (Body mass index (weight in kg/(height in m)2)
)
& Diabetes-Pedigree-Function (Diabetes pedigree function
)
& Age (years) & Outcome (0 / 1)
\\ \hline
6 & 148 & 72 & 35 & 0 & 33.6 & 627 & 50 & 1
\\ \hline
1 & 85 & 66 & 29 & 0 & 26.6 & 351 & 31 & 0
\\ \hline
8 & 183 & 64 & 0 & 0 & 23.3 & 672 & 32 & 1
\\ \hline
1 & 89 & 66 & 23 & 94 & 28.1 & 167 & 21 & 0
\\ \hline
0 & 137 & 40 & 35 & 168 & 43.1 & 2.288 & 33 & 1
\\ \hline
5 & 116 & 74 & 0 & 0 & 25.6 & 201 & 30 & 0
\\ \hline
3 & 78 & 50 & 32 & 88 & 31 & 248 & 26 & 1
\\ \hline
\end{tabular}
\end{adjustbox}
\caption{Dataset (selection).}
\label{tab:dataset}
\end{table} | [
[
"Pregnancies\n(number)",
"Glucose\n(Plasma\nglucose\nconcen-\ntration at\n2 hours\nin an oral\nglucose\ntolerance\ntest)",
"Blood-\nPressure\n(Diastolic\nblood\npressure\n(mm Hg) )",
"Skin-\nThickness\n(Triceps\nskin fold\nthickness\n(mm) )",
"Insulin\n(2-Hour\nserum in-\nsulin (mu\nU/ml) )",
"BMI\n(Body\nmass\nindex\n(weight in\nkg/(height\nin m)2) )",
"Diabetes-\nPedigree-\nFunction\n(Diabetes\npedigree\nfunction )",
"Age\n(years)",
"Outcome\n(0 / 1)"
],
[
"6",
"148",
"72",
"35",
"0",
"33.6",
"627",
"50",
"1"
],
[
"1",
"85",
"66",
"29",
"0",
"26.6",
"351",
"31",
"0"
],
[
"8",
"183",
"64",
"0",
"0",
"23.3",
"672",
"32",
"1"
],
[
"1",
"89",
"66",
"23",
"94",
"28.1",
"167",
"21",
"0"
],
[
"0",
"137",
"40",
"35",
"168",
"43.1",
"2.288",
"33",
"1"
],
[
"5",
"116",
"74",
"0",
"0",
"25.6",
"201",
"30",
"0"
],
[
"3",
"78",
"50",
"32",
"88",
"31",
"248",
"26",
"1"
]
] | 0.965919 | null | null |
4 | 2106.14251v3 | 33 | [
66.61399841308594,
295.5459289550781,
528.6655731201172,
410.79852294921875
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{4.74cm}|p{1.24cm}|p{1.45cm}|p{1.45cm}|p{1.45cm}|p{1.25cm}|p{1.45cm}|p{1.45cm}|p{1.45cm}|} %{|l|l|l|l|l|}
\hline
& count & mean & std & min & 25\% & 50\% & 75\% & max
\\ \hline
Pregnancies & 768 & 3.84 & 3.36 & 0.000 & 1.00 & 3.00 & 6.00 & 17.00
\\ \hline
Glucose & 768 & 120.89 & 31.97 & 0.000 & 99.00 & 117.00 & 140.25 & 199.00
\\ \hline
Blood¬Pressure & 768 & 69.10 & 19.35 & 0.000 & 62.00 & 72.00 & 80.00 & 122.00
\\ \hline
Skin-Thickness & 768 & 20.53 & 15.95 & 0.000 & 0.00 & 23.00 & 32.00 & 99.00
\\ \hline
Insulin & 768 & 79.79 & 115.24 & 0.000 & 0.00 & 30.50 & 127.25 & 846.00
\\ \hline
BMI & 768 & 31.99 & 7.88 & 0.000 & 27.30 & 32.00 & 36.60 & 67.10
\\ \hline
Diabetes-Pedigree-Function & 768 & 0.47 & 0.33 & 0.078 & 0.24 & 0.37 & 0.62 & 2.42
\\ \hline
Age & 768 & 33.24 & 11.76 & 21.000 & 24.00 & 29.00 & 41.00 & 81.00
\\ \hline
Outcome & 768 & 0.34 & 0.47 & 0.000 & 0.00 & 0.00 & 1.00 & 1.00
\\ \hline
\end{tabular}
\end{adjustbox}
\caption{Descriptive statistics.}
\label{tab:descriptives}
\end{table} | [
[
"",
"count",
"mean",
"std",
"min",
"25%",
"50%",
"75%",
"max"
],
[
"Pregnancies",
"768",
"3.84",
"3.36",
"0.000",
"1.00",
"3.00",
"6.00",
"17.00"
],
[
"Glucose",
"768",
"120.89",
"31.97",
"0.000",
"99.00",
"117.00",
"140.25",
"199.00"
],
[
"Blood¬Pressure",
"768",
"69.10",
"19.35",
"0.000",
"62.00",
"72.00",
"80.00",
"122.00"
],
[
"Skin-Thickness",
"768",
"20.53",
"15.95",
"0.000",
"0.00",
"23.00",
"32.00",
"99.00"
],
[
"Insulin",
"768",
"79.79",
"115.24",
"0.000",
"0.00",
"30.50",
"127.25",
"846.00"
],
[
"BMI",
"768",
"31.99",
"7.88",
"0.000",
"27.30",
"32.00",
"36.60",
"67.10"
],
[
"Diabetes-Pedigree-Function",
"768",
"0.47",
"0.33",
"0.078",
"0.24",
"0.37",
"0.62",
"2.42"
],
[
"Age",
"768",
"33.24",
"11.76",
"21.000",
"24.00",
"29.00",
"41.00",
"81.00"
],
[
"Outcome",
"768",
"0.34",
"0.47",
"0.000",
"0.00",
"0.00",
"1.00",
"1.00"
]
] | 0.949731 | null | null |
5 | 2106.14251v3 | 37 | [
66.61399841308594,
146.69215393066406,
528.6760689871652,
456.3454895019531
] | \begin{table}[ht]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{2.71cm}|p{2.08cm}|p{2.23cm}|p{1.69cm}|p{1.73cm}|p{1.96cm}|p{1.52cm}|p{1.22cm}|p{1.14cm}|} %{|l|l|l|l|l|}
\hline
& & Number of pregnancies & Glucose & Blood Pressure & Skin Thickness & Insulin & BMI & Age \\ \hline
\multirow{7}{2.71cm}{Accuracy} & Believability & ++ & 0 & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Accuracy & ++ & -- & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Objectivity & ++ & 0 & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Completeness & ++ & -- & ++ & - & -- & ++ & ++
\\ \cline{2-9}
& Traceability & 0 & 0 & 0 & 0 & 0 & 0 & 0
\\ \cline{2-9}
& Reputation & ++ & ++ & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Variety & 0 & 0 & 0 & 0 & 0 & 0 & 0
\\ \hline
\multirow{6}{2.71cm}{Relevancy} & Value-added & ++ & 0 & ++ & - & - & ++ & ++
\\ \cline{2-9}
& Relevancy & ++ & ++ & ++ & + + & ++ & ++
\\ \cline{2-9}
& Timeliness & 0 & 0 & 0 & 0 & 0 & 0 & 0
\\ \cline{2-9}
& Ease of operation & ++ & ++ & ++ & 0 & 0 & ++ & ++
\\ \cline{2-9}
& Appropriate amount of data & + & + & + & -- & -- & + & +
\\ \cline{2-9}
& Flexibility & + & + & + & + & + & + & +
\\ \hline
\multirow{4}{2.71cm}{Representation} & Interpretability & ++ & ++ & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Ease of understanding & + & + & + & + & + & + & +
\\ \cline{2-9}
& Consistency & + & + & + & 0 & 0 & + & +
\\ \cline{2-9}
& Conciseness & + & + & + & + & + & + & +
\\ \hline
\multirow{3}{2.71cm}{Accessibility} & Accessibility & ++ & ++ & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Cost-effectiveness & ++ & ++ & ++ & ++ & ++ & ++ & ++
\\ \cline{2-9}
& Access security & ++ & ++ & ++ & ++ & ++ & ++ & ++
\\ \hline
\end{tabular}
\end{adjustbox}
\caption{Data quality assessment of dataset.}
\label{tab:dq}
\end{table} | [
[
"",
"",
"Number of\npregnancies",
"Glucose",
"Blood\nPressure",
"Skin Thick-\nness",
"Insulin",
"BMI",
"Age"
],
[
"Accuracy",
"Believability",
"++",
"0",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Accuracy",
"++",
"–",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Objectivity",
"++",
"0",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Completeness",
"++",
"–",
"++",
"-",
"–",
"++",
"++"
],
[
null,
"Traceability",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
[
null,
"Reputation",
"++",
"++",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Variety",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
[
"Relevancy",
"Value-added",
"++",
"0",
"++",
"-",
"-",
"++",
"++"
],
[
null,
"Relevancy",
"++",
"++",
"++",
"+ +",
"++",
"++",
""
],
[
null,
"Timeliness",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
[
null,
"Ease of op-\neration",
"++",
"++",
"++",
"0",
"0",
"++",
"++"
],
[
null,
"Appropriate\namount of\ndata",
"+",
"+",
"+",
"–",
"–",
"+",
"+"
],
[
null,
"Flexibility",
"+",
"+",
"+",
"+",
"+",
"+",
"+"
],
[
"Representation",
"Interpretabilit",
"y++",
"++",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Ease of un-\nderstanding",
"+",
"+",
"+",
"+",
"+",
"+",
"+"
],
[
null,
"Consistency",
"+",
"+",
"+",
"0",
"0",
"+",
"+"
],
[
null,
"Conciseness",
"+",
"+",
"+",
"+",
"+",
"+",
"+"
],
[
"Accessibility",
"Accessibility",
"++",
"++",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Cost-\neffectiveness",
"++",
"++",
"++",
"++",
"++",
"++",
"++"
],
[
null,
"Access secu-\nrity",
"++",
"++",
"++",
"++",
"++",
"++",
"++"
]
] | 0.437679 | null | null |
6 | 2106.14251v3 | 39 | [
66.61399841308594,
71.0660400390625,
528.3920288085938,
182.2490234375
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{4.18cm}|p{1.95cm}|p{1.22cm}|p{3.44cm}|p{1.91cm}|p{1.06cm}|} %{|l|l|l|l|l|}
\hline
\textbf{Model} & \textbf{Accuracy} & \textbf{AUC} & \textbf{Recall / Sensitivity} & \textbf{Precision} & \textbf{F1}
\\ \hline
Light Gradient Boosting & 0.89 & 0.94 & 0.84 & 0.86 & 0.85
\\ \hline
Gradient boosting & 0.89 & 0.95 & 0.81 & 0.85 & 0.83
\\ \hline
Logistic regression & 0.84 & 0.91 & 0.73 & 0.78 & 0.76
\\ \hline
Support vector classifier & 0.85 & 0.91 & 0.75 & 0.81 & 0.78
\\ \hline
Decision tree & 0.86 & 0.81 & 0.82 & 0.79 & 0.81
\\ \hline
K nearest neighbors & 0.80 & 0.88 & 0.59 & 0.77 & 0.67
\\ \hline
\end{tabular}
\end{adjustbox}
\caption{Model types.}
\label{tab:modeltypes}
\end{table} | [
[
"Model",
"Accuracy",
"AUC",
"Recall / Sensitiv-\nity",
"Precision",
"F1"
],
[
"Light Gradient Boosting",
"0.89",
"0.94",
"0.84",
"0.86",
"0.85"
],
[
"Gradient boosting",
"0.89",
"0.95",
"0.81",
"0.85",
"0.83"
],
[
"Logistic regression",
"0.84",
"0.91",
"0.73",
"0.78",
"0.76"
],
[
"Support vector classifier",
"0.85",
"0.91",
"0.75",
"0.81",
"0.78"
],
[
"Decision tree",
"0.86",
"0.81",
"0.82",
"0.79",
"0.81"
],
[
"K nearest neighbors",
"0.80",
"0.88",
"0.59",
"0.77",
"0.67"
]
] | 0.955752 | null | null |
7 | 2106.14251v3 | 41 | [
66.61399841308594,
71.04131317138672,
528.6863403320312,
310.98968505859375
] | \begin{table}[]
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{|p{2.99cm}|p{3.0cm}|p{3.5cm}|p{3.5cm}|p{3.5cm}|} %{|l|l|l|l|l|}
\hline
\textbf{ML $\rightarrow$ CM} & \textbf{Rules, anomalies and explanations} & \textbf{Semantic models }
(ERM, i*) & \textbf{Ontologies} & \textbf{Process models}
(EPC, BPMN)
\\ \hline
General Supervised learning & Associative rules \cite{ais93}; rule extraction \cite{bb10}
& & Ontology mapping and matching \cite{d04, nso11}
& Process discovery \cite{augusto18}; event abstraction \cite{v20}
\\ \hline
Sequence learning & Rule extraction \cite{ms17}
& Named entity recognition \cite{cn16}; link prediction \cite{c19}
& Ontology matching \cite{jx20}
& \\ \hline
Generative learning & & Link prediction (Qin et al. 2020) & &
\\ \hline
Graph learning & & Link prediction \cite{h06, dettmers18} Relational learning \cite{ntk11} & & \\ \hline
Unsupervised learning & Anomaly detection \cite{a17}
& Link prediction \cite{llc10}
& Concept learning Mi et al. 2020) & Event abstraction \cite{v20}
\\ \hline
Reinforcement learning & Rule extraction \cite{pv20}
& & & \\ \hline
\end{tabular}
\end{adjustbox}
\caption{Extraction of conceptual models with machine learning.}
\label{tab:extraction}
\end{table} | [
[
"ML → CM",
"Rules, anoma-\nlies and expla-\nnations",
"Semantic models\n(ERM, i*)",
"Ontologies",
"Process models\n(EPC, BPMN)"
],
[
"General Super-\nvised learning",
"Associative rules\n[3]; rule extrac-\ntion [12]",
"",
"Ontology map-\nping and matching\n[54, 151]",
"Process discovery\n[11]; event abstrac-\ntion [207]"
],
[
"Sequence learning",
"Rule extraction\n[146]",
"Named entity recog-\nnition [45]; link pre-\ndiction [42]",
"Ontology matching\n[106]",
""
],
[
"Generative learn-\ning",
"",
"Link prediction (Qin\net al. 2020)",
"",
""
],
[
"Graph learning",
"",
"Link prediction [6,\n51] Relational learn-\ning [152]",
"",
""
],
[
"Unsupervised\nlearning",
"Anomaly detec-\ntion [5]",
"Link prediction [122]",
"Concept learning Mi\net al. 2020)",
"Event abstraction\n[207]"
],
[
"Reinforcement\nlearning",
"Rule extraction\n[169]",
"",
"",
""
]
] | 0.578547 | null | null |
0 | 1905.02158v2 | 10 | [
326.28499603271484,
341.4830017089844,
550.1749434037642,
414.1289978027344
] | \begin{table}[h]
\centering
\small
\vspace{-0mm}
\begin{threeparttable}
\caption{Capabilities and capacities of different Parsl executors and other parallel Python tools.\vspace{-3ex}}
\vspace{0mm}
\begin{tabular}{| c| c|c|c|}
\hline
\multirow{2}{*}{\textbf{Framework}} & \textbf{Maximum} & \textbf{Maximum} & \textbf{Maximum} \\
& \textbf{\# of workers}\tnote{\dag} & \textbf{\# of nodes}\tnote{\dag} & \textbf{tasks/second}\tnote{$\ddagger$} \\ \hline
Parsl-IPP & \num{2048} & 64 & 330 \\ \hline
Parsl-HTEX & \num{65536} & \num{2048}\tnote{*} & \num{1181}\\ \hline
Parsl-EXEX & \num{262144} & \num{8192}\tnote{*} & \num{1176}\\ \hline
FireWorks & \num{1024} & 32 & 4\\ \hline
Dask distributed & \num{8192} & 256 & \num{2617}\\ \hline
\end{tabular}
\begin{tablenotes}\small
\item[*] Limited by the the number of nodes we could allocate on Blue Waters during our experiments; this is not a scalability limit.
\item[\dag] These results are specific to Blue Waters, one core per worker, and using default configuration as in each framework's documentation.
\item[$\ddagger$] The results in this column are collected on Midway.
\end{tablenotes}
\label{table:maxWorkers}\vspace{-0in}
\end{threeparttable}
\end{table} | [
[
"Framework",
"Maximum\n# of workers†",
"Maximum\n# of nodes†",
"Maximum\ntasks/second‡"
],
[
"Parsl-IPP",
"2048",
"64",
"330"
],
[
"Parsl-HTEX",
"65 536",
"2048*",
"1181"
],
[
"Parsl-EXEX",
"262 144",
"8192*",
"1176"
],
[
"FireWorks",
"1024",
"32",
"4"
],
[
"Dask distributed",
"8192",
"256",
"2617"
]
] | 0.4125 | null | null |
0 | 2210.09217v1 | 39 | [
134,
72.198974609375,
478,
408.5379943847656
] | \begin{table}[!h]
\begin{center}
\footnotesize
\begin{tabular}{ |p{1.8cm}||p{3cm}|p{6cm}| }
%\hline
%\multicolumn{4}{|c|}{Imaging modalities} \\
\hline
Missing mechanism&Causes& Details\\
\hline
\multirow{2}{*}{MCAR} &Faulty scanning & Removal of images with corruption or susceptibility artifacts \\ \cline{2-3}
&Faulty scanning & Random failure of experimental instrument \\ \cline{2-3}
&Data loss & Data transfer/storage loss \\ \cline{2-3}
&Data loss & Missing entries \\ \cline{2-3}
&Attrition/Nonresponse & Unable to participate due to migration/move (irrelavant with the study) \\ \cline{2-3}
&Study design & Study ended early \\ \cline{2-3}
&Study design & Modalities were not included in the imaging protocol \\ \hline
\multirow{2}{*}{MAR} &Study design & Exclusion criteria, such as age, sex, race, socioecnomic status, etc. \\ \cline{2-3}
&Attrition/Nonresponse & Dropout due to side effects, such as allergy \\ \cline{2-3}
&Attrition/Nonresponse & Dropout rates vary among different age or sex groups \\ \hline
\multirow{2}{*}{MNAR} &Study design & Quit the study due to physical or psychological health conditions \\ \cline{2-3}
&Attrition/Nonresponse & Dropout due to concerns of financial cost \\ \cline{2-3}
&Attrition/Nonresponse & Dropout due to concerns of limited available time to visit \\ \cline{2-3}
&Attrition/Nonresponse & Dropout due to concerns of scanning safety \\ \cline{2-3}
&Attrition/Nonresponse & Dropout due to concerns of personal data unauthorised disclosure \\ \cline{2-3}
&Attrition/Nonresponse & Quit the study, following another person's behavior \\ \cline{2-3}
&Attrition/Nonresponse & Deliberately not willing to respond \\ \cline{2-3}
\hline
\end{tabular}
\end{center}\caption{A summary of scenarios with different missing mechanisms in cognition/behavior-related studies}\label{tab: missing}
\end{table} | [
[
"Missing\nmechanism",
"Causes",
"Details"
],
[
"MCAR",
"Faulty scanning",
"Removal of images with corruption or sus-\nceptibility artifacts"
],
[
null,
"Faulty scanning",
"Random failure of experimental instrument"
],
[
null,
"Data loss",
"Data transfer/storage loss"
],
[
null,
"Data loss",
"Missing entries"
],
[
null,
"Attrition/Nonresponse",
"Unable to participate due to migra-\ntion/move (irrelavant with the study)"
],
[
null,
"Study design",
"Study ended early"
],
[
null,
"Study design",
"Modalities were not included in the imag-\ning protocol"
],
[
"MAR",
"Study design",
"Exclusion criteria, such as age, sex, race,\nsocioecnomic status, etc."
],
[
null,
"Attrition/Nonresponse",
"Dropout due to side effects, such as allergy"
],
[
null,
"Attrition/Nonresponse",
"Dropout rates vary among different age or\nsex groups"
],
[
"MNAR",
"Study design",
"Quit the study due to physical or psycho-\nlogical health conditions"
],
[
null,
"Attrition/Nonresponse",
"Dropout due to concerns of financial cost"
],
[
null,
"Attrition/Nonresponse",
"Dropout due to concerns of limited avail-\nable time to visit"
],
[
null,
"Attrition/Nonresponse",
"Dropout due to concerns of scanning safety"
],
[
null,
"Attrition/Nonresponse",
"Dropout due to concerns of personal data\nunauthorised disclosure"
],
[
null,
"Attrition/Nonresponse",
"Quit the study, following another person’s\nbehavior"
],
[
null,
"Attrition/Nonresponse",
"Deliberately not willing to respond"
]
] | 0.404744 | null | null |
1 | 2210.09217v1 | 75 | [
72,
97.60400390625,
551.0780029296875,
736.1426798502604
] | \begin{table}[!h]
\begin{center}\caption{Summary of key information for eight neuroimaging modalities}
\footnotesize
\begin{tabular}{ |p{1.2cm}||p{2.8cm}|p{2cm}|p{2.5cm}|p{3.3cm}|p{2.5cm}| }
%\hline
%\multicolumn{4}{|c|}{Imaging modalities} \\
\hline
Modality&Tracer& Resolution&Feature &Use&Software\\
\hline
sMRI (T1, T2) &Fluid characteristics of different tissues& 0.5-1 mm &Cortical thickness, cortical folding,
sulcal depth, voxel-based morphometry,
regional volumes and shape& Measure brain cortical/subcortical structural changes for diagnosis/staging/follow-up of disease/brain development. & Freesurfer, ANTs, FSL, SPM, AFNI, Hammer, BRAINVisa, BrainSuite\\ \hline
DWI &Brownian motion of water molecules within voxels & 1.25-3 mm &Fractional anisotropy, axial/radial/mean diffusivity, DKI/ NODDI parameters, structural connectivity & Delineate tumors, suspected acute ischemic brain injury, intracranial infections, masses, trauma, and edema; map structural connectome in research. &FSL, ~~~~~~Mrtrix, AFNI, TrackVis, Camino, TORTOISE, slicerDMRI, Dipy, CAMINO, DSIStudio\\ \hline
fMRI & Blood-oxygen-level-dependent (BOLD) response in blood flow associated with brain function&3-4 mm (spatial); 1-3 s (temporal) &Beta image, functional connectivity, weighted and binary network metrics& Brain activity mapping under tasks,
brain abnormalities detection, pre-operative brain functional mapping. & SPM, FSL, AFNI, CPAC, FuNP\\ \hline
PET & Emissions from radioactive tracers&4-5 mm &Standard uptake ratio & Reveal metabolic/ biochemical functions of tissues/organs and abnormalities in brain neurophysiology/ neurochemistry& NiftyPET, SPM, Metavol, NEUROSTAT, APPIAN, kinfitr, LIFEx, Pypes, SPAMALIZE\\ \hline
CT& X-ray attenuations by different tissues inside the body& Tens of nanometres-5 mm & Local and regional volumetric/thickness measures, tumor features &Diagnosing a range of conditions: abnormal blood vessels, brain atrophy, hemorrhage, swelling, stroke, tumors &ITK, SPM, PACS, Velocity, scenium, LIFEx\\ \hline
EEG& Electrical field produced by neuron electrical activity& 7-10 mm &Event-related potentials, connectivity/network measures, spectral content& Diagnosis and treatment of
brain tumors, damage, dysfunction and disorders &EEGLAB, MNE, ELAN, FieldTrip, NUTMEG, BrainVoyager, SPM\\ \hline
MEG&Magnetic field produced by neuron electrical activity, including tangential components of postsynaptic intracellular currents& 2-3 mm &Similar derived measures with EEG& Identification of brain functional areas (centers of sensory, motor, language and memory activities), precise location mapping
of the source of epileptic seizures &EEGLAB, MNE, ELAN, FieldTrip, NUTMEG, BrainVoyager, SPM\\ \hline
fNIRS&Changes in cortical BOLD response associated with brain function& 650-900 nm (spatial); milliseconds (temporal) &Similar derived measures with EEG and fMRI& Study normal and pathological brain physiology in infants/children&Homer2, Homer3, FNIRSOFT, OPENFNIRS, ICNNA, nirsLAB \\ \hline
\hline
\end{tabular}
\end{center}\label{Table:modality}
\end{table} | [
[
"Modality",
"Tracer",
"Resolution",
"Feature",
"Use",
"Software"
],
[
"sMRI\n(T1, T2)",
"Fluid character-\nistics of different\ntissues",
"0.5-1 mm",
"Cortical thick-\nness, cortical\nfolding, sulcal\ndepth, voxel-\nbased morphom-\netry, regional\nvolumes and\nshape",
"Measure brain cor-\ntical/subcortical\nstructural changes for\ndiagnosis/staging/follow-\nup of disease/brain\ndevelopment.",
"Freesurfer,\nANTs, FSL,\nSPM, AFNI,\nHammer,\nBRAINVisa,\nBrainSuite"
],
[
"DWI",
"Brownian motion\nof water molecules\nwithin voxels",
"1.25-3 mm",
"Fractional\nanisotropy,\naxial/radial/mean\ndiffusivity, DKI/\nNODDI param-\neters, structural\nconnectivity",
"Delineate tumors,\nsuspected acute is-\nchemic brain injury,\nintracranial infections,\nmasses, trauma, and\nedema; map struc-\ntural connectome in\nresearch.",
"FSL, Mrtrix,\nAFNI, Track-\nVis, Camino,\nTORTOISE,\nslicerDMRI,\nDipy, CAMINO,\nDSIStudio"
],
[
"fMRI",
"Blood-oxygen-\nlevel-dependent\n(BOLD) response\nin blood flow asso-\nciated with brain\nfunction",
"3-4 mm (spa-\ntial); 1-3 s\n(temporal)",
"Beta image, func-\ntional connectiv-\nity, weighted and\nbinary network\nmetrics",
"Brain activity mapping\nunder tasks, brain ab-\nnormalities detection,\npre-operative brain\nfunctional mapping.",
"SPM, FSL,\nAFNI, CPAC,\nFuNP"
],
[
"PET",
"Emissions from ra-\ndioactive tracers",
"4-5 mm",
"Standard uptake\nratio",
"Reveal metabolic/\nbiochemical functions\nof tissues/organs and\nabnormalities in brain\nneurophysiology/\nneurochemistry",
"NiftyPET, SPM,\nMetavol, NEU-\nROSTAT, AP-\nPIAN, kinfitr,\nLIFEx, Pypes,\nSPAMALIZE"
],
[
"CT",
"X-ray attenuations\nby different tissues\ninside the body",
"Tens of\nnanometres-5\nmm",
"Local and\nregional volu-\nmetric/thickness\nmeasures, tumor\nfeatures",
"Diagnosing a range\nof conditions: abnor-\nmal blood vessels,\nbrain atrophy, hemor-\nrhage, swelling, stroke,\ntumors",
"ITK, SPM,\nPACS, Velocity,\nscenium, LIFEx"
],
[
"EEG",
"Electrical field pro-\nduced by neuron\nelectrical activity",
"7-10 mm",
"Event-related\npotentials, con-\nnectivity/network\nmeasures, spec-\ntral content",
"Diagnosis and treat-\nment of brain tumors,\ndamage, dysfunction\nand disorders",
"EEGLAB, MNE,\nELAN, Field-\nTrip, NUTMEG,\nBrainVoyager,\nSPM"
],
[
"MEG",
"Magnetic field\nproduced by neuron\nelectrical activity,\nincluding tangential\ncomponents of\npostsynaptic intra-\ncellular currents",
"2-3 mm",
"Similar derived\nmeasures with\nEEG",
"Identification of brain\nfunctional areas (cen-\nters of sensory, motor,\nlanguage and memory\nactivities), precise\nlocation mapping of\nthe source of epileptic\nseizures",
"EEGLAB, MNE,\nELAN, Field-\nTrip, NUTMEG,\nBrainVoyager,\nSPM"
],
[
"fNIRS",
"Changes in cortical\nBOLD response as-\nsociated with brain\nfunction",
"650-900 nm\n(spatial);\nmilliseconds\n(temporal)",
"Similar derived\nmeasures with\nEEG and fMRI",
"Study normal and\npathological brain\nphysiology in in-\nfants/children",
"Homer2,\nHomer3,\nFNIRSOFT,\nOPENFNIRS,\nICNNA, nirsLAB"
]
] | 0.980436 | null | null |
0 | 2201.04703v1 | 2 | [
123.6969985961914,
524.864013671875,
499.92518920898436,
576.27099609375
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Algorithm & Model Accuracy (\%)& P. sick (\%) & P. not sick (\%) & P. Test(\%) \\ \hline
\hline
Decision Tree & 72.54 & 79.34 & 64.39&30 \\ \hline
Random Forest & 78.43 & 92.08 & 58.53&50 \\ \hline
Adaboost & 75.88 & 81.77 & 66.94&70 \\
\hline
\end{tabular}
\caption{Results obtained. The table shows the precision percentages of the different algorithms.}
\label{tab:my_label}
\end{table} | [
[
"Algorithm",
"Model Accuracy (%)",
"P. sick (%)",
"P. not sick (%)",
"P. Test(%)"
],
[
"Decision Tree",
"72.54",
"79.34",
"64.39",
"30"
],
[
"Random Forest",
"78.43",
"92.08",
"58.53",
"50"
],
[
"Adaboost",
"75.88",
"81.77",
"66.94",
"70"
]
] | 0.756381 | null | null |
1 | 2201.04703v1 | 2 | [
149.03199768066406,
616.9140014648438,
474.5900065104167,
641.6220092773438
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Kernel} & \textbf{C} & \textbf{Gamma} & \textbf{Degree} \\ \hline
linear, sigmoid, rbf, polynomial & 0.1, 1, 2, 3, 4 & auto, scale & 2, 3, 4, 5 \\ \hline
\end{tabular}
\caption{Tested parameters in SVM algorithm.}
\label{tab:my_label}
\end{table} | [
[
"Kernel",
"C",
"Gamma",
"Degree"
],
[
"linear, sigmoid, rbf, polynomial",
"0.1, 1, 2, 3, 4",
"auto, scale",
"2, 3, 4, 5"
]
] | 0.794872 | null | null |
2 | 2201.04703v1 | 2 | [
159.1510009765625,
682.2650146484375,
464.4713439941406,
706.9730224609375
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Kernel} & \textbf{C} & \textbf{Gamma} & \textbf{Degree} & \textbf{Accuracy} (\%)& \textbf{P. Test}(\%)\\ \hline
rbf& 4 & scale & 2 & 74.68 & 100\\ \hline
\end{tabular}
\caption{Best combination of SVM.}
\label{tab:my_label}
\end{table} | [
[
"Kernel",
"C",
"Gamma",
"Degree",
"Accuracy (%)",
"P. Test(%)"
],
[
"rbf",
"4",
"scale",
"2",
"74.68",
"100"
]
] | 0.774566 | null | null |
0 | 2405.07317v1 | 7 | [
55.97320022583008,
466.5610046386719,
293.01299438476565,
515.9760131835938
] | \begin{table}[!htb]
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
Model & ACC\_bef & ACC\_af & MIA\_bef & MIA\_af \\ \hline
MoCo & 70\% & 60\% & 90\% & 50\% \\ \hline
SimCLR & 66\% & 60\% & 70\% & 50\% \\ \hline
BYOL & 55\% & 49\% & 70\% & 50\% \\ \hline
\end{tabular}
\caption{Performance of different models on CIFAR-10}
\end{table} | [
[
"Model",
"ACC_bef",
"ACC_af",
"MIA_bef",
"MIA_af"
],
[
"MoCo",
"70%",
"60%",
"90%",
"50%"
],
[
"SimCLR",
"66%",
"60%",
"70%",
"50%"
],
[
"BYOL",
"55%",
"49%",
"70%",
"50%"
]
] | 0.736842 | null | null |
0 | 1503.05216v1 | 3 | [
192.93800354003906,
72.19903564453125,
402.3382568359375,
111.25299072265625
] | \begin{table}
\begin{center}
\begin{tabular}{|c||c|c|}
\hline
& Uninfected $\male$ & Infected $\male$\\
\hline
\hline
Uninfected $\female$ & \bf Uninfected & \bf \color{red}Sterile eggs \\
\hline
Infected $\female$ & \bf Infected & \bf Infected \\
\hline
\end{tabular}
\end{center}
\caption{\label{tab:incompatibilidade-citoplasm=0000E1tica}Cytoplasmic incompatibility and vertical transmission of {\em Wolbachia} bacteria.
The state of the offspring is indicated, depending on the parents status}
\label{ta2}
\end{table} | [
[
"",
"Uninfected\n♂",
"Infected\n♂"
],
[
"Uninfected\n♀",
"Uninfected",
"Sterile eggs"
],
[
"Infected\n♀",
"Infected",
"Infected"
]
] | 0.411622 | null | null |
1 | 1503.05216v1 | 4 | [
115.9020004272461,
72.19903564453125,
479.3729901994978,
146.72003173828125
] | \begin{table}
\begin{center}
\begin{tabular}{|r|l|}
\hline
Notation & Meaning\\
\hline\hline
$\alpha_U, \alpha_W$ & Fecundity rates of uninfected and infected insects\\
$\nu$ & Rate of transfer from the preliminary to the adult stage\\
$\mu$ & Mortality rate of uninfected and infected insects in preliminary stage\\
$\mu k$ & Characteristic of the additional mortality rate in preliminary stage\\
$\mu_U, \mu_W$ & Mortality rates of uninfected and infected insects at adult stage\\
\hline
\end{tabular}
\caption{List of parameters of model \eqref{eq1}}
\label{ta1}
\end{center}
\end{table} | [
[
"Notation",
"Meaning"
],
[
"α , α\nU W\nν\nµ\nµk\nµ , µ\nU W",
"Fecundity rates of uninfected and infected insects\nRate of transfer from the preliminary to the adult stage\nMortality rate of uninfected and infected insects in preliminary stage\nCharacteristic of the additional mortality rate in preliminary stage\nMortality rates of uninfected and infected insects at adult stage"
]
] | 0.406291 | null | null |
0 | 2111.14283v1 | 6 | [
81.7619031270345,
113.28890991210938,
513.5358174641927,
168.597412109375
] | \begin{table}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|l|l|c|c|c|c|}
\hline
\multicolumn{1}{|c|}{} &
\multicolumn{1}{c|}{\textbf{models}} &
\textbf{\begin{tabular}[c]{@{}c@{}}PR-AUC\\ (OOD-test set)\end{tabular}} &
\textbf{\begin{tabular}[c]{@{}c@{}}ROC-AUC\\ (OOD-test set)\end{tabular}} &
\textbf{\begin{tabular}[c]{@{}c@{}}ROC-AUC\\ Deployment Gap\end{tabular}} &
\textbf{\begin{tabular}[c]{@{}c@{}}PR-AUC\\ Deployment Gap\end{tabular}} \\ \hline
DIASE &
PortalCG w/o STL \& OOC-ML &
0.603±0.005 &
0.636±0.004 &
-0.275±0.016 &
-0.345±0.012 \\ \hline
variant 1 &
\begin{tabular}[c]{@{}l@{}}PortalCG w/o OOC-ML\end{tabular} &
0.629±0.005 &
0.661±0.004 &
--- &
--- \\ \hline
variant 2 &
\begin{tabular}[c]{@{}l@{}}PortalCG w/o STL\end{tabular} &
0.698±0.015 &
0.654±0.062 &
--- &
--- \\ \hline
PortalCG &
\begin{tabular}[c]{@{}l@{}}Portal learning\end{tabular} &
0.714±0.010 &
0.677±0.010 &
0.010±0.009 &
0.005±0.010 \\ \hline
\end{tabular}%
}
\caption{Ablation study of PortalCG.}
\label{tab:PRAUC}
\end{table} | [
[
"",
"models",
"PR-AUC\n(OOD-test set)",
"ROC-AUC\n(OOD-test set)",
"ROC-AUC\nDeployment Gap",
"PR-AUC\nDeployment Gap"
],
[
"DIASE",
"PortalCG w/o STL & OOC-ML",
"0.603±0.005",
"0.636±0.004",
"-0.275±0.016",
"-0.345±0.012"
],
[
"variant 1",
"PortalCG w/o OOC-ML",
"0.629±0.005",
"0.661±0.004",
"—",
"—"
],
[
"variant 2",
"PortalCG w/o STL",
"0.698±0.015",
"0.654±0.062",
"—",
"—"
],
[
"PortalCG",
"Portal learning",
"0.714±0.010",
"0.677±0.010",
"0.010±0.009",
"0.005±0.010"
]
] | 0.445714 | null | null |
1 | 2111.14283v1 | 7 | [
81.80625032123767,
258.74664306640625,
513.4892674496299,
478.5331726074219
] | \begin{table}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
\multicolumn{4}{|c|}{Docking scores of \textbf{Fenebrutinib} binding to predicted targets} \\ \hline
Uniprot ID & Protein name & PDB ID & \begin{tabular}[c]{@{}c@{}}Docking score \\ (kcal/mol)\end{tabular} \\ \hline
Q96B26 & Exosome complex component RRP43 & 2NN6\_C & -7.9 \\ \hline
Q5JRX3 & Presequence protease, mitochondrial & 4L3T\_A & -10.8 \\ \hline
Q99720 & Sigma non-opioid intracellular receptor 1 & 5HK1\_A & -9.6 \\ \hline
Q5VT66 & Mitochondrial amidoxime-reducing component 1 & 6FW2\_A & -10.4 \\ \hline
P29122 & Proprotein convertase subtilisin/kexin type 6 & \multicolumn{1}{l|}{AF-P29122-F1 (157-622)} & -8.5 \\ \hline
Q96K12 & Fatty acyl-CoA reductase 2 & \multicolumn{1}{l|}{AF-Q96K12-F1 (1-478)} & -10.1 \\ \hline
O94973 & AP-2 complex subunit alpha-2 & \multicolumn{1}{l|}{AF-O94973-F1 (3-622)} & -8.6 \\ \hline
\multicolumn{4}{|c|}{Docking scores of \textbf{NMS-P715} binding to predicted targets} \\ \hline
Uniprot ID & Protein name & PDB ID & \begin{tabular}[c]{@{}c@{}}Docking score\\ (kcal/mol)\end{tabular} \\ \hline
Q9UN86 & Ras GTPase-activating protein-binding protein 2 & 5DRV\_A & -9.5 \\ \hline
P67870 & Casein kinase II subunit beta & 1QF8\_A & -8.6 \\ \hline
Q96B26 & Exosome complex component RRP43 & 2NN6\_C & -9.3 \\ \hline
P62877 & E3 ubiquitin-protein ligase RBX1 & 2HYE\_D & -7.9 \\ \hline
P61962 & DDB1- and CUL4-associated factor 7 & \multicolumn{1}{l|}{AF-P61962-F1 (9-341)} & -8.7 \\ \hline
Q9NXH9 & tRNA (guanine(26)-N(2))-dimethyltransferase & \multicolumn{1}{l|}{AF-Q9NXH9-F1 (53-556)} & -9.0 \\ \hline
Q9NQT4 & Exosome complex component RRP46 & 2NN6\_D & -8.6 \\ \hline
\end{tabular}%
}
\caption{Docking scores for Fenebrutinib and NMS-P715}
\label{tab:docking}
\end{table} | [
[
"Docking scores of Fenebrutinib binding to predicted targets",
null,
null,
null
],
[
"Uniprot ID",
"Protein name",
"PDB ID",
"Docking score\n(kcal/mol)"
],
[
"Q96B26",
"Exosome complex component RRP43",
"2NN6_C",
"-7.9"
],
[
"Q5JRX3",
"Presequence protease, mitochondrial",
"4L3T_A",
"-10.8"
],
[
"Q99720",
"Sigma non-opioid intracellular receptor 1",
"5HK1_A",
"-9.6"
],
[
"Q5VT66",
"Mitochondrial amidoxime-reducing component 1",
"6FW2_A",
"-10.4"
],
[
"P29122",
"Proprotein convertase subtilisin/kexin type 6",
"AF-P29122-F1 (157-622)",
"-8.5"
],
[
"Q96K12",
"Fatty acyl-CoA reductase 2",
"AF-Q96K12-F1 (1-478)",
"-10.1"
],
[
"O94973",
"AP-2 complex subunit alpha-2",
"AF-O94973-F1 (3-622)",
"-8.6"
],
[
"Docking scores of NMS-P715 binding to predicted targets",
null,
null,
null
],
[
"Uniprot ID",
"Protein name",
"PDB ID",
"Docking score\n(kcal/mol)"
],
[
"Q9UN86",
"Ras GTPase-activating protein-binding protein 2",
"5DRV_A",
"-9.5"
],
[
"P67870",
"Casein kinase II subunit beta",
"1QF8_A",
"-8.6"
],
[
"Q96B26",
"Exosome complex component RRP43",
"2NN6_C",
"-9.3"
],
[
"P62877",
"E3 ubiquitin-protein ligase RBX1",
"2HYE_D",
"-7.9"
],
[
"P61962",
"DDB1- and CUL4-associated factor 7",
"AF-P61962-F1 (9-341)",
"-8.7"
],
[
"Q9NXH9",
"tRNA (guanine(26)-N(2))-dimethyltransferase",
"AF-Q9NXH9-F1 (53-556)",
"-9.0"
],
[
"Q9NQT4",
"Exosome complex component RRP46",
"2NN6_D",
"-8.6"
]
] | 0.923564 | null | null |
2 | 2111.14283v1 | 8 | [
81.83312661307198,
115.8645248413086,
513.454816545759,
229.74151611328125
] | \begin{table}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|c|}
\hline
\multicolumn{5}{|c|}{David Functional Annotation enrichment analysis}
\\ \hline
\begin{tabular}[c]{@{}c@{}}Enriched terms in \\ UniProtKB keywords\end{tabular} & \begin{tabular}[c]{@{}c@{}}Number of \\ proteins involved\end{tabular} & \begin{tabular}[c]{@{}c@{}}Percentage of \\ proteins involved\end{tabular} & P-value & \begin{tabular}[c]{@{}c@{}}Modified \\ Benjamini p-value\end{tabular} \\ \hline
{\color[HTML]{080808} Alternative splicing} & 171 & 66.5 & 7.70E-07 & 2.00E-04 \\ \hline
{\color[HTML]{080808} Phosphoprotein} & 140 & 54.5 & 2.60E-06 & 3.40E-04 \\ \hline
{\color[HTML]{080808} Cytoplasm} & 91 & 35.4 & 1.30E-05 & 1.10E-03 \\ \hline
{\color[HTML]{080808} Nucleus} & 93 & 36.2 & 1.20E-04 & 8.10E-03 \\ \hline
{\color[HTML]{080808} Metal-binding} & 68 & 26.5 & 4.20E-04 & 2.20E-02 \\ \hline
{\color[HTML]{080808} Zinc} & 48 & 18.7 & 6.60E-04 & 2.90E-02 \\ \hline
\end{tabular}%
}
\caption{Functional Annotation enrichment for undruggable human disease proteins selected by PortalCG}
\label{tab:enrichment}
\end{table} | [
[
"David Functional Annotation enrichment analysis",
null,
null,
null,
null
],
[
"Enriched terms in\nUniProtKB keywords",
"Number of\nproteins involved",
"Percentage of\nproteins involved",
"P-value",
"Modified\nBenjamini p-value"
],
[
"Alternative splicing",
"171",
"66.5",
"7.70E-07",
"2.00E-04"
],
[
"Phosphoprotein",
"140",
"54.5",
"2.60E-06",
"3.40E-04"
],
[
"Cytoplasm",
"91",
"35.4",
"1.30E-05",
"1.10E-03"
],
[
"Nucleus",
"93",
"36.2",
"1.20E-04",
"8.10E-03"
],
[
"Metal-binding",
"68",
"26.5",
"4.20E-04",
"2.20E-02"
],
[
"Zinc",
"48",
"18.7",
"6.60E-04",
"2.90E-02"
]
] | 0.390086 | null | null |
3 | 2111.14283v1 | 8 | [
81.83312661307198,
287.95269775390625,
513.454816545759,
440.1861572265625
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|}
\hline
DiseaseName & \# of undruggable proteins associated with disease \\ \hline
Breast Carcinoma & 90 \\ \hline
Tumor Cell Invasion & 86 \\ \hline
Carcinogenesis & 83 \\ \hline
Neoplasm Metastasis & 75 \\ \hline
Colorectal Carcinoma & 73 \\ \hline
Liver carcinoma & 66 \\ \hline
Malignant neoplasm of lung & 56 \\ \hline
Non-Small Cell Lung Carcinoma & 56 \\ \hline
Carcinoma of lung & 54 \\ \hline
Alzheimer's Disease & 54 \\ \hline
\end{tabular}%
}
\caption{Top ranked diseases associated with the undruggable human disease proteins selected by PortalCG}
\label{tab:disease}
\end{table} | [
[
"DiseaseName",
"# of undruggable proteins associated with disease"
],
[
"Breast Carcinoma",
"90"
],
[
"Tumor Cell Invasion",
"86"
],
[
"Carcinogenesis",
"83"
],
[
"Neoplasm Metastasis",
"75"
],
[
"Colorectal Carcinoma",
"73"
],
[
"Liver carcinoma",
"66"
],
[
"Malignant neoplasm of lung",
"56"
],
[
"Non-Small Cell Lung Carcinoma",
"56"
],
[
"Carcinoma of lung",
"54"
],
[
"Alzheimer’s Disease",
"54"
]
] | 0.842407 | null | null |
4 | 2111.14283v1 | 28 | [
81.74528198242187,
63.3190803527832,
508.6380258236291,
127.82867431640625
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|c|l}
\cline{1-5}
IhChIKey & Number of hits & Drug name & Clinical trail & Mechanism of Action & \\ \cline{1-5}
WNEODWDFDXWOLU-QHCPKHFHSA-N & 7 & fenebrutinib & phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & \\ \cline{1-5}
JFOAJUGFHDCBJJ-UHFFFAOYSA-N & 7 & NMS-P715 & preclinical & protein kinase inhibitor & \\ \cline{1-5}
QHLVBNKYJGBCQJ-UHFFFAOYSA-N & 4 & NMS-1286937 & phase 2 & PLK inhibitor & \\ \cline{1-5}
FUXVKZWTXQUGMW-FQEVSTJZSA-N & 4 & 9-aminocamptothecin & phase 2 & topoisomerase inhibitor & \\ \cline{1-5}
DKZYXHCYPUVGAF-JCNLHEQBSA-N & 2 & OTS167 & phase 1/phase 2 & maternal embryonic leucine zipper kinase inhibitor & \\ \cline{1-5}
VYLOOGHLKSNNEK-PIIMJCKOSA-N & 1 & tropifexor & phase 2 & FXR agonist & \\ \cline{1-5}
TZKBVRDEOITLRB-UHFFFAOYSA-N & 1 & GZD824 & preclinical & Bcr-Abl kinase inhibitor & \\ \cline{1-5}
KZSKGLFYQAYZCO-UHFFFAOYSA-N & 1 & cilofexor & phase 3 & FXR agonist & \\ \cline{1-5}
\end{tabular}%
}
\caption{Drugs predicted to interact with SARS-COVID-2 interactors}
\label{tab:drug-covid-interactors}
\end{table} | [
[
"IhChIKey",
"Number of hits",
"Drug name",
"Clinical trail",
"Mechanism of Action"
],
[
"WNEODWDFDXWOLU-QHCPKHFHSA-N",
"7",
"fenebrutinib",
"phase 2",
"Bruton’s tyrosine kinase (BTK) inhibitor"
],
[
"JFOAJUGFHDCBJJ-UHFFFAOYSA-N",
"7",
"NMS-P715",
"preclinical",
"protein kinase inhibitor"
],
[
"QHLVBNKYJGBCQJ-UHFFFAOYSA-N",
"4",
"NMS-1286937",
"phase 2",
"PLK inhibitor"
],
[
"FUXVKZWTXQUGMW-FQEVSTJZSA-N",
"4",
"9-aminocamptothecin",
"phase 2",
"topoisomerase inhibitor"
],
[
"DKZYXHCYPUVGAF-JCNLHEQBSA-N",
"2",
"OTS167",
"phase 1/phase 2",
"maternal embryonic leucine zipper kinase inhibitor"
],
[
"VYLOOGHLKSNNEK-PIIMJCKOSA-N",
"1",
"tropifexor",
"phase 2",
"FXR agonist"
],
[
"TZKBVRDEOITLRB-UHFFFAOYSA-N",
"1",
"GZD824",
"preclinical",
"Bcr-Abl kinase inhibitor"
],
[
"KZSKGLFYQAYZCO-UHFFFAOYSA-N",
"1",
"cilofexor",
"phase 3",
"FXR agonist"
]
] | 0.890052 | null | null |
5 | 2111.14283v1 | 34 | [
81.79529350034652,
31.63299560546875,
513.4839969758065,
254.85946655273438
] | \begin{table}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
Drug name & Clinical phase & Mechanism of Action & \begin{tabular}[c]{@{}c@{}}Number of \\ targeted proteins\end{tabular} \\ \hline
AI-10-49 & Preclinical & core binding factor inhibitor & 63 \\ \hline
Fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 56 \\ \hline
PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 42 \\ \hline
Abemaciclib & Launched & CDK inhibitor & 21 \\ \hline
MK-5046 & Preclinical & bombesin receptor agonist & 18 \\ \hline
CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 14 \\ \hline
CCT137690 & Preclinical & Aurora kinase inhibitor & 11 \\ \hline
Tropifexor & Phase 2 & FXR agonist & 5 \\ \hline
NMS-1286937 & Phase 2 & PLK inhibitor & 5 \\ \hline
NMS-P715 & Preclinical & protein kinase inhibitor & 5 \\ \hline
Elbasvir & Launched & HCV inhibitor & 5 \\ \hline
Cilofexor & Phase 3 & FXR agonist & 4 \\ \hline
CDK9-IN-6 & Preclinical & CDK inhibitor
& 3 \\ \hline
piperaquine-phosphate & Launched & antimalarial agent & 3 \\ \hline
Q-203 & Phase 2 & ATP synthase inhibitor & 3 \\ \hline
ABT 702 dihydrochloride & Preclinical & adenosine kinase inhibitor & 2 \\ \hline
Ziritaxestat & Phase 3 & autotaxin inhibitor & 2 \\ \hline
Adapalene & Launched & retinoid receptor agonist & 1 \\ \hline
Acalabrutinib & Launched & Bruton's tyrosine kinase (BTK) inhibitor & 1 \\ \hline
IACS-10759 Hydrochloride & Preclinical & mitochondrial complex I inhibitor & 1 \\ \hline
NVP-CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline
\end{tabular}%
}
\caption{Chemicals interacted with undruggable human proteins}
\label{tab:chemicals}
\end{table} | [
[
"Drug name",
"Clinical phase",
"Mechanism of Action",
"Number of\ntargeted proteins"
],
[
"AI-10-49",
"Preclinical",
"core binding factor inhibitor",
"63"
],
[
"Fenebrutinib",
"Phase 2",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"56"
],
[
"PF-05190457",
"Phase 2",
"growth hormone secretagogue receptor inverse agonist",
"42"
],
[
"Abemaciclib",
"Launched",
"CDK inhibitor",
"21"
],
[
"MK-5046",
"Preclinical",
"bombesin receptor agonist",
"18"
],
[
"CFI-402257",
"Phase 1/Phase 2",
"dual specificity protein kinase inhibitor",
"14"
],
[
"CCT137690",
"Preclinical",
"Aurora kinase inhibitor",
"11"
],
[
"Tropifexor",
"Phase 2",
"FXR agonist",
"5"
],
[
"NMS-1286937",
"Phase 2",
"PLK inhibitor",
"5"
],
[
"NMS-P715",
"Preclinical",
"protein kinase inhibitor",
"5"
],
[
"Elbasvir",
"Launched",
"HCV inhibitor",
"5"
],
[
"Cilofexor",
"Phase 3",
"FXR agonist",
"4"
],
[
"CDK9-IN-6",
"Preclinical",
"CDK inhibitor",
"3"
],
[
"piperaquine-phosphate",
"Launched",
"antimalarial agent",
"3"
],
[
"Q-203",
"Phase 2",
"ATP synthase inhibitor",
"3"
],
[
"ABT 702 dihydrochloride",
"Preclinical",
"adenosine kinase inhibitor",
"2"
],
[
"Ziritaxestat",
"Phase 3",
"autotaxin inhibitor",
"2"
],
[
"Adapalene",
"Launched",
"retinoid receptor agonist",
"1"
],
[
"Acalabrutinib",
"Launched",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"1"
],
[
"IACS-10759 Hydrochloride",
"Preclinical",
"mitochondrial complex I inhibitor",
"1"
],
[
"NVP-CGM097",
"Phase 1",
"MDM inhibitor",
"1"
]
] | 0.956407 | null | null |
6 | 2111.14283v1 | 35 | [
81.80681849888393,
31.689193725585938,
513.4833426339286,
177.4393310546875
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|}
\hline
Disease Name & \# of undruggable proteins associated with the disease \\ \hline
Breast Carcinoma & 89 \\ \hline
Tumor Cell Invasion & 85 \\ \hline
Carcinogenesis & 83 \\ \hline
Neoplasm Metastasis & 73 \\ \hline
Colorectal Carcinoma & 68 \\ \hline
Liver carcinoma & 66 \\ \hline
Non-Small Cell Lung Carcinoma & 56 \\ \hline
Malignant neoplasm of lung & 56 \\ \hline
Carcinoma of lung & 54 \\ \hline
Alzheimer's Disease & 54 \\ \hline
\end{tabular}%
}
\caption{Top ranked diseases associated with proteins in Tbio selected by portal learning}
\label{tab:tbiodisease}
\end{table} | [
[
"Disease Name",
"# of undruggable proteins associated with the disease"
],
[
"Breast Carcinoma",
"89"
],
[
"Tumor Cell Invasion",
"85"
],
[
"Carcinogenesis",
"83"
],
[
"Neoplasm Metastasis",
"73"
],
[
"Colorectal Carcinoma",
"68"
],
[
"Liver carcinoma",
"66"
],
[
"Non-Small Cell Lung Carcinoma",
"56"
],
[
"Malignant neoplasm of lung",
"56"
],
[
"Carcinoma of lung",
"54"
],
[
"Alzheimer’s Disease",
"54"
]
] | 0.857963 | null | null |
7 | 2111.14283v1 | 35 | [
81.80681849888393,
223.64443969726562,
513.4833426339286,
454.4203186035156
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
%Drug\_name & Clinical phase & Mechanism of Action & Number of targeted proteins \\ \hline
rug name & Clinical phase & Mechanism of Action & \begin{tabular}[c]{@{}c@{}}Number of \\ targeted proteins\end{tabular} \\ \hline
AI-10-49 & Preclinical & core binding factor inhibitor & 52 \\ \hline
fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 45 \\ \hline
PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 36 \\ \hline
abemaciclib & Launched & CDK inhibitor & 20 \\ \hline
MK-5046 & Preclinical & bombesin receptor agonist & 15 \\ \hline
CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 14 \\ \hline
CCT137690 & Preclinical & Aurora kinase inhibitor & 7 \\ \hline
NMS-1286937 & Phase 2 & PLK inhibitor & 5 \\ \hline
tropifexor & Phase 2 & FXR agonist & 4 \\ \hline
NMS-P715 & Preclinical & protein kinase inhibitor & 4 \\ \hline
cilofexor & Phase 3 & FXR agonist & 3 \\ \hline
CDK9-IN-6 & Preclinical & CDK inhibitor & 3 \\ \hline
piperaquine-phosphate & Launched & antimalarial agent & 3 \\ \hline
elbasvir & Launched & HCV inhibitor & 3 \\ \hline
ABT-702 & Preclinical & adenosine kinase inhibitor & 2 \\ \hline
adapalene & Launched & retinoid receptor agonist & 2 \\ \hline
Q-203 & Phase 2 & ATP synthase inhibitor & 2 \\ \hline
ziritaxestat & Phase 3 & autotaxin inhibitor & 2 \\ \hline
acalabrutinib & Launched & Bruton's tyrosine kinase
(BTK) inhibitor & 1 \\ \hline
IACS-10759 & Preclinical & mitochondrial complex I inhibitor & 1 \\ \hline
CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline
\end{tabular}%
}
\caption{Chemicals interacted with human proteins in Tbio}
\label{tab:Tbiochemicals}
\end{table} | [
[
"rug name",
"Clinical phase",
"Mechanism of Action",
"Number of\ntargeted proteins"
],
[
"AI-10-49",
"Preclinical",
"core binding factor inhibitor",
"52"
],
[
"fenebrutinib",
"Phase 2",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"45"
],
[
"PF-05190457",
"Phase 2",
"growth hormone secretagogue receptor inverse agonist",
"36"
],
[
"abemaciclib",
"Launched",
"CDK inhibitor",
"20"
],
[
"MK-5046",
"Preclinical",
"bombesin receptor agonist",
"15"
],
[
"CFI-402257",
"Phase 1/Phase 2",
"dual specificity protein kinase inhibitor",
"14"
],
[
"CCT137690",
"Preclinical",
"Aurora kinase inhibitor",
"7"
],
[
"NMS-1286937",
"Phase 2",
"PLK inhibitor",
"5"
],
[
"tropifexor",
"Phase 2",
"FXR agonist",
"4"
],
[
"NMS-P715",
"Preclinical",
"protein kinase inhibitor",
"4"
],
[
"cilofexor",
"Phase 3",
"FXR agonist",
"3"
],
[
"CDK9-IN-6",
"Preclinical",
"CDK inhibitor",
"3"
],
[
"piperaquine-phosphate",
"Launched",
"antimalarial agent",
"3"
],
[
"elbasvir",
"Launched",
"HCV inhibitor",
"3"
],
[
"ABT-702",
"Preclinical",
"adenosine kinase inhibitor",
"2"
],
[
"adapalene",
"Launched",
"retinoid receptor agonist",
"2"
],
[
"Q-203",
"Phase 2",
"ATP synthase inhibitor",
"2"
],
[
"ziritaxestat",
"Phase 3",
"autotaxin inhibitor",
"2"
],
[
"acalabrutinib",
"Launched",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"1"
],
[
"IACS-10759",
"Preclinical",
"mitochondrial complex I inhibitor",
"1"
],
[
"CGM097",
"Phase 1",
"MDM inhibitor",
"1"
]
] | 0.945839 | null | null |
8 | 2111.14283v1 | 36 | [
81.7912101158729,
36.13667297363281,
513.4895958533654,
142.05706787109375
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|c|}
\hline
\multicolumn{5}{|c|}{David Functional Annotation enrichment analysis} \\ \hline
\begin{tabular}[c]{@{}c@{}}Enriched terms \\ in UniProtKB keyword\end{tabular} & \begin{tabular}[c]{@{}c@{}}Number of \\ proteins involved\end{tabular} & \begin{tabular}[c]{@{}c@{}}Percentage of \\ proteins involved (\%)\end{tabular} & P-value & \begin{tabular}[c]{@{}c@{}}Modified\\ Benjamini p-value\end{tabular} \\ \hline
{\color[HTML]{080808} Zinc-finger} & 80 & 23 & 7.60E-16 & 1.20E-13 \\ \hline
{\color[HTML]{080808} Zinc} & 85 & 24.4 & 1.20E-11 & 9.90E-10 \\ \hline
{\color[HTML]{080808} Metal-binding} & 96 & 27.6 & 4.30E-06 & 2.30E-04 \\ \hline
{\color[HTML]{080808} DNA-binding} & 62 & 17.8 & 7.90E-06 & 3.20E-04 \\ \hline
{\color[HTML]{080808} Transcription regulation} & 61 & 17.5 & 5.60E-04 & 1.80E-02 \\ \hline
{\color[HTML]{080808} Transcription} & 61 & 17.5 & 1.10E-03 & 3.00E-02 \\ \hline
\end{tabular}%
}
\caption{Functional Annotation enrichment for undruggable human disease proteins without Tbio selected by PortalCG}
\label{tab:without-tbio-enrichment}
\end{table} | [
[
"David Functional Annotation enrichment analysis",
null,
null,
null,
null
],
[
"Enriched terms\nin UniProtKB keyword",
"Number of\nproteins involved",
"Percentage of\nproteins involved (%)",
"P-value",
"Modified\nBenjamini p-value"
],
[
"Zinc-finger",
"80",
"23",
"7.60E-16",
"1.20E-13"
],
[
"Zinc",
"85",
"24.4",
"1.20E-11",
"9.90E-10"
],
[
"Metal-binding",
"96",
"27.6",
"4.30E-06",
"2.30E-04"
],
[
"DNA-binding",
"62",
"17.8",
"7.90E-06",
"3.20E-04"
],
[
"Transcription regulation",
"61",
"17.5",
"5.60E-04",
"1.80E-02"
],
[
"Transcription",
"61",
"17.5",
"1.10E-03",
"3.00E-02"
]
] | 0.366081 | null | null |
9 | 2111.14283v1 | 36 | [
81.7912101158729,
193.24740600585938,
513.4895958533654,
340.41900634765625
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|}
\hline
Disease Name & \# of undruggable proteins associated with the disease \\ \hline
Body Height & 31 \\ \hline
Colorectal Carcinoma & 28 \\ \hline
Malignant neoplasm of breast & 26 \\ \hline
Breast Carcinoma & 18 \\ \hline
Blood Protein Measurement & 18 \\ \hline
Leukemia, Myelocytic, Acute & 17 \\ \hline
Carcinogenesis & 17 \\ \hline
Neoplasm Metastasis & 17 \\ \hline
Liver carcinoma & 15 \\ \hline
Malignant neoplasm of prostate & 15 \\ \hline
\end{tabular}%
}
\caption{Top ranked diseases associated with undruggable human proteins excluding Tbio selected by portal learning}
\label{tab:undrugnoTbiodisease}
\end{table} | [
[
"Disease Name",
"# of undruggable proteins associated with the disease"
],
[
"Body Height",
"31"
],
[
"Colorectal Carcinoma",
"28"
],
[
"Malignant neoplasm of breast",
"26"
],
[
"Breast Carcinoma",
"18"
],
[
"Blood Protein Measurement",
"18"
],
[
"Leukemia, Myelocytic, Acute",
"17"
],
[
"Carcinogenesis",
"17"
],
[
"Neoplasm Metastasis",
"17"
],
[
"Liver carcinoma",
"15"
],
[
"Malignant neoplasm of prostate",
"15"
]
] | 0.827128 | null | null |
10 | 2111.14283v1 | 36 | [
81.7912101158729,
391.56207275390625,
513.4895958533654,
768.1460571289062
] | \begin{table}[ht]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
Drug\_name & Clinical phase & Mechanism of Action & Number of targeted proteins \\ \hline
fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 80 \\ \hline
PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 50 \\ \hline
MK-5046 & Preclinical & bombesin receptor agonist & 38 \\ \hline
CCT137690 & Preclinical & Aurora kinase inhibitor & 36 \\ \hline
AI-10-49 & Preclinical & core binding factor inhibitor & 31 \\ \hline
abemaciclib & Launched & CDK inhibitor & 26 \\ \hline
CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 20 \\ \hline
NMS-P715 & Preclinical & protein kinase inhibitor & 14 \\ \hline
NMS-1286937 & Phase 2 & PLK inhibitor & 11 \\ \hline
elbasvir & Launched & HCV inhibitor & 8 \\ \hline
cilofexor & Phase 3 & FXR agonist & 7 \\ \hline
ABBV-744 & Phase 1 & bromodomain inhibitor & 7 \\ \hline
tropifexor & Phase 2 & FXR agonist & 7 \\ \hline
CDK9-IN-6 & Preclinical & CDK inhibitor & 6 \\ \hline
adapalene & Launched & retinoid receptor agonist & 4 \\ \hline
Q-203 & Phase 2 & ATP synthase inhibitor & 4 \\ \hline
PLX8394 & Phase 1/Phase 2 & serine/threonine kinase inhibitor & 4 \\ \hline
ABT-702 & Preclinical & adenosine kinase inhibitor & 4 \\ \hline
NVP-BSK805 & Preclinical & JAK inhibitor & 3 \\ \hline
OTS167 & Phase 1/Phase 2 & maternal embryonic leucine zipper kinase inhibitor & 3 \\ \hline
CHIR-99021 & Preclinical & glycogen synthase kinase inhibitor & 3 \\ \hline
DBPR-211 & Preclinical & cannabinoid receptor antagonist & 2 \\ \hline
A-887826 & Preclinical & sodium channel blocker & 2 \\ \hline
integrin-antagonist-1 & Phase 1 & integrin antagonist & 2 \\ \hline
piperaquine-phosphate & Launched & antimalarial agent & 2 \\ \hline
cenerimod & Phase 2 & sphingosine 1-phosphate receptor modulator & 1 \\ \hline
peposertib & Phase 1/Phase 2 & DNA dependent protein kinase inhibitor & 1 \\ \hline
tezacaftor & Launched & CFTR channel agonist & 1 \\ \hline
cot-inhibitor-2 & Preclinical & MAPK-interacting kinase inhibitor & 1 \\ \hline
itacitinib & Phase 3 & JAK inhibitor & 1 \\ \hline
10-hydroxycamptothecin & Preclinical & topoisomerase inhibitor & 1 \\ \hline
alectinib & Launched & ALK tyrosine kinase receptor inhibitor & 1 \\ \hline
adarotene & Phase 1 & retinoid receptor agonist & 1 \\ \hline
acalabrutinib & Launched & Bruton's tyrosine kinase (BTK) inhibitor & 1 \\ \hline
XL041 & Preclinical & LXR agonist & 1 \\ \hline
WAY-207024 & Preclinical & gonadotropin releasing factor hormone receptor antagonist & 1 \\ \hline
MK-5108 & Phase 1 & Aurora kinase inhibitor & 1 \\ \hline
CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline
CD-437 & Preclinical & retinoid receptor agonist & 1 \\ \hline
AMG-925 & Phase 1 & CDK inhibitor|FLT3 inhibitor & 1 \\ \hline
ACT-132577 & Launched & endothelin receptor antagonist & 1 \\ \hline
ziritaxestat & Phase 3 & autotaxin inhibitor & 1 \\ \hline
\end{tabular}%
}
\caption{Chemicals interacted with undruggable human proteins excluding Tbio}
\label{tab:UndrugnoTbiochemicals}
\end{table} | [
[
"Drug_name",
"Clinical phase",
"Mechanism of Action",
"Number of targeted proteins"
],
[
"fenebrutinib",
"Phase 2",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"80"
],
[
"PF-05190457",
"Phase 2",
"growth hormone secretagogue receptor inverse agonist",
"50"
],
[
"MK-5046",
"Preclinical",
"bombesin receptor agonist",
"38"
],
[
"CCT137690",
"Preclinical",
"Aurora kinase inhibitor",
"36"
],
[
"AI-10-49",
"Preclinical",
"core binding factor inhibitor",
"31"
],
[
"abemaciclib",
"Launched",
"CDK inhibitor",
"26"
],
[
"CFI-402257",
"Phase 1/Phase 2",
"dual specificity protein kinase inhibitor",
"20"
],
[
"NMS-P715",
"Preclinical",
"protein kinase inhibitor",
"14"
],
[
"NMS-1286937",
"Phase 2",
"PLK inhibitor",
"11"
],
[
"elbasvir",
"Launched",
"HCV inhibitor",
"8"
],
[
"cilofexor",
"Phase 3",
"FXR agonist",
"7"
],
[
"ABBV-744",
"Phase 1",
"bromodomain inhibitor",
"7"
],
[
"tropifexor",
"Phase 2",
"FXR agonist",
"7"
],
[
"CDK9-IN-6",
"Preclinical",
"CDK inhibitor",
"6"
],
[
"adapalene",
"Launched",
"retinoid receptor agonist",
"4"
],
[
"Q-203",
"Phase 2",
"ATP synthase inhibitor",
"4"
],
[
"PLX8394",
"Phase 1/Phase 2",
"serine/threonine kinase inhibitor",
"4"
],
[
"ABT-702",
"Preclinical",
"adenosine kinase inhibitor",
"4"
],
[
"NVP-BSK805",
"Preclinical",
"JAK inhibitor",
"3"
],
[
"OTS167",
"Phase 1/Phase 2",
"maternal embryonic leucine zipper kinase inhibitor",
"3"
],
[
"CHIR-99021",
"Preclinical",
"glycogen synthase kinase inhibitor",
"3"
],
[
"DBPR-211",
"Preclinical",
"cannabinoid receptor antagonist",
"2"
],
[
"A-887826",
"Preclinical",
"sodium channel blocker",
"2"
],
[
"integrin-antagonist-1",
"Phase 1",
"integrin antagonist",
"2"
],
[
"piperaquine-phosphate",
"Launched",
"antimalarial agent",
"2"
],
[
"cenerimod",
"Phase 2",
"sphingosine 1-phosphate receptor modulator",
"1"
],
[
"peposertib",
"Phase 1/Phase 2",
"DNA dependent protein kinase inhibitor",
"1"
],
[
"tezacaftor",
"Launched",
"CFTR channel agonist",
"1"
],
[
"cot-inhibitor-2",
"Preclinical",
"MAPK-interacting kinase inhibitor",
"1"
],
[
"itacitinib",
"Phase 3",
"JAK inhibitor",
"1"
],
[
"10-hydroxycamptothecin",
"Preclinical",
"topoisomerase inhibitor",
"1"
],
[
"alectinib",
"Launched",
"ALK tyrosine kinase receptor inhibitor",
"1"
],
[
"adarotene",
"Phase 1",
"retinoid receptor agonist",
"1"
],
[
"acalabrutinib",
"Launched",
"Bruton’s tyrosine kinase (BTK) inhibitor",
"1"
],
[
"XL041",
"Preclinical",
"LXR agonist",
"1"
],
[
"WAY-207024",
"Preclinical",
"gonadotropin releasing factor hormone receptor antagonist",
"1"
],
[
"MK-5108",
"Phase 1",
"Aurora kinase inhibitor",
"1"
],
[
"CGM097",
"Phase 1",
"MDM inhibitor",
"1"
],
[
"CD-437",
"Preclinical",
"retinoid receptor agonist",
"1"
],
[
"AMG-925",
"Phase 1",
"CDK inhibitor|FLT3 inhibitor",
"1"
],
[
"ACT-132577",
"Launched",
"endothelin receptor antagonist",
"1"
],
[
"ziritaxestat",
"Phase 3",
"autotaxin inhibitor",
"1"
]
] | 0.977946 | null | null |
11 | 2111.14283v1 | 37 | [
81.76521653395433,
351.75054931640625,
513.5269024188702,
452.48394775390625
] | \begin{table}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|l|r|}
\hline
\multirow{2}{*}{Protein descriptor} & layers & Albert --\textgreater Resnet \\ \cline{2-3}
& embedding dimension & 256 \\ \hline
\multirow{5}{*}{Chemical descriptor} & backbone & GIN \\ \cline{2-3}
& number of layers & 5 \\ \cline{2-3}
& embedding dimension & 300 \\ \cline{2-3}
& aggregation methods & sum \\ \cline{2-3}
& drop out ratio & 0.5 \\ \hline
\multirow{2}{*}{Interaction learner} & layers & Attentive pooling --\textgreater{}2 layers of MLP \\ \cline{2-3}
& embedding dimension & 128 \\ \hline
\multicolumn{1}{|l|}{Structure residue-atom pair wise feature learner} & layers & matrix multiplication of protein and chemical embedding vectors \\ \hline
\multirow{2}{*}{Classifier} & layers & 2 layers of MLP \\ \cline{2-3}
& embedding dimension & 64 \\ \hline
\end{tabular}%
}
\caption{Model architecture configuration}
\label{tab:config}
\end{table} | [
[
"Protein descriptor",
"layers",
"Albert –>Resnet"
],
[
null,
"embedding dimension",
"256"
],
[
"Chemical descriptor",
"backbone",
"GIN"
],
[
null,
"number of layers",
"5"
],
[
null,
"embedding dimension",
"300"
],
[
null,
"aggregation methods",
"sum"
],
[
null,
"drop out ratio",
"0.5"
],
[
"Interaction learner",
"layers",
"Attentive pooling –>2 layers of MLP"
],
[
null,
"embedding dimension",
"128"
],
[
"Structure residue-atom pair wise feature learner",
"layers",
"matrix multiplication of protein and chemical embedding vectors"
],
[
"Classifier",
"layers",
"2 layers of MLP"
],
[
null,
"embedding dimension",
"64"
]
] | 0.878286 | null | null |
0 | 2012.06283v2 | 34 | [
85.03900146484375,
85.239013671875,
535.1939697265625,
127.08203125
] | \begin{table}[ht]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Option &Euler Maruyama & Milstein & strong order 1.5 & strong order 2 & strong order 3\\
\hline
European & 0.976999 & 1.962848 & 2.970166 & 3.964626 & 5.958417\\
\hline
Digital & 0.473426 & 0.869393 & 1.452448 & 1.775679 & NAN\\
\hline
\end{tabular}
\caption{numerical estimates of $\beta$ based on linear regression for five schemes}
\label{tab:tab2}
\end{table} | [
[
"Option",
"Euler Maruyama",
"Milstein",
"strong order 1.5",
"strong order 2",
"strong order 3"
],
[
"European",
"0.976999",
"1.962848",
"2.970166",
"3.964626",
"5.958417"
],
[
"Digital",
"0.473426",
"0.869393",
"1.452448",
"1.775679",
"NAN"
]
] | 0.81549 | null | null |
1 | 2012.06283v2 | 34 | [
85.03900146484375,
161.35302734375,
535.1939697265625,
203.196044921875
] | \begin{table}[ht]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Option &Euler Maruyama & Milstein & strong order 1.5 & strong order 2 & strong order 3 \\
\hline
European & 1.136214 & 0.979572 & 1.747239 & 1.970829 & 2.961041 \\
\hline
Digital & 1.023176 & 0.791818 & 1.853158 & 1.827618 & NAN\\
\hline
\end{tabular}
\caption{numerical estimates of $\alpha$ based on linear regression for five schemes}
\label{tab:tab3}
\end{table} | [
[
"Option",
"Euler Maruyama",
"Milstein",
"strong order 1.5",
"strong order 2",
"strong order 3"
],
[
"European",
"1.136214",
"0.979572",
"1.747239",
"1.970829",
"2.961041"
],
[
"Digital",
"1.023176",
"0.791818",
"1.853158",
"1.827618",
"NAN"
]
] | 0.813636 | null | null |
0 | 2107.08761v1 | 3 | [
72,
119.5789794921875,
540.0140380859375,
536.9140014648438
] | \begin{table}
\centering
\caption{Overview. Models and parameters analyzed in this study.}\label{tab:paraOver}
\begin{tabulary}{\textwidth}{L | L | L}
\hline
Model & Hyperparameter \hspace*{2cm} & Comment \\
\hline
knn &\paramk & number of neighbors \\
&\paramp & $p$ norm \\
\hline
Elastic net &\paramalpha & weight term of the loss-function \\
&\paramlambda & trade-off between model quality and complexity\\
&\paramthresh & threshold for model convergence, i.e., convergence of the internal coordinate descent\\
\hline
Decision trees&\paramminsplit & minimum number of observations required for a split\\
&\paramminbucket & minimum number of observations in an end node (leaf) \\
&\paramcp & complexity parameter\\
&\parammaxdepth & maximum depth of a leaf in the decision tree\\
\hline
Random forest & \paramnumtrees & number of trees that are combined in the overall ensemble model \\
&\parammtry & number of randomly chosen features are considered for each split\\
&\paramsamplefraction & number of observations that are randomly drawn for training a specific tree\\
&\paramreplace & replacement of randomly drawn samples\\
&\texttt{respect.-} & \\
&\texttt{unordered.factors} & handling of splits of categorical variables \\
\hline
xgBoost & \parameta & learning rate, also called \enquote{shrinkage} parameter.\\
&\paramnrounds & number of boosting steps\\
&\paramlambda & regularization of the model\\
&\paramalpha & parameter for the L1 regularization of the weights \\
&\paramsubsample & portion of the observations that is randomly selected in each iteration\\
&\paramcolsample & number of features that chosen for the splits of a tree\\
&\paramgamma & number of splits of a tree by assuming a minimal improvement for each split\\
&\parammaxdepthx & maximum depth of a leaf in the decision trees\\
&\paramminchild & restriction of the number of splits of each tree\\
\hline
Support vector machines &\paramdegree & degree of the polynomial (parameter of the polynomial kernel function)\\
&\paramgamma & parameter of the polynomial, radial basis, and sigmoid kernel functions\\
&\paramcoefz & parameter of the polynomial and sigmoid kernel functions\\
&\paramcost & regularization parameter, weights constraint violations of the model\\
&\paramepsilon & regularization parameter, defines ribbon around predictions\\
%&\paramtolerance & \\ %not tuned
\hline
% Neural networks &\paramhidden \\
% &\paramactiv \\
% &\paramdropout \\
% &\paramlosstype\\
% &\paramlearnrates \\
% &\parambatchsize \\
% &\paramnepochs\\
\end{tabulary}
\end{table} | [
[
"Model",
"Hyperparameter",
"Comment"
],
[
"knn",
"k\np",
"number of neighbors\np norm"
],
[
"Elastic net",
"alpha\nlambda\nthresh",
"weight term of the loss-function\ntrade-off between model quality and complexity\nthreshold for model convergence, i.e., convergence of the\ninternal coordinate descent"
],
[
"Decision trees",
"minsplit\nminbucket\ncp\nmaxdepth",
"minimum number of observations required for a split\nminimum number of observations in an end node (leaf)\ncomplexity parameter\nmaximum depth of a leaf in the decision tree"
],
[
"Random forest",
"num.trees\nmtry\nsample.fraction\nreplace\nrespect.-\nunordered.factors",
"number of trees that are combined in the overall ensemble model\nnumber of randomly chosen features are considered for each split\nnumber of observations that are randomly drawn for training a\nspecific tree\nreplacement of randomly drawn samples\nhandling of splits of categorical variables"
],
[
"xgBoost",
"eta\nnrounds\nlambda\nalpha\nsubsample\ncolsample bytree\ngamma\nmax depth\nmin child weight",
"learning rate, also called “shrinkage” parameter.\nnumber of boosting steps\nregularization of the model\nparameter for the L1 regularization of the weights\nportion of the observations that is randomly selected in each\niteration\nnumber of features that chosen for the splits of a tree\nnumber of splits of a tree by assuming a minimal improvement\nfor each split\nmaximum depth of a leaf in the decision trees\nrestriction of the number of splits of each tree"
],
[
"Support vector\nmachines",
"degree\ngamma\ncoef0\ncost\nepsilon",
"degree of the polynomial (parameter of the polynomial kernel\nfunction)\nparameter of the polynomial, radial basis, and sigmoid kernel\nfunctions\nparameter of the polynomial and sigmoid kernel functions\nregularization parameter, weights constraint violations of the\nmodel\nregularization parameter, defines ribbon around predictions"
]
] | 0.527778 | null | null |
0 | 1903.00954v2 | 28 | [
187.8470001220703,
486.22100830078125,
424.15301513671875,
653.593994140625
] | \begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
& MDN & KMN \\ \hline
hidden layer sizes & (16,16) & (16,16) \\ \hline
hidden non-linearity & tanh & tanh \\ \hline
training epochs & 1000 & 1000 \\ \hline
Adam learning rate & 0.001 & 0.001 \\ \hline
$K$: number of components & 20 & 50 \\ \hline
$\eta_x$: noise std x & 0.2 & 0.2 \\ \hline
$\eta_y$: noise std y & 0.1 & 0.1 \\ \hline
weight normalization & True & True \\ \hline
data normalization & True & True \\ \hline
initialization of scales & - & [0.7, 0.3] \\ \hline
trainable scales & - & True \\ \hline
\end{tabular}
\caption{$\quad$ Default hyper-parameter configuration for MDN and KMN}
\label{tab:standard_params}
\end{table} | [
[
"",
"MDN",
"KMN"
],
[
"hidden layer sizes",
"(16,16)",
"(16,16)"
],
[
"hidden non-linearity",
"tanh",
"tanh"
],
[
"training epochs",
"1000",
"1000"
],
[
"Adam learning rate",
"0.001",
"0.001"
],
[
"K: number of components",
"20",
"50"
],
[
"η : noise std x\nx",
"0.2",
"0.2"
],
[
"η : noise std y\ny",
"0.1",
"0.1"
],
[
"weight normalization",
"True",
"True"
],
[
"data normalization",
"True",
"True"
],
[
"initialization of scales",
"-",
"[0.7, 0.3]"
],
[
"trainable scales",
"-",
"True"
]
] | 0.823056 | null | null |
1 | 1903.00954v2 | 29 | [
133.802001953125,
193.6400146484375,
478.19812393188477,
291.27398681640625
] | \begin{table}[h]
\centering
\begin{tabular}{|r|c|c|c|}
\hline
& MDN-CV & KMN-CV & LSCDE-CV\\ \hline
training epochs & 500 & 500 & -\\ \hline
$K$: number of components & 10 & 200 & 1000\\ \hline
$\eta_x$: noise std x & 0.3 & 0.2 & -\\ \hline
$\eta_y$: noise std y & 0.15 & 0.15 & - \\ \hline
bandwidth & - & - & 0.5 \\ \hline
$\lambda$: LSCDE damping parameter & - & - & 0.1 \\ \hline
\end{tabular}
\caption{$\quad$ Hyper-parameter configuration determined with 10-fold cross-validation on the EuroStoxx 50 data set}
\label{tab:cv_params}
\end{table} | [
[
"",
"MDN-CV",
"KMN-CV",
"LSCDE-CV"
],
[
"training epochs",
"500",
"500",
"-"
],
[
"K: number of components",
"10",
"200",
"1000"
],
[
"η : noise std x\nx",
"0.3",
"0.2",
"-"
],
[
"η : noise std y\ny",
"0.15",
"0.15",
"-"
],
[
"bandwidth",
"-",
"-",
"0.5"
],
[
"λ: LSCDE damping parameter",
"-",
"-",
"0.1"
]
] | 0.725146 | null | null |
0 | 1805.03933v1 | 2 | [
102.6760025024414,
73.19598388671875,
247.33400181361608,
152.3380126953125
] | \begin{table}[tb]
\caption{Description of the datasets used.}
\centering
\begin{tabular}{|c|c|c|}
\hline
& DTS1 & DTS2 \\
\hline
Sampling rate(Hz) & 256 & 160 \\
\hline
Time task(seg) & 120 & 60 \\
\hline
Total points & 30720 & 9600 \\
\hline
Number of electrodes & 16 & 64 \\
\hline
Number of subjects & 71 & 109 \\
\hline
\end{tabular}
\label{tb:1}
\end{table} | [
[
"",
"DTS1",
"DTS2"
],
[
"Sampling rate(Hz)",
"256",
"160"
],
[
"Time task(seg)",
"120",
"60"
],
[
"Total points",
"30720",
"9600"
],
[
"Number of electrodes",
"16",
"64"
],
[
"Number of subjects",
"71",
"109"
]
] | 0.981685 | null | null |
0 | 1908.06719v1 | 8 | [
49.11310166579027,
130.46595764160156,
295.56217507755053,
180.2318115234375
] | \begin{table}[h]
\resizebox{0.48\textwidth}{!}{%
\begin{tabular}{l|l|l|l|l|l|}
\cline{2-6}
& \multicolumn{5}{c|}{\textbf{Dataset Name}} \\ \cline{2-6}
& \multicolumn{1}{c|}{\textbf{XS}} & \multicolumn{1}{c|}{\textbf{S}} & \multicolumn{1}{c|}{\textbf{M}} & \multicolumn{1}{c|}{\textbf{L}} & \multicolumn{1}{c|}{\textbf{XL}} \\ \hline
\multicolumn{1}{|l|}{Number of Records} & 0.5 mil & 1.25 mil & 2.5 mil & 3.75 mil & 5 mil \\ \hline
\multicolumn{1}{|l|}{JSON File Size} & 1 GB & 2.5 GB & 5 GB & 7.5 GB & 10 GB \\ \hline
\multicolumn{1}{|l|}{Parquet File Size} & 43 MB & 110 MB & 217 MB & 317 MB & 426 MB \\ \hline
\multicolumn{1}{|l|}{CSV File Size} & 715 MB & 2.3 GB & 4.6 GB & 6.8 GB & 9.3 GB \\ \hline
\end{tabular}%
}
\caption{Dataset Summary (mil = million)}
\label{tab:onenode}
\vspace{-1em}
\end{table} | [
[
"",
"Dataset Name",
null,
null,
null,
null
],
[
null,
"XS",
"S",
"M",
"L",
"XL"
],
[
"Number of Records",
"0.5 mil",
"1.25 mil",
"2.5 mil",
"3.75 mil",
"5 mil"
],
[
"JSON File Size",
"1 GB",
"2.5 GB",
"5 GB",
"7.5 GB",
"10 GB"
],
[
"Parquet File Size",
"43 MB",
"110 MB",
"217 MB",
"317 MB",
"426 MB"
],
[
"CSV File Size",
"715 MB",
"2.3 GB",
"4.6 GB",
"6.8 GB",
"9.3 GB"
]
] | 0.779271 | null | null |
1 | 1908.06719v1 | 8 | [
49.11310166579027,
456.09898376464844,
295.56217507755053,
494.6641540527344
] | \begin{table}[h]
\resizebox{0.48\textwidth}{!}{%
\begin{tabular}{l|l|l|l|l|}
\cline{2-5}
& \textbf{1 node} & \textbf{2 nodes} & \textbf{3 nodes} & \textbf{4 nodes} \\ \hline
\multicolumn{1}{|l|}{\textbf{Aggregate Memory}} & 8 GB & 16 GB & 24 GB & 32 GB \\ \hline
\multicolumn{1}{|l|}{\textbf{JSON File Size}} & 10 GB & 10 GB & 10GB & 10 GB \\ \hline
\multicolumn{1}{|l|}{\textbf{Parquet File Size}} & 426 MB & 426 MB & 426 MB & 426 MB \\ \hline
\end{tabular}%
}
\caption{Speedup Experiment Setup}
\label{tab:speedup}
\end{table} | [
[
"",
"1 node",
"2 nodes",
"3 nodes",
"4 nodes"
],
[
"Aggregate Memory",
"8 GB",
"16 GB",
"24 GB",
"32 GB"
],
[
"JSON File Size",
"10 GB",
"10 GB",
"10GB",
"10 GB"
],
[
"Parquet File Size",
"426 MB",
"426 MB",
"426 MB",
"426 MB"
]
] | 0.760736 | null | null |
2 | 1908.06719v1 | 8 | [
49.11310166579027,
608.3164672851562,
295.56217507755053,
645.968994140625
] | \begin{table}[h]
\resizebox{0.48\textwidth}{!}{%
\begin{tabular}{l|l|l|l|l|}
\cline{2-5}
& \textbf{1 node} & \textbf{2 nodes} & \textbf{3 nodes} & \textbf{4 nodes} \\ \hline
\multicolumn{1}{|l|}{\textbf{Aggregated Memory}} & 8 GB & 16 GB & 24 GB & 32 GB \\ \hline
\multicolumn{1}{|l|}{\textbf{JSON File Size}} & 10 GB & 20 GB & 30GB & 40 GB \\ \hline
\multicolumn{1}{|l|}{\textbf{Parquet File Size}} & 426 MB & 818 MB & 1.33 GB & 1.75 GB \\ \hline
\end{tabular}%
}
\caption{Scaleup Experiment Setup}
\label{tab:scaleup}
\end{table} | [
[
"",
"1 node",
"2 nodes",
"3 nodes",
"4 nodes"
],
[
"Aggregated Memory",
"8 GB",
"16 GB",
"24 GB",
"32 GB"
],
[
"JSON File Size",
"10 GB",
"20 GB",
"30GB",
"40 GB"
],
[
"Parquet File Size",
"426 MB",
"818 MB",
"1.33 GB",
"1.75 GB"
]
] | 0.76506 | null | null |
0 | 1512.06228v1 | 4 | [
103.01200103759766,
360.625,
247.01100158691406,
393.302001953125
] | \begin{table}[!htb]
%\label{tab:title}
\begin{center}
\begin{tabular}{ |l|c|c| }
\hline
\textbf{Algorithm} & Actual $\Uparrow$ & Actual $\Downarrow$ \\
\hline
SVM & 62.58\% & 58.59\% \\
Logistic Regression & 62.5\% & 59.09\% \\
Neural Network & 60.46\% & 56.95\% \\
\hline
\end{tabular}
\caption {Test Precision rate for each direction}
\end{center}
\end{table} | [
[
"Algorithm",
"Actual ⇑",
"Actual ⇓"
],
[
"SVM\nLogistic Regression\nNeural Network",
"62.58%\n62.5%\n60.46%",
"58.59%\n59.09%\n56.95%"
]
] | 0.565056 | null | null |
1 | 1512.06228v1 | 4 | [
103.01200103759766,
504.3179931640625,
247.01100158691406,
536.9949951171875
] | \begin{table}[!htb]
%\label{tab:title}
\begin{center}
\begin{tabular}{ |l|c|c| }
\hline
\textbf{Algorithm} & Actual $\Uparrow$ & Actual $\Downarrow$ \\
\hline
SVM & 60.92\% & 59.65\% \\
Logistic Regression & 60.45\% & 58.86\% \\
Neural Network & 55.42\% & 66.35\% \\
\hline
\end{tabular}
\caption {Training Precision rate for each direction}
\end{center}
\end{table} | [
[
"Algorithm",
"Actual ⇑",
"Actual ⇓"
],
[
"SVM\nLogistic Regression\nNeural Network",
"60.92%\n60.45%\n55.42%",
"59.65%\n58.86%\n66.35%"
]
] | 0.552727 | null | null |
0 | 1502.00225v1 | 16 | [
75.7490005493164,
129.53997802734375,
527.2510375976562,
360.14166259765625
] | \begin{table}[!htbp]
\begin{center}
\caption{Searched terms and DJIA component stocks}
%\vspace{0.5cm}
\label{query}
\footnotesize
\begin{tabular}{c | c | ccc}
\hline\hline
No.&Company full name&Company short name&Ticker&Search query\\
\hline
\#1&3M Company&3M&MMM&3M\\
\#2&Caterpillar Incorporated&Caterpillar&CAT&Caterpillar\\
\#3&Coca-Cola Company&Coca Cola&KO&Coca Cola\\
\#4&E. I. du Pont de Nemours and Company&Du Pont&DD&DuPont\\
\#5&Exxon Mobil Company&Exxon Mobil&XOM&Exxon\\
\#6&General Electric Company&General Electric&GE&GE\\
\#7&Home Depot Incorporated&Home Depot&HD&Home Depot\\
\#8&Intel Corporation&Intel&INTC&Intel\\
\#9&International Business Machines&IBM&IBM&IBM\\
\#10&J. P. Morgan Chase&J. P. Morgan&JPM&JP Morgan\\
\#11&Johnson \& Johnson&Johnson \& Johnson&JNJ&Johnson Johnson\\
\#12&McDonald's Corporation&McDonald's&MCD&McDonalds\\
\#13&Merck \& Co., Inc.&Merck&MRK&Merck\\
\#14&Microsoft Corporation&Microsoft&MSFT&Microsoft\\
\#15&Procter \& Gamble Company&Procter \& Gamble&PG&P\&G\\
\#16&The Boeing Company&Boeing&BA&Boeing\\
\#17&United Technologies Corporation&United Technologies&UTX&UTC\\
\#18&Walt Disney Company&Walt Disney&DIS&Disney\\
\hline \hline
\end{tabular}
%\vspace{-0.7cm}
\end{center}
\end{table} | [
[
"No.",
"Company full name",
"Company short name Ticker Search query"
],
[
"#1\n#2\n#3\n#4\n#5\n#6\n#7\n#8\n#9\n#10\n#11\n#12\n#13\n#14\n#15\n#16\n#17\n#18",
"3M Company\nCaterpillar Incorporated\nCoca-Cola Company\nE. I. du Pont de Nemours and Company\nExxon Mobil Company\nGeneral Electric Company\nHome Depot Incorporated\nIntel Corporation\nInternational Business Machines\nJ. P. Morgan Chase\nJohnson & Johnson\nMcDonald’s Corporation\nMerck & Co., Inc.\nMicrosoft Corporation\nProcter & Gamble Company\nThe Boeing Company\nUnited Technologies Corporation\nWalt Disney Company",
"3M MMM 3M\nCaterpillar CAT Caterpillar\nCoca Cola KO Coca Cola\nDu Pont DD DuPont\nExxon Mobil XOM Exxon\nGeneral Electric GE GE\nHome Depot HD Home Depot\nIntel INTC Intel\nIBM IBM IBM\nJ. P. Morgan JPM JP Morgan\nJohnson & Johnson JNJ Johnson Johnson\nMcDonald’s MCD McDonalds\nMerck MRK Merck\nMicrosoft MSFT Microsoft\nProcter & Gamble PG P&G\nBoeing BA Boeing\nUnited Technologies UTX UTC\nWalt Disney DIS Disney"
]
] | 0.480345 | null | null |
0 | 2403.02185v1 | 3 | [
320.3070068359375,
631.2216796875,
557.194091796875,
680.929931640625
] | \begin{table}[]
\centering
\resizebox{0.47\textwidth}{!}{\begin{tabular}{l|c|c|c|c}
\hline
\bf Model & \bf \#Tokens & \bf Size & \bf $F_1$ vs. Teacher & \bf $F_1$ vs. Human\\
\hline
Paraphrase Albert & 256 & 43MB & $46.8\%$ & $61.9\%$\\
MiniLM-L6 & 256 & 120MB & $55.1\%$ & $60.3\%$ \\
MPNET & 384 & 420MB & $63.1\%$ & $72.8\%$ \\
DistilBERT & 512 & 420MB & $61.3\%$ & $74.4\%$\\
FinBERT & 512 & 438MB & $48.8\%$ & $54.5\%$ \\
\hline
\end{tabular}}
\caption{Topic Classification Models Performance.}
\label{tab:topic_perf}
\end{table} | [
[
"Model",
"#Tokens",
"Size",
"F1 vs. Teacher",
"F1 vs. Human"
],
[
"Paraphrase Albert\nMiniLM-L6\nMPNET\nDistilBERT\nFinBERT",
"256\n256\n384\n512\n512",
"43MB\n120MB\n420MB\n420MB\n438MB",
"46.8%\n55.1%\n63.1%\n61.3%\n48.8%",
"61.9%\n60.3%\n72.8%\n74.4%\n54.5%"
]
] | 0.420168 | null | null |
1 | 2403.02185v1 | 4 | [
72.447998046875,
155.1525115966797,
274.05072021484375,
174.4007568359375
] | \begin{table}[]
\centering
\resizebox{0.4\textwidth}{!}{\begin{tabular}{l|c|c|c}
\hline
%\bf Model & \bf $F_1$ vs. Human & \bf Lower 95\% & \bf Upper 95\% \\
\bf Model & \bf MPNET & \bf FinBERT & \bf ChatGPT 3.5 \\
\hline
$F_1$ vs. Human & 77.8\% & 65.3\% & 83.1\% \\
%MPNET & 77.8\% & 76.7\% & 78.9\% \\
%FinBERT & 65.3\% & 63.8\% & 66.7\% \\
%Chat GPT3.5 & 83.1\% & 82.2\% & 84.0\%\\
\hline
\end{tabular}}
\caption{Sentiment Classification Models Performance.}
\label{tab:sentiment_perf}
\end{table} | [
[
"Model",
"MPNET",
"FinBERT",
"ChatGPT 3.5"
],
[
"F vs. Human\n1",
"77.8%",
"65.3%",
"83.1%"
]
] | 0.365931 | null | null |
2 | 2403.02185v1 | 5 | [
54,
243.6122283935547,
280.8023681640625,
308.3586730957031
] | \begin{table}[]
\resizebox{0.45\textwidth}{!}{\begin{tabular}{l|ll|ll}
\hline
& \multicolumn{2}{c|}{Earnings} & \multicolumn{2}{c}{Revenue} \\
\hline
Filter & Outlook & Trailling & Outlook & Trailling \\
\hline
Earnings & High & High & Medium & Medium \\
Revenue & Medium & Medium & High & High \\
Guidance & High & Low & High & Low \\
Others & Low & Low & Low & Low \\
\hline
\end{tabular}}
\caption{Filter intensity for earnings and revenue sentiments trends.}
\label{tab:filtering_rev}
\end{table} | [
[
"",
"Earnings",
"Revenue"
],
[
"Filter",
"Outlook Trailling",
"Outlook Trailling"
],
[
"Earnings\nRevenue\nGuidance\nOthers",
"High High\nMedium Medium\nHigh Low\nLow Low",
"Medium Medium\nHigh High\nHigh Low\nLow Low"
]
] | 0.62181 | null | null |
0 | 2201.00207v2 | 20 | [
133.9346694946289,
256.56298828125,
482.2949930826823,
419.95098876953125
] | \begin{table}[htbp]
\centering
\caption{Primitives used in automated feature engineering}
\renewcommand\tabularxcolumn[1]{m{#1}}
\newcolumntype{C}{>{\centering\arraybackslash}X}
\begin{tabularx}{350pt}{|c|C|}
\hline
Module & Primitives \\
\hline
Scaler & StandardScaler MaxAbsScaler RobustScaler Normalizer \\
\hline
Feature Generation & PolynomialFeature KBinsDiscretizer SplineTransformer Nystroem RBFSampler \\
\hline
Matrix Decomposition & FastICA IncrementalICA PCA SparsePCA TruncatedSVD Factoranalysis \\
\hline
Feature Selection & SelectFwe SelectFdr SelectFpr SelectPercentile VarianceThreshold RFE \\
\hline
\end{tabularx}
\end{table} | [
[
"Module",
"Primitives"
],
[
"Scaler",
"StandardScaler MaxAbsScaler RobustScaler\nNormalizer"
],
[
"Feature Generation",
"PolynomialFeature KBinsDiscretizer\nSplineTransformer Nystroem RBFSampler"
],
[
"Matrix Decomposition",
"FastICA IncrementalICA PCA SparsePCA\nTruncatedSVD Factoranalysis"
],
[
"Feature Selection",
"SelectFwe SelectFdr SelectFpr SelectPercentile\nVarianceThreshold RFE"
]
] | 1 | null | null |
1 | 2201.00207v2 | 21 | [
133.90133666992188,
254.968994140625,
482.32799275716144,
560.6229858398438
] | \begin{table}[htbp]
\centering
\caption{Primitives used in automated ensemble strategy selection}
\renewcommand\tabularxcolumn[1]{m{#1}}
\newcolumntype{C}{>{\centering\arraybackslash}X}
\begin{tabularx}{350pt}{|c|C|}
\hline
Classifier Primitives & HistGradientBoostingClassifier RidgeClassifier GaussianNB BernoulliNB BaggingClassifier DecisionTreeClassifier ExtraTreesClassifier RandomForestClassifier GradientBoostingClassifier KNeighborsClassifier LinearSVC SGDClassifier LogisticRegression Perceptron MLPClassifier LGBMClassifier PassiveAggressiveClassifier RUSBoostClassifier\\
\hline
Ensemble Strategies Primitives & SingleBest StackedGeneralization StaticSelection LCA MCB OLA Rank DESClustering DESKNN DESMI KNORAE KNORAU KNOP METADES DESKL Exponential Logarithmic RRC MinimumDifference APriori APosteriori \\
\hline
\end{tabularx}
\end{table} | [
[
"Classifier Primitives",
"HistGradientBoostingClassifier\nRidgeClassifier GaussianNB BernoulliNB\nBaggingClassifier DecisionTreeClassifier\nExtraTreesClassifier\nRandomForestClassifier\nGradientBoostingClassifier\nKNeighborsClassifier LinearSVC\nSGDClassifier LogisticRegression\nPerceptron MLPClassifier LGBMClassifier\nPassiveAggressiveClassifier\nRUSBoostClassifier"
],
[
"Ensemble Strategies Primitives",
"SingleBest StackedGeneralization\nStaticSelection LCA MCB OLA Rank\nDESClustering DESKNN DESMI\nKNORAE KNORAU KNOP METADES\nDESKL Exponential Logarithmic RRC\nMinimumDifference APriori APosteriori"
]
] | 1 | null | null |
0 | 2309.03451v2 | 3 | [
41.164124488830566,
83.946044921875,
281.89487075805664,
149.5
] | \begin{table}
\centering
\caption{Sound Types and Characteristics of the data with $Principal Component 1 > 40$.}
\begin{tabular}{|P{1.8cm}|c|P{3.5cm}|}
\hline
Sound Type & Number of Data & Occurrence Date \\
\hline
Bearded Seal & 1033 & Mar. or May 2018 \\
\hline
Walrus & 9 & Sept. or Oct. 2017 \\
\hline
Airgun & 275 & Sept. 2017 \\
\hline
Sea ice & 1 & Aug. 25 2017 00:00:00 \\
\hline
Whales & 12 & Sept. 11 or 19 2017 \\
\hline
Mammal & 7 & Sept. 23 2017 17:00:00 \\
\hline
\end{tabular}
\label{tab:sound_data}
\end{table} | [
[
"Sound Type",
"Number of Data",
"Occurrence Date"
],
[
"Bearded Seal",
"1033",
"Mar. or May 2018"
],
[
"Walrus",
"9",
"Sept. or Oct. 2017"
],
[
"Airgun",
"275",
"Sept. 2017"
],
[
"Sea ice",
"1",
"Aug. 25 2017 00:00:00"
],
[
"Whales",
"12",
"Sept. 11 or 19 2017"
],
[
"Mammal",
"7",
"Sept. 23 2017 17:00:00"
]
] | 0.969163 | null | null |
0 | 1504.04296v1 | 18 | [
144.3159942626953,
590.8070068359375,
450.96002197265625,
629.2630004882812
] | \begin{table}[htbp]
\begin{center}
\caption{Autocorrelation tests for $chron$} \label{autocor_pair_impair}
\begin{tabular}{c c c| c c c}
\multicolumn{3}{c}{case1}&\multicolumn{3}{c}{case2}\\
\hline
$\chi-square$°. lib.&\emph{p-value}&$\chi-square$-°. lib.&\emph{p-value}\\
\hline
\hline
0.0096&1&0.9219&1.1169& 1&0.2906\\
29.6655& 36 &0.7629&45.4802&36&0.1337\\
\end{tabular}
\end{center}
\begin{center}
\small{$H_{0}$: $chron$ is not autocorrelated.}
\end{center}
\end{table} | [
[
"χ square deg. lib. p-value\n−",
"χ square- deg. lib. p-value\n−"
],
[
"0.0096 1 0.9219\n29.6655 36 0.7629",
"1.1169 1 0.2906\n45.4802 36 0.1337"
]
] | 0.69863 | null | null |
0 | 2305.09783v1 | 12 | [
173.31700134277344,
584.6239624023438,
438.6829833984375,
681.9649658203125
] | \begin{table}[htbp]
\centering
\caption{\textbf{PINN results for the inverse HJB equation with estimation of three parameters.} Unknown parameters $c_e$, $\alpha$, and $c_f$ as well as moment targets $e_\text{target}$, $z_\text{target}$, $\ell_\text{target}$ and $l^*_\text{target}$ are shown.}
\label{tab:hjb-inv-three-var}
\begin{tabular}{c|ccc}
\toprule
& True value & Predicted value & Relative error \\
\midrule
$c_e$ & 0.1 & 0.0934 & 6.60\% \\
$\alpha$ & 0.3 & 0.314 & 4.59\% \\
$c_f$ & 0.03 & 0.0299 & 0.49\% \\
$e_\mathrm{target}$ & 0.418 & 0.385 & 7.96\% \\
$z_\mathrm{target}$ & 7.524 & 7.786 & 3.47\% \\
$\ell_\mathrm{target}$ & 4.697 & 4.955 & 5.50\% \\
$l^*_\mathrm{target}$ & 0.00647 & 0.00677 & 4.70\% \\
\bottomrule
\end{tabular}
\end{table} | [
[
"c\ne\nα\nc\nf\ne\ntarget\nz\ntarget\nℓ\ntarget\nl∗\ntarget",
"0.1 0.0934 6.60%\n0.3 0.314 4.59%\n0.03 0.0299 0.49%\n0.418 0.385 7.96%\n7.524 7.786 3.47%\n4.697 4.955 5.50%\n0.00647 0.00677 4.70%"
]
] | 0.469173 | null | null |
0 | 2304.10521v1 | 16 | [
57.20637512207031,
189.56417846679688,
499.25604248046875,
250.9649658203125
] | \begin{table}
\centering
\resizebox{\textwidth}{!}
{
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\toprule
M & 1000 & 2000 & 3000 & 4000 & 5000 & 6000 & 7000 & 8000 & 9000 & 10000\\
\midrule
scores & 0.93&0.9492&0.9551&0.9619&0.9649&0.9666&0.9692&0.9707&0.9708&0.9726\\
\midrule
times & 1.26&2.83&5.12&8.53&11.10&16.28&22.41&30.37&40.06&48.68\\
\midrule
$1-\dK(X,Z)$ & 0.9194&0.9384&0.9534&0.9537&0.9610&0.9561&0.9580&0.9586&0.9598&0.9654 \\
\bottomrule
\end{tabular}
}
\caption{ Extrapolation -- scores and times}
% {tab:unnamed-chunk-2}
\label{extrapolation}
\end{figure}
%\end{table} | [
[
"M",
"1000",
"2000",
"3000",
"4000",
"5000",
"6000",
"7000",
"8000",
"9000",
"10000"
],
[
"scores",
"0.93",
"0.9492",
"0.9551",
"0.9619",
"0.9649",
"0.9666",
"0.9692",
"0.9707",
"0.9708",
"0.9726"
],
[
"times",
"1.26",
"2.83",
"5.12",
"8.53",
"11.10",
"16.28",
"22.41",
"30.37",
"40.06",
"48.68"
],
[
"1 −dK(X, Z)",
"0.9194",
"0.9384",
"0.9534",
"0.9537",
"0.9610",
"0.9561",
"0.9580",
"0.9586",
"0.9598",
"0.9654"
]
] | 0.753173 | null | null |
0 | 1504.03655v4 | 8 | [
172.1540069580078,
252.14034016927084,
439.84503173828125,
328.128662109375
] | \begin{table}[h!]
\centering
\setlength{\tabcolsep}{2pt}
\caption{Relation between various subspaces.
\label{tb:relation}
}
\vspace{-2mm}
\begin{tabular}{c|c|c|c|c}
\hline
\hline
Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\
\hline
$V$ & -- & -- & -- & -- \\
$F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\
$G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\
$\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\
$H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\
\hline
\hline
\end{tabular}
\end{table} | [
[
"Subspace",
"Evaluation",
"Orth.",
"Data Mini-batch",
"RF Mini-batch"
],
[
"V\nF\nt\nG\nt\nG˜\nt\nH\nt",
"–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt",
"–\n\u0013\n\u0017\n\u0017\n\u0017",
"–\n\u0013\n\u0013\n\u0013\n\u0013",
"–\n\u0017\n\u0017\n\u0017\n\u0013"
]
] | 0.554517 | null | null |
1 | 1504.03655v4 | 14 | [
176.8730010986328,
86.14697265625,
435.12701416015625,
174.21697998046875
] | \begin{table}
\vspace{-4pt}
\setlength{\tabcolsep}{10pt}
\centering
\caption{KCCA results on MNIST 8M (top 50 largest correlations)}\label{table:cca_mnist}\vspace{-4pt}
\begin{tabular}{c|c|c|c|c}
\hline
\multirow{2}{*}{ \# of feat} & \multicolumn{2}{c|}{Random features} & \multicolumn{2}{c}{Nystrom features} \\
\cline{2-5}
& corrs. & minutes & corrs. & minutes\\
\hline
\hline
256 & 25.2 & 3.2 & 30.4 & 3.0 \\\hline
512 & 30.7 & 7.0 & 35.3 & 5.1 \\\hline
1024 & 35.3 & 13.9 & 38.0 & 10.1 \\\hline
2048 & 38.8 & 54.3 & 41.1 & 27.0 \\\hline
4096 & 41.5 & 186.7 & 42.7 & 71.0 \\\hline
\end{tabular}\\
\bigskip
\begin{tabular}{c|c|c|c}
\hline
\multicolumn{2}{c|}{DSGD-KCCA} & \multicolumn{2}{c}{linear CCA}\\
\hline
corrs. & minutes & corrs. & minutes\\
\hline
\hline
43.5 & 183.2 & 27.4 & 1.1\\\hline
\end{tabular}
\vspace{-4pt}
\end{table} | [
[
"# of feat",
"Random features",
null,
"Nystrom features",
null
],
[
null,
"corrs.",
"minutes",
"corrs.",
"minutes"
],
[
"256",
"25.2",
"3.2",
"30.4",
"3.0"
],
[
"512",
"30.7",
"7.0",
"35.3",
"5.1"
],
[
"1024",
"35.3",
"13.9",
"38.0",
"10.1"
],
[
"2048",
"38.8",
"54.3",
"41.1",
"27.0"
],
[
"4096",
"41.5",
"186.7",
"42.7",
"71.0"
]
] | 0.772 | null | null |
2 | 1504.03655v4 | 22 | [
172.1540069580078,
285.20733642578125,
439.84503173828125,
361.19500732421875
] | \begin{table}[h!]
\centering
\setlength{\tabcolsep}{2pt}
\caption{Relation between various subspaces.
\label{app_tb:relation}
}
\begin{tabular}{c|c|c|c|c}
\hline
\hline
Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\
\hline
$V$ & -- & -- & -- & -- \\
$F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\
$G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\
$\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\
$H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\
\hline
\hline
\end{tabular}
\end{table} | [
[
"Subspace",
"Evaluation",
"Orth.",
"Data Mini-batch",
"RF Mini-batch"
],
[
"V\nF\nt\nG\nt\nG˜\nt\nH\nt",
"–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt",
"–\n\u0013\n\u0017\n\u0017\n\u0017",
"–\n\u0013\n\u0013\n\u0013\n\u0013",
"–\n\u0017\n\u0017\n\u0017\n\u0013"
]
] | 0.554517 | null | null |
0 | 1810.02442v1 | 11 | [
201.96400451660156,
72.198974609375,
407.30999755859375,
130.3809814453125
] | \begin{table}[tbp]
\centering
\begin{tabular}{c|c|c|c}
\hline
Dataset $\#$ & \textsc{w/o L1} & \textsc{DGS} & \textsc{AutoLoss} \\
\hline
\hline
\emph{1} & .1337 & \textbf{.1019} & .1037 \\
\hline
\emph{2} & .1294 & .1035 & \textbf{.1016} \\
\hline
\emph{3} & .1318 & .1022 & \bf{.0997} \\
\hline
\end{tabular}
\vspace{-5pt}
\caption{Comparing \textsc{AutoLoss} to other methods when transferring a trained AutoLoss controller for MLP classification to different data distributions.}
\label{tab:MLP_transfer}
\vspace{-10pt}
\end{table} | [
[
"Dataset #",
"W/O L1",
"DGS",
"AUTOLOSS"
],
[
"1",
".1337",
".1019",
".1037"
],
[
"2",
".1294",
".1035",
".1016"
],
[
"3",
".1318",
".1022",
".0997"
]
] | 0.461538 | null | null |
1 | 1810.02442v1 | 18 | [
208.13400268554688,
72.198974609375,
403.86700439453125,
144.3289794921875
] | \begin{table}
\centering
\begin{tabular}{c|c}
\hline
Feature to drop & \texttt{MSE} \\
\hline
\hline
(2) normalized gradient magnitude & .086 \\
\hline
(3) loss values& .101 \\
\hline
(4) validation metrics & .085 \\
\hline
None & \textbf{.070} \\
\hline
\end{tabular}
\caption{The MSE performance on the regression task when some features presented in \S\ref{sec:applications} are ablated.}
\label{tab:feature_importance}
\end{table} | [
[
"Feature to drop",
"MSE"
],
[
"(2) normalized gradient magnitude",
".086"
],
[
"(3) loss values",
".101"
],
[
"(4) validation metrics",
".085"
],
[
"None",
".070"
]
] | 0.641096 | null | null |
0 | 1808.09545v1 | 4 | [
402.7860107421875,
132.6719970703125,
467.1180114746094,
188.86102294921875
] | \begin{table}[!htbp]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|}
\hline
TID & A & B \\\hline
$t_1$ & $a_1$ & $b_1$ \\\hline
$t_2$ & $a_1$ & $b_1$ \\\hline
$t_3$ & $a_1$ & $b_2$ \\\hline
$t_4$ & $a_1$ & $b_3$ \\\hline
$t_5$ & $a_2$ & $b_2$ \\\hline
\end{tabular}
\end{small}
\caption{\label{tb:1f1d}An example of data instance $D$ ($FD: A\rightarrow B$)}
\end{center}
\end{table} | [
[
"TID",
"A",
"B"
],
[
"t1",
"a1",
"b1"
],
[
"t2",
"a1",
"b1"
],
[
"t3",
"a1",
"b2"
],
[
"t4",
"a1",
"b3"
],
[
"t5",
"a2",
"b2"
]
] | 0.626506 | null | null |
1 | 1808.09545v1 | 7 | [
335.9429931640625,
300.5929870605469,
536.7839965820312,
365.74798583984375
] | \begin{table}
\begin{center}
\begin{tabular}{|c|c|}\hline
Target attribute set & Covered instance vertex \\\hline
$\{AB\}$& $v_{1}$, $v_{2}$, $v_{3}$ (3 vertices)\\\hline
$\{A\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{4}$ (4 vertices)\\\hline
$\{B\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{5}$ (4 vertices)\\\hline
$\{C\}$& $v_{5}$, $v_{6}$ (2 vertices)\\\hline
$\{BC\}$& $v_{5}$, $v_{7}$ (2 vertices)\\\hline
\end{tabular}
\caption{\label{table:target} An example of target vertex sets}
\end{center}
\vspace{-0.3in}
\end{table} | [
[
"Target attribute set",
"Covered instance vertex"
],
[
"{AB}",
"v 1, v 2, v (3 vertices)\n3"
],
[
"{A}",
"v 1, v 2, v 3, v (4 vertices)\n4"
],
[
"{B}",
"v 1, v 2, v 3, v (4 vertices)\n5"
],
[
"{C}",
"v 5, v (2 vertices)\n6"
],
[
"{BC}",
"v 5, v (2 vertices)\n7"
]
] | 0.372414 | null | null |
0 | 1508.07096v1 | 6 | [
108,
453.9549865722656,
580.7239990234375,
476.66900634765625
] | \begin{table}[h!]
\centering
\begin{tabular}[h!]{|c|c|c|c|c|c|}\hline
Algorithms & Sequential & Weight Averaging & Majority Vote & Synchronous Update & Asynchronous Update \\ \hline
Error Rate (\%) & 1.08 & 0.98 & 1.04 & 0.97 & 1.06 \\ \hline
\end{tabular}
\caption{Test error rate using different algorithms for 200 epochs of fine tuning. Weight averaging and majority vote algorithms collect final weights from $7$ independent runs of the standard dropout algorithms. Synchronous update and asynchronous update algorithms combine results from two processes after each input instance. Dropout rate is 50\% for all algorithms. }
\end{table} | [
[
"Algorithms",
"Sequential",
"Weight Averaging",
"Majority Vote",
"Synchronous Update",
"Asynchronous Update"
],
[
"Error Rate (%)",
"1.08",
"0.98",
"1.04",
"0.97",
"1.06"
]
] | 0.420712 | null | null |
0 | 1908.00868v2 | 3 | [
70.93057141985211,
52.27398681640625,
282.1504385811942,
115.83502197265625
] | \begin{table}
\centering
\begin{tabular}{| l || r | }
\hline
{\bf SVM}&{\bf Ecology}\\
\hline
Data point &Species\\
KKT Multiplier & Species Abundance\\
Feature Space & Trait Space\\
Kernel & Niche Overlap\\
Support Vectors & Species that survive in ecosystem\\
\hline
\end{tabular}
\caption{Conceptual mapping between SVMs and ecology \label{ecotable} }
\end{table} | [
[
"SVM",
"Ecology"
],
[
"Data point\nKKT Multiplier\nFeature Space\nKernel\nSupport Vectors",
"Species\nSpecies Abundance\nTrait Space\nNiche Overlap\nSpecies that survive in ecosystem"
]
] | 0.598958 | null | null |
0 | 1802.00382v1 | 4 | [
307.76683807373047,
169.9580078125,
525.1287536621094,
257.23004150390625
] | \begin{table}[h]
\begin{center}
\begin{tabular}{|p{1.6 cm}|p{1.2 cm}|p{1.4 cm}|l|l|}
\hline \bf Source & \bf Labels & \bf Methods & \bf Rec & \bf F1\\ \hline \hline
Gehrmann et al., 2017 & 10 own labels & LR 3-gram & 1.6K & 34.6 \\ \hline
Gehrmann et al., 2017 & 10 own labels & CNN & 1.6K & 76 \\ \hline
This Paper & 17 ICD-9 & CNN & 5K & 76.2 \\
\hline
\end{tabular}
\end{center}
\caption{Classification of MIMIC clinical notes into labels representing high level phenotype categories (20 epochs for both CNN models)}
\label{table:CNN_5k}
\end{table} | [
[
"Source",
"Labels",
"Methods",
"Rec",
"F1"
],
[
"Gehrmann\net al., 2017",
"10 own\nlabels",
"LR\n3-gram",
"1.6K",
"34.6"
],
[
"Gehrmann\net al., 2017",
"10 own\nlabels",
"CNN",
"1.6K",
"76"
],
[
"This Paper",
"17 ICD-\n9",
"CNN",
"5K",
"76.2"
]
] | 0.677686 | null | null |
1 | 1802.00382v1 | 4 | [
307.76683807373047,
483.7920227050781,
525.1287536621094,
571.0640258789062
] | \begin{table}[h]
\begin{center}
\begin{tabular}{|p{1.7 cm}|p{3 cm}|l|l|}
\hline \bf Source & \bf Methods & \bf Recs & \bf F1 \\ \hline \hline
This Paper & LSTM& 5k &64.6 \\
This Paper & LSTM-Attention & 5k& 67 \\ \hline
This Paper & Hierarchical LSTM-Attention & 5k & 67.6 \\ \hline
This Paper & CNN& 5k& 69 \\
This Paper & CNN-Attention& 5k & 72.8 \\
\hline
\end{tabular}
\end{center}
\caption{Classification of MIMIC clinical notes into Level 1 ICD-9 Codes. Evaluation with 17 classes, 5k records, 5 epochs}
\label{table:attention}
\end{table} | [
[
"Source",
"Methods",
"Recs",
"F1"
],
[
"This Paper\nThis Paper",
"LSTM\nLSTM-Attention",
"5k\n5k",
"64.6\n67"
],
[
"This Paper",
"Hierarchical LSTM-\nAttention",
"5k",
"67.6"
],
[
"This Paper\nThis Paper",
"CNN\nCNN-Attention",
"5k\n5k",
"69\n72.8"
]
] | 0.598802 | null | null |
2 | 1802.00382v1 | 5 | [
72.03700256347656,
504.38702392578125,
290.2309926350911,
604.0140380859375
] | \begin{table}[h]
\begin{center}
\begin{tabular}{|p{1.8 cm}|p {2.6 cm}|l|l|}
\hline \bf Source & \bf Methods & \bf N. Rec & \bf F1\\ \hline \hline
Perotte
et al., 2014& Hierarchal SVM (all codes) & 22K & 39.5 \\ \hline
Previous Project Reports\footnotemark& LSTM & 32K & 41.6 \\ \hline
This paper &Baseline & 46K & 35 \\ \hline
This paper &CNN & 46K & 72.4 \\
\hline
\end{tabular}
\end{center}
\caption{\label{font-table} Classification of MIMIC clinical notes into most common Level 5 ICD-9 Codes}
\label{table:top_20}
\end{table} | [
[
"Source",
"Methods",
"N. Rec",
"F1"
],
[
"Perotte et\nal., 2014",
"Hierarchal SVM\n(all codes)",
"22K",
"39.5"
],
[
"Previous\nProject\nReports15",
"LSTM",
"32K",
"41.6"
],
[
"This paper",
"Baseline",
"46K",
"35"
],
[
"This paper",
"CNN",
"46K",
"72.4"
]
] | 0.724576 | null | null |
3 | 1802.00382v1 | 5 | [
309.1499938964844,
63.00799560546875,
523.6692016601562,
113.6180419921875
] | \begin{table}[h]
\begin{center}
\begin{tabular}{|p{1.8 cm}|l|l|l|}
\hline \bf Source & \bf Methods & \bf Recs &\bf F1 \\ \hline \hline
This Paper & Baseline & 52.6K& 53 \\
This Paper &CNN & 52.6K& 79.7 \\
This Paper &CNN w/ Attention & 52.6K & 78.2 \\
\hline
\end{tabular}
\end{center}
\caption{\label{font-table} Classification of MIMIC clinical notes into 17 Level 1 ICD-9 Codes}
\label{table:full_data}
\end{table} | [
[
"Source",
"Methods",
"Recs",
"F1"
],
[
"This Paper\nThis Paper\nThis Paper",
"Baseline\nCNN\nCNN w/ Attention",
"52.6K\n52.6K\n52.6K",
"53\n79.7\n78.2"
]
] | 0.432749 | null | null |
0 | 1907.13308v2 | 15 | [
335.26256016322543,
612.7529907226562,
533.4745570591518,
683.8040161132812
] | \begin{table}[!ht]
\centering
\caption{Outcomes of Holm post-hoc test for AGGLO-2}
\small {
\begin{tabular}{|l|l|c|c|c|}
\hline
$ i $ & AGGLO-2 vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\
\hline
1 & SVM & 2.9764 & 0.0029 & 0.01 \\
2 & Decision tree & -1.4174 & 0.1564 & 0.0125 \\
3 & Naive Bayes & -0.6143 & 0.5390 & 0.0167 \\
4 & KNN & 0.4725 & 0.6366 & 0.025 \\
5 & Online GFMM & -0.2835 & 0.7768 & 0.05 \\
\hline
\end{tabular}
}
\label{holm-agglo}
\end{table} | [
[
"i",
"AGGLO-2 vs.",
"z\ni",
"p\ni",
"α\nk −i"
],
[
"1\n2\n3\n4\n5",
"SVM\nDecision tree\nNaive Bayes\nKNN\nOnline GFMM",
"2.9764\n-1.4174\n-0.6143\n0.4725\n-0.2835",
"0.0029\n0.1564\n0.5390\n0.6366\n0.7768",
"0.01\n0.0125\n0.0167\n0.025\n0.05"
]
] | 0.475452 | null | null |
1 | 1907.13308v2 | 16 | [
65.57342638288226,
77.0419921875,
277.1364310128348,
148.093017578125
] | \begin{table}[!ht]
\centering
\caption{Outcomes of Holm post-hoc test for incremental learning based GFMM}
\small {
\begin{tabular}{|l|l|c|c|c|}
\hline
$ i $ & Online GFMM vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\
\hline
1 & SVM & 3.2599 & 0.0011 & 0.01 \\
2 & Decision tree & -1.1339 & 0.2568 & 0.0125 \\
3 & KNN & 0.7559 & 0.4497 & 0.0167 \\
4 & Naive Bayes & -0.3308 & 0.7408 & 0.025 \\
5 & AGGLO-2 & 0.2835 & 0.7768 & 0.05 \\
\hline
\end{tabular}
}
\label{holm-oln}
\end{table} | [
[
"i",
"Online GFMM vs.",
"z\ni",
"p\ni",
"α\nk −i"
],
[
"1\n2\n3\n4\n5",
"SVM\nDecision tree\nKNN\nNaive Bayes\nAGGLO-2",
"3.2599\n-1.1339\n0.7559\n-0.3308\n0.2835",
"0.0011\n0.2568\n0.4497\n0.7408\n0.7768",
"0.01\n0.0125\n0.0167\n0.025\n0.05"
]
] | 0.475196 | null | null |
2 | 1907.13308v2 | 5 | [
315.9509497748481,
209.1729736328125,
559.0630560980903,
398.06500244140625
] | \begin{table}[!ht]
\caption{Datasets were used for experiments}
\label{table1}
\centering
\begin{tabular}{|l|L{2cm}|C{1.4cm}|C{1.4cm}|C{1.3cm}|}
\hline
ID & Dataset & No. samples & No. features & No. classes \\
\hline
1 & Circle & 1000 & 3 & 2 \\
\hline
2 & Complex9 & 3031 & 2 & 9 \\
\hline
3 & Diagnostic Breast Cancer & 569 & 30 & 2 \\
\hline
4 & Glass & 214 & 9 & 6 \\
\hline
5 & Ionosphere & 351 & 34 & 2 \\
\hline
6 & Iris & 150 & 4 & 3 \\
\hline
7 & Ringnorm & 7400 & 20 & 2 \\
\hline
8 & Segmentation & 2310 & 19 & 7 \\
\hline
9 & Spherical\_5\_2 & 250 & 2 & 5 \\
\hline
10 & Spiral & 1000 & 2 & 2 \\
\hline
11 & Thyroid & 215 & 5 & 3 \\
\hline
12 & Twonorm & 7400 & 20 & 2 \\
\hline
13 & Waveform & 5000 & 21 & 3 \\
\hline
14 & Wine & 178 & 13 & 3 \\
\hline
15 & Yeast & 1484 & 8 & 10 \\
\hline
16 & Zelnik6 (Toy dataset) & 238 & 2 & 3 \\
\hline
\end{tabular}
\end{table} | [
[
"ID",
"Dataset",
"No.\nsamples",
"No. features",
"No. classes"
],
[
"1",
"Circle",
"1000",
"3",
"2"
],
[
"2",
"Complex9",
"3031",
"2",
"9"
],
[
"3",
"Diagnostic\nBreast Cancer",
"569",
"30",
"2"
],
[
"4",
"Glass",
"214",
"9",
"6"
],
[
"5",
"Ionosphere",
"351",
"34",
"2"
],
[
"6",
"Iris",
"150",
"4",
"3"
],
[
"7",
"Ringnorm",
"7400",
"20",
"2"
],
[
"8",
"Segmentation",
"2310",
"19",
"7"
],
[
"9",
"Spherical 5 2",
"250",
"2",
"5"
],
[
"10",
"Spiral",
"1000",
"2",
"2"
],
[
"11",
"Thyroid",
"215",
"5",
"3"
],
[
"12",
"Twonorm",
"7400",
"20",
"2"
],
[
"13",
"Waveform",
"5000",
"21",
"3"
],
[
"14",
"Wine",
"178",
"13",
"3"
],
[
"15",
"Yeast",
"1484",
"8",
"10"
],
[
"16",
"Zelnik6 (Toy\ndataset)",
"238",
"2",
"3"
]
] | 0.994911 | null | null |
0 | 2201.13299v4 | 10 | [
57.19740676879883,
218.53099060058594,
287.6843566894531,
242.64083862304688
] | \begin{table}[ht]
\caption{Performance of different ablated RES models on the ATOM3D dataset.}\label{table:resr_ab}
\vspace{0.3em}
\centering
\resizebox{\linewidth}{!}{
\begin{tabular}{l|cccc}
\toprule %\hline
Model & No DirectedLinear & No Interaction & No Equivariance & DW-GNN \\
\midrule
Acc \% & 47.3 & 47.7 & 33.0 & \textbf{50.2}\\
\bottomrule % \hline
\end{tabular}
}
\end{table} | [
[
"Model",
"No DirectedLinear No Interaction No Equivariance DW-GNN"
],
[
"Acc %",
"47.3 47.7 33.0 50.2"
]
] | 0.890052 | null | null |
0 | 1801.07358v2 | 14 | [
179.4199981689453,
183.20098876953125,
432.58099365234375,
273.89467366536456
] | \begin{table}[h]
\centering
\begin{tabular}{ c | c c }
\hline
Scenario& IMCC & Regular ES\\ \hline
(i) Independent & 12.48 & 3.28 \\
(ii) Uniform Positive Corr & 28.57 & 16.70 \\
(iii) Positive-RF-Corr & 18.28 & 7.81 \\
(iv) Positive-LH-Corr & 21.00 & 7.59 \\
\hline
\hline
\end{tabular}
\caption {FRTB IMCC v.s. Regular ES}\label{mytable_frtb_es}
\end{table} | [
[
"Scenario",
"IMCC Regular ES"
],
[
"(i) Independent\n(ii) Uniform Positive Corr\n(iii) Positive-RF-Corr\n(iv) Positive-LH-Corr",
"12.48 3.28\n28.57 16.70\n18.28 7.81\n21.00 7.59"
]
] | 0.68144 | null | null |
1 | 1801.07358v2 | 17 | [
190.96299743652344,
105.6619873046875,
421.0369873046875,
178.64202880859375
] | \begin{table}[h]
\centering
\begin{tabular}{ c | c c }
\hline
Scenario& IMCC & Regular ES \\ \hline
(i) RF Hedging & 7.90 & 2.17 \\
(ii) LH Hedging & 8.43 & 2.55 \\
(iii) Position Hedging & 0.84 & 0.33 \\
\hline
\hline
\end{tabular}
\caption { FRTB IMCC v.s. Regular ES}\label{mytable_frtb_es_test2}
\end{table} | [
[
"Scenario",
"IMCC Regular ES"
],
[
"(i) RF Hedging\n(ii) LH Hedging\n(iii) Position Hedging",
"7.90 2.17\n8.43 2.55\n0.84 0.33"
]
] | 0.656716 | null | null |
2 | 1801.07358v2 | 19 | [
157.29400634765625,
442.1390075683594,
454.70599365234375,
497.4049987792969
] | \begin{table}[h]
\centering
\begin{tabular}{ c | c c c c c c}
\hline
& CM & CR&EQ & FX & IR & Unconstrained\\ \hline
Set A & 80\% & 100\%&97\% & 100\% & 100\% & 95\% \\
Set B & 97\% & 100\% &94\% & 100\% & 100\%& 98\% \\
\hline
\hline
\end{tabular}
\caption {Ratios between ES using the reduced set and the full set. }\label{mytable_1}
\end{table} | [
[
"",
"CM CR EQ FX IR Unconstrained"
],
[
"Set A\nSet B",
"80% 100% 97% 100% 100% 95%\n97% 100% 94% 100% 100% 98%"
]
] | 0.462151 | null | null |
3 | 1801.07358v2 | 20 | [
81.89199829101562,
68.05999755859375,
530.1080322265625,
141.03997802734375
] | \begin{table}[h]
\centering
\begin{tabular}{ c | c c c c}
\hline
{} & Set A & Set A & Set B& Set B \\
{} & (Adjustment) & (Without adj)& (Adjustment) & (Without adj)\\
\hline
CM.60 days.Position 2 & 4.00\% & 2.24\% & 1.43\% & 1.43\% \\
EQ.40 days.Position 1 & 5.04\% & 3.26\% & 2.11\% & 2.11\% \\
\hline
\hline
\end{tabular}
\caption {Percentages of allocations with and without stress-scaling adjustment using different reduced factor sets. Columns labeled adjustment report allocations using \eqref{IMCC-ES}, columns labeled without adj report allocation using \eqref{Euler-IMCC}. The total IMCC are the same in both methods: IMCC(Set A)=11.55; IMCC(Set B)=3.14.}\label{allocationRatio}
\end{table} | [
[
"",
"Set A Set A Set B Set B\n(Adjustment) (Without adj) (Adjustment) (Without adj)"
],
[
"CM.60 days.Position 2\nEQ.40 days.Position 1",
"4.00% 2.24% 1.43% 1.43%\n5.04% 3.26% 2.11% 2.11%"
]
] | 0.422789 | null | null |
0 | 1902.10027v3 | 5 | [
329.3611145019531,
53.42999267578125,
544.3990173339844,
137.218994140625
] | \begin{table}[t]
%\vspace*{-0.1in}
\centering
\caption{Notations used in \FT approach}
\vspace*{-0.1in}
\label{table:notation}
\begin{tabular}{| c | p{6cm} | }
\hline
$G$ & A grammar used to generate test inputs \\ \hline
$\mathbb{I}_{G}$ & All inputs described by a grammar $G$ \\ \hline
$\mathbb{T}_{G}$ & The derivation trees of any input
$I \in \mathbb{I}_{G}$ \\ \hline
$f_1, f_2$ & Classifiers under test. \\ \hline
$J$ & A pre-determined Jaccard Threshold \\ \hline
$\tau_G$ & A function $\mathbb{I}_{G} \rightarrow \mathbb{T}_{G}$ which
outputs the derivation tree of an input $I \in
\mathbb{I}_{G}$ \\ \hline
$S$ & The initial input to the directed search. $S$ conforms to
grammar $G$ \\ \hline
% $Perturb$ & The perturbation function \\ \hline
\end{tabular}
\vspace*{-0.15in}
\end{table} | [
[
"G",
"A grammar used to generate test inputs"
],
[
"IG",
"All inputs described by a grammar G"
],
[
"TG",
"The derivation trees of any input I ∈IG"
],
[
"f1, f2",
"Classifiers under test."
],
[
"J",
"A pre-determined Jaccard Threshold"
],
[
"τG",
"A function IG → TG which outputs the derivation\ntree of an input I ∈IG"
],
[
"S",
"The initial input to the directed search. S conforms\nto grammar G"
]
] | 0.568681 | null | null |
1 | 1902.10027v3 | 8 | [
327.6671997070313,
53.42999267578125,
546.0927856445312,
103.15802001953125
] | \begin{table}[t]
%\vspace*{-0.1in}
\centering
\caption{Notations used in Evaluation}
\vspace*{-0.1in}
\label{table:eval-notation}
\begin{tabular}{| c | p{6cm} | }
\hline
\#inputs & Total number of \revise{unique} generated test inputs \\ \hline
\#err & Total number of \revise{unique} erroneous inputs \\ \hline
$err_r$ & $\frac{\#err}{\#inputs}$ \\ \hline
Imp\% & Improvement of $err_r$ of \FT with respect to the $err_r$ of random test\\ \hline
\end{tabular}
\vspace*{-0.15in}
\end{table} | [
[
"#inputs",
"Total number of unique generated test inputs"
],
[
"#err",
"Total number of unique erroneous inputs"
],
[
"errr",
"#err\n#inputs"
],
[
"Imp%",
"Improvement of errr of OGMA with respect to the\nerrr of random test"
]
] | 0.940568 | null | null |
2 | 1902.10027v3 | 9 | [
70.71820220947265,
145.3060302734375,
275.04180908203125,
183.0799530029297
] | \begin{table}[h]
\caption{\revise{Jaccard Thresholds}}
\centering
\begin{tabular}{| c | c | c | c | c | c | c | c |}
\hline
Grammars & \multicolumn{1}{l|}{A} & \multicolumn{1}{l|}{B} & \multicolumn{1}{l|}{C} & \multicolumn{1}{l|}{D} & \multicolumn{1}{l|}{E} & \multicolumn{1}{l|}{F} \\
\hline
$\mathbb{R}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.15 & 0.15 \\
\hline
$\mathbb{U}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.1 & 0.1 \\
\hline
$\mathbb{R}$-$\mathbb{U}$ & 0.3 & 0.15 & 0.15 & 0.3 & 0.15 & 0.15 \\
\hline
\end{tabular}
\label{table:thresholds}
\end{table} | [
[
"Grammars",
"A",
"B",
"C",
"D",
"E",
"F"
],
[
"R-A",
"0.15",
"0.15",
"0.1",
"0.15",
"0.15",
"0.15"
],
[
"U-A",
"0.15",
"0.15",
"0.1",
"0.15",
"0.1",
"0.1"
],
[
"R-U",
"0.3",
"0.15",
"0.15",
"0.3",
"0.15",
"0.15"
]
] | 0.868914 | null | null |
3 | 1902.10027v3 | 11 | [
54.1738338470459,
698.4149780273438,
293.8263346354167,
745.406982421875
] | \begin{table}[h]
\caption{Sensitivity of \FT w.r.t. Grammars}
\vspace*{-0.2in}
\label{classifiers}
\begin{center}
\begin{tabular}{| c | c | c | c | c |}
\hline
& \multicolumn{2}{c|}{Grammar A - F} & \multicolumn{2}{c|}{$G_{bad}$} \\ \hline
& \%unique inps & \%error inps & \%unique inps & \%error inps \\ \hline
$\mathbb{R}$-$\mathbb{A}$ & 97\% & 88\% & 52\% & 22\% \\ \hline
$\mathbb{U}$-$\mathbb{A}$ & 96\% & 84\% & 49\% & 34\% \\ \hline
$\mathbb{R}$-$\mathbb{U}$ & 96\% & 66\% & 51\% & 28\% \\ \hline
\end{tabular}
\end{center}
\label{table:badGrammar}
\vspace*{-0.1in}
\end{table} | [
[
"",
"Grammar A - F",
null,
"Gbad",
null
],
[
"",
"%unique inps",
"%error inps",
"%unique inps",
"%error inps"
],
[
"R-A",
"97%",
"88%",
"52%",
"22%"
],
[
"U-A",
"96%",
"84%",
"49%",
"34%"
],
[
"R-U",
"96%",
"66%",
"51%",
"28%"
]
] | 0.780488 | null | null |
0 | 2002.10904v3 | 14 | [
135.67627970377603,
265.01898193359375,
487.0430145263672,
319.81298828125
] | \begin{table}
\centering
\caption{Summary statistics for pretest touches by treatment group.\label{tab:pretest}}.
\begin{tabular}{ l c c c c c | c c c c c }
\hline
& \multicolumn{5}{c}{Experiment 1} & \multicolumn{5}{c}{Experiment 2} \\
& CT & HH & HL & LH & LL & CT & HH & HL & LH & LL\\
\hline
Mean & 31.3 & 34.3 & 32.3 & 30.9 & 30.2 & 32.4 & 33.7 & 33.1 & 34.4 & 32.6 \\
SD & 13.4 & 14.6 & 13.6 & 14.3 & 12.6 & 13.6 & 13.1 & 13.5 & 14.2 & 13.6 \\
N & 213 & 150 & 219 & 230 & 257 & 363 & 394 & 416 & 423 & 395 \\
%Shapiro-Wilk & 3e-08 & 4e-4 & 3e-4 & 1e-4 & 8e-05 & 1e-8 & 7e-4 & 5e-8 & 2e-7 & 3e-9\\
\hline
\end{tabular}
\end{table} | [
[
"CT HH HL LH LL",
"CT HH HL LH LL"
],
[
"Mean 31.3 34.3 32.3 30.9 30.2\nSD 13.4 14.6 13.6 14.3 12.6\nN 213 150 219 230 257",
"32.4 33.7 33.1 34.4 32.6\n13.6 13.1 13.5 14.2 13.6\n363 394 416 423 395"
]
] | 0.582781 | null | null |
0 | 2112.15448v1 | 5 | [
102.88400268554688,
128.98699951171875,
408.64801025390625,
294.2659912109375
] | \begin{table}[H]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
cases & $\lambda$ & n & m & corr & ETE & $p_p$ & $p$ \\
\hline\hline
case 1 & 0.000018 & 5 & 30 & 0.992473 & 0.0841 & 67 & 72 \\
\hline
case 2 & 0.000019 & 15 & 10 & 0.984619 & 0.1150 & 67 & 67 \\
\hline
case 3 & 0.00002 & 5 & 10 & 0.980843 & 0.1574 & 54 & 63 \\
\hline
case 4 & 0.00002 & 5 & 5 & 0.980935 & 0.0485 & 59 & 63 \\
\hline
case 5 & 0.000025 & 5 & 5 & 0.975577 & 0.1269 & 48 & 53 \\
\hline
case 6 & 0.00004 & 5 & 10 & 0.965080 & 0.1297 & 26 & 26 \\
\hline
case 7 & 0.000045 & 5 & 5 & 0.923647 & 0.07925 & 22 & 22 \\
\hline
case 8 & 0.000048 & 5 & 5 & 0.954842 & 0.1210 & 16 & 17 \\
\hline
case 9 & 0.00005 & 5 & 10 & 0.872521 & 0.1790 & 16 & 16 \\
\hline
case 10 & 0.00005 & 20 & 5 & 0.971625 & 0.1220 & 16 & 16 \\
\hline
\end{tabular}
\caption{experiments on using exact POSI for Lasso on S\&P500}
\label{table-experiments}
\end{table} | [
[
"cases",
"λ",
"n",
"m",
"corr",
"ETE",
"p\np",
"p"
],
[
"case 1",
"0.000018",
"5",
"30",
"0.992473",
"0.0841",
"67",
"72"
],
[
"case 2",
"0.000019",
"15",
"10",
"0.984619",
"0.1150",
"67",
"67"
],
[
"case 3",
"0.00002",
"5",
"10",
"0.980843",
"0.1574",
"54",
"63"
],
[
"case 4",
"0.00002",
"5",
"5",
"0.980935",
"0.0485",
"59",
"63"
],
[
"case 5",
"0.000025",
"5",
"5",
"0.975577",
"0.1269",
"48",
"53"
],
[
"case 6",
"0.00004",
"5",
"10",
"0.965080",
"0.1297",
"26",
"26"
],
[
"case 7",
"0.000045",
"5",
"5",
"0.923647",
"0.07925",
"22",
"22"
],
[
"case 8",
"0.000048",
"5",
"5",
"0.954842",
"0.1210",
"16",
"17"
],
[
"case 9",
"0.00005",
"5",
"10",
"0.872521",
"0.1790",
"16",
"16"
],
[
"case 10",
"0.00005",
"20",
"5",
"0.971625",
"0.1220",
"16",
"16"
]
] | 0.919918 | null | null |
0 | 2404.13079v1 | 13 | [
118.56900024414062,
89.08099365234375,
493.4309997558594,
155.33197021484375
] | \begin{table}[htbp]
\centering
\caption{Digikala dataset Results}
\label{tab:table4}
\begin{tabular}{|c|ccc|ccc|}
\hline
\multirow{3}{*}{Model} & \multicolumn{3}{c|}{2 class} & \multicolumn{3}{c|}{3 class} \\ \cline{2-7}
& \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} & \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} \\ \cline{2-7}
& \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score & \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score \\ \hline
ParsBERT & 68 & 87 & 72 & 57 & 62 & 55 \\
ParsBERT + GCN & 70 & 91.1 & 74 & 58 & 63.9 & 55 \\
ParsBERT + RGCN & 70.36 & 91.17 & 74.15 & 58.29 & 63.94 & 55.11\\ \hline
\end{tabular}
\end{table} | [
[
"Model",
"2 class",
null,
null,
"3 class",
null,
null
],
[
null,
"balanced",
"imbalance",
null,
"balanced",
"imbalance",
null
],
[
null,
"accuracy",
"accuracy",
"F1-score",
"accuracy",
"accuracy",
"F1-score"
],
[
"ParsBERT\nParsBERT + GCN\nParsBERT + RGCN",
"68 87 72\n70 91.1 74\n70.36 91.17 74.15",
null,
null,
"57 62 55\n58 63.9 55\n58.29 63.94 55.11",
null,
null
]
] | 0.390681 | null | null |
0 | 2310.01739v1 | 44 | [
77.89800262451172,
302.9320068359375,
517.3779907226562,
391.2010192871094
] | \begin{table}[!h]
\centering
\caption{Asymptotic complexities of various randomized pivoting-based skeleton selection algorithms based on \Cref{algo:sketch_pivot_CUR_general}.}
\label{tab:complexity_rand_pivot}
\begin{tabular}{c|c|c}
\hline
Algorithm & Row basis approximator construction (Line 1,2) & Pivoting (Line 3) \\
\hline
Rand-LUPP & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\
Rand-LUPP-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\
\hline
Rand-CPQR & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\
Rand-CPQR-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\
\hline
RSVD-DEIM & $O\rbr{T_s(l,\Ab) + (m+n)l^2 + \nnz(\Ab) l}$ & $O(nl^2)$ \\
\hline
\end{tabular}
\end{table} | [
[
"Algorithm",
"Row basis approximator construction (Line 1,2)",
"Pivoting (Line 3)"
],
[
"Rand-LUPP\nRand-LUPP-1piter",
"O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns",
"O(nl2)\nO(nl2)"
],
[
"Rand-CPQR\nRand-CPQR-1piter",
"O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns",
"O(nl2)\nO(nl2)"
],
[
"RSVD-DEIM",
"O (T (l, A) + (m + n)l2 + nnz(A)l)\ns",
"O(nl2)"
]
] | 0.670194 | null | null |
1 | 2310.01739v1 | 90 | [
165.48599243164062,
90.6300048828125,
429.78997802734375,
134.7650146484375
] | \begin{table}[t]
% \begin{wraptable}{hr}{0.65\columnwidth}
% \vspace{-1em}
\centering
\caption{DAC helps FixMatch when the unlabeled data is scarce.}
\vspace{-0.5em}
\label{table:combining_with_SSL}
\begin{tabular}{c|ccc}
\hline
Number of Unlabeled Data & 5000 & 10000 & 20000 \\ \hline
FixMatch & 67.74 & 69.23 & 70.76 \\
FixMatch + DAC ($\lambda=1$) & \textbf{71.24} & \textbf{72.7} & \textbf{74.04} \\ \hline
\end{tabular}
% \end{wraptable}
\end{table} | [
[
"Number of Unlabeled Data",
"5000 10000 20000"
],
[
"FixMatch\nFixMatch + DAC (λ = 1)",
"67.74 69.23 70.76\n71.24 72.7 74.04"
]
] | 0.776256 | null | null |
0 | 2307.04012v1 | 16 | [
210.34889221191406,
110.8193359375,
401.6507568359375,
243.7833251953125
] | \begin{table}[]
\begin{tabular}{r|c|}
\cline{2-2}
& \textbf{\begin{tabular}[c]{@{}c@{}}CCSD(T) Error\\ kcal/mol\end{tabular}} \\ \hline
\multicolumn{1}{|r|}{\textbf{AN1-1x dx}} & 6.44 \\ \hline
\multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 6.98 \\ \hline
\multicolumn{1}{|r|}{\textbf{GEOM}} & 16.46 \\ \hline
\multicolumn{1}{|r|}{\textbf{Transition1x}} & 11.73 \\ \hline
\multicolumn{1}{|r|}{\textbf{QM7-x}} & 8.26 \\ \hline
\multicolumn{1}{|r|}{\textbf{Qmugs}} & 14.69 \\ \hline
\multicolumn{1}{|r|}{\textbf{ANI-1ccx}} & 13.9 \\ \hline
\end{tabular}
\caption{The error for the CCSD(T) data after first fitting the six datasets. The ANI-1ccx result is when no previous training is carried out. }
\label{tab:ind_err}.
\end{table} | [
[
"",
"CCSD(T) Error\nkcal/mol"
],
[
"AN1-1x dx",
"6.44"
],
[
"ANI-1x tz",
"6.98"
],
[
"GEOM",
"16.46"
],
[
"Transition1x",
"11.73"
],
[
"QM7-x",
"8.26"
],
[
"Qmugs",
"14.69"
],
[
"ANI-1ccx",
"13.9\n."
]
] | 0.506394 | null | null |
1 | 2307.04012v1 | 19 | [
190.17642211914062,
348.9042205810547,
421.82335408528644,
467.4153747558594
] | \begin{table}[]
\begin{tabular}{r|c|}
\cline{2-2}
& \textbf{Number of Structures} \\ \hline
\multicolumn{1}{|r|}{\textbf{ANI-1x dz}} & 855,028 \\ \hline
\multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 732,154 \\ \hline
\multicolumn{1}{|r|}{\textbf{Qmugs}} & 103,374 \\ \hline
\multicolumn{1}{|r|}{\textbf{QM7-x}} & 1,085,249 \\ \hline
\multicolumn{1}{|r|}{\textbf{GEOM}} & 122,552 \\ \hline
\multicolumn{1}{|r|}{\textbf{Transition-1x}} & 251,095 \\ \hline
\multicolumn{1}{|r|}{\textbf{Total}} & 3,149,452 \\ \hline
\end{tabular}
\caption{The number of structures included from each dataset. }
\label{tab:AL_DS}
\end{table} | [
[
"",
"Number of Structures"
],
[
"ANI-1x dz",
"855,028"
],
[
"ANI-1x tz",
"732,154"
],
[
"Qmugs",
"103,374"
],
[
"QM7-x",
"1,085,249"
],
[
"GEOM",
"122,552"
],
[
"Transition-1x",
"251,095"
],
[
"Total",
"3,149,452"
]
] | 0.682216 | null | null |
0 | 2212.03481v1 | 9 | [
198.73899841308594,
294.1889953613281,
410.39809163411456,
368.4110107421875
] | \begin{table}[h!]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Station} & \textbf{\# of samples} & \textbf{Execution time} \\ \hline
1 & 84 & 13h 46min \\ \hline
2 & 94 & 24h 26min \\ \hline
3 & 38 & 6h 37min \\ \hline
Total & 216 & 44h 49min\\ \hline
\end{tabular}
\label{train1:time}
\caption{Station-wise and total number of samples and execution time of the nf-core HLA typing train}
\end{table} | [
[
"Station",
"# of samples",
"Execution time"
],
[
"1",
"84",
"13h 46min"
],
[
"2",
"94",
"24h 26min"
],
[
"3",
"38",
"6h 37min"
],
[
"Total",
"216",
"44h 49min"
]
] | 0.655629 | null | null |
1 | 2212.03481v1 | 10 | [
89.46900177001953,
392.0169982910156,
522.531005859375,
481.0830078125
] | \begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Station} & \textbf{pre\_run} & \textbf{Execution time} & \textbf{post\_run} & \textbf{Acc}& \textbf{Sens}\\ \hline
1 & 0 / 0MB / 10s & 11h 26m 29s & 8 / 625 MB / 1min 2s & 0.737 & 0.737\\ \hline
2 & 8 / 625 MB / 59s & 12h 47m 24s & 13 / 625 MB / 1m 5s & 0.829 & 0.784\\ \hline
3 & 13 / 625 MB / 57s & 12h 55m 22s & 3 / 654.64MB / 1m 1s & 0.681 & 0.69\\ \hline
\textbf{Total} & time 2m 6s & 1d 13h 9m 8s & time 3m 25s & 0.68 & 0.69 \\ \hline
\textbf{Central} & 0 / 0MB / 8.817s & 3d 23h 46m 25s & 3 / 654.64MB / 1m 1s & 0.684 & 0.625 \\ \hline
\end{tabular}
\caption{Execution time and performance of ISIC showcase model at different stations. \textit{pre\_run} and \textit{post\_run} protocols are security protocol steps. Number of files / file size / execution time is reported at each station in the protocol columns. Weighted accuracy (Acc) and weighted sensitivity (Sens) is averaged over all classes and reported from the last epoch at each station.}
\label{exp2:time}
\end{table} | [
[
"Station",
"pre run",
"Execution time",
"post run",
"Acc",
"Sens"
],
[
"1",
"0 / 0MB / 10s",
"11h 26m 29s",
"8 / 625 MB / 1min 2s",
"0.737",
"0.737"
],
[
"2",
"8 / 625 MB / 59s",
"12h 47m 24s",
"13 / 625 MB / 1m 5s",
"0.829",
"0.784"
],
[
"3",
"13 / 625 MB / 57s",
"12h 55m 22s",
"3 / 654.64MB / 1m 1s",
"0.681",
"0.69"
],
[
"Total",
"time 2m 6s",
"1d 13h 9m 8s",
"time 3m 25s",
"0.68",
"0.69"
],
[
"Central",
"0 / 0MB / 8.817s",
"3d 23h 46m 25s",
"3 / 654.64MB / 1m 1s",
"0.684",
"0.625"
]
] | 0.650362 | null | null |
2 | 2212.03481v1 | 19 | [
80.77300262451172,
72.198974609375,
531.2269897460938,
695.6600341796875
] | \begin{table}[H]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Term} & \textbf{Description} \\ \hline
$A$ & Algorithm files defined by the User \\ \hline
AK & Actinic keratosis \\ \hline
BCC & Basal cell carcinoma \\ \hline
BKL & Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis) \\ \hline
$C_I$ & Container created of image $I$ \\ \hline
$CR$ & Container Registry \\ \hline
$D_{i}$ & Data (A,Q, and Model / Results) of party $i$ as cargo of the train\\ \hline
DF & Dermatofibroma \\ \hline
DNN & Deep Neural Network \\ \hline
$DS_i$ & Digital Signature of party $i$ \\ \hline
$\mathcal{E}_{D}$ & Encrypted value of data $D$\\ \hline
GB & Gigabytes \\ \hline
GPU & Graphical Processing Unit \\ \hline
h & hours \\ \hline
HLA & Human Leukocyte Antigen \\ \hline
$I$ & Base image \\ \hline
$ID_i$ & $ID$ of party $i$ \\ \hline
$ID_U$ & Identifier of user $U$ \\ \hline
$K$ & Random generated number of length $l$ as session key of the analysis \\ \hline
KB & Kilobytes \\ \hline
$N$ & Random generated number of length $l$ as session $ID$ of the analysis\\ \hline
NV & Melanocytic nevus \\ \hline
m & minutes \\ \hline
MEL& Melanoma \\ \hline
MHC& Major Histocompatibility Complex \\ \hline
PDR& Private Docker Registry \\ \hline
PHT& Personal Health Train \\ \hline
$PK{_i}$ & Public key of the party $i$ \\ \hline
$Q$ & Query operated on database defined by the User\\ \hline
$R$ & Defined Route of the train defined by the User\\ \hline
RE & Result extraction process\\ \hline
$S$ & Station \\ \hline
SCC & Squamous cell carcinoma \\ \hline
$SK{_i}$ & Private key of the party $i$ \\ \hline
SMPC & Secure Multi-Party Computation \\ \hline
TB & Train building process \\ \hline
$U$ & User \\ \hline
$UI$ & central User Interface do manage trains and submit algorithms\\ \hline
$URI$ & Uniform Resource Identifier \\ \hline
VASC & Vascular lesion \\ \hline
vCPU & virtual Central Processing Unit \\ \hline
\end{tabular}\label{supp:notations}
\caption{Notations and abbreviations used in this paper.}
\end{table} | [
[
"Term",
"Description"
],
[
"A",
"Algorithm files defined by the User"
],
[
"AK",
"Actinic keratosis"
],
[
"BCC",
"Basal cell carcinoma"
],
[
"BKL",
"Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis)"
],
[
"C\nI",
"Container created of image I"
],
[
"CR",
"Container Registry"
],
[
"D\ni",
"Data (A,Q, and Model / Results) of party i as cargo of the train"
],
[
"DF",
"Dermatofibroma"
],
[
"DNN",
"Deep Neural Network"
],
[
"DS\ni",
"Digital Signature of party i"
],
[
"ED",
"Encrypted value of data D"
],
[
"GB",
"Gigabytes"
],
[
"GPU",
"Graphical Processing Unit"
],
[
"h",
"hours"
],
[
"HLA",
"Human Leukocyte Antigen"
],
[
"I",
"Base image"
],
[
"ID\ni",
"ID of party i"
],
[
"ID\nU",
"Identifier of user U"
],
[
"K",
"Random generated number of length l as session key of the analysis"
],
[
"KB",
"Kilobytes"
],
[
"N",
"Random generated number of length l as session ID of the analysis"
],
[
"NV",
"Melanocytic nevus"
],
[
"m",
"minutes"
],
[
"MEL",
"Melanoma"
],
[
"MHC",
"Major Histocompatibility Complex"
],
[
"PDR",
"Private Docker Registry"
],
[
"PHT",
"Personal Health Train"
],
[
"PK\ni",
"Public key of the party i"
],
[
"Q",
"Query operated on database defined by the User"
],
[
"R",
"Defined Route of the train defined by the User"
],
[
"RE",
"Result extraction process"
],
[
"S",
"Station"
],
[
"SCC",
"Squamous cell carcinoma"
],
[
"SK\ni",
"Private key of the party i"
],
[
"SMPC",
"Secure Multi-Party Computation"
],
[
"TB",
"Train building process"
],
[
"U",
"User"
],
[
"UI",
"central User Interface do manage trains and submit algorithms"
],
[
"URI",
"Uniform Resource Identifier"
],
[
"VASC",
"Vascular lesion"
],
[
"vCPU",
"virtual Central Processing Unit"
]
] | 0.973525 | null | null |
0 | 1912.10204v1 | 3 | [
56.18338203430176,
305.4561462402344,
290.3208923339844,
358.287353515625
] | \begin{table}
\vspace{2ex}
\resizebox{\columnwidth}{!}{
\begin{tabular}{l | c | c | c}
\toprule
\textbf{Dataset} & \textbf{\# instances} & \textbf{\# authors} & \textbf{\# texts/author}\\
\midrule
\textit{development} & 1000 & 50 & 20\\
\textit{cross-validation} & 3500 & 50 & 70\\
\textit{holdout test} & 500 & 50 & 10\\
\bottomrule
\end{tabular}
}
\centering
\caption{Distribution of instances in the different datasets}
\label{dist}
\end{table} | [
[
"Dataset",
"# instances",
"# authors",
"# texts/author"
],
[
"development\ncross-validation\nholdout test",
"1000\n3500\n500",
"50\n50\n50",
"20\n70\n10"
]
] | 0.513369 | null | null |
0 | 2109.12567v1 | 3 | [
72,
479.2279968261719,
501.5459899902344,
523.2630004882812
] | \begin{table}[ht]
\begin{tabular}{|l|l|l|l|}
\texttt{Metric} & \texttt{c = arrayfun(@(idx)} & \texttt{s = "TestResult" +} & \texttt{String advantage} \\ \hline
\texttt{Characters of M-code} & \texttt{78 chars} & \texttt{24 chars} & \texttt{3.25x shorter} \\
\texttt{Duration (sec)} & \texttt{0.01640} & \texttt{0.0003634} & \texttt{45x faster} \\
\texttt{Bytes} & \texttt{129,786} & \texttt{70,096} & \texttt{1.85x smaller}
\end{tabular}
\caption{Performance comparison of string building for cell and string array}
\label{table:StringBuilding}
\end{table} | [
[
"Metric",
"c = arrayfun(@(idx)",
"s = \"TestResult\" +",
"String advantage"
],
[
"Characters of M-code\nDuration (sec)\nBytes",
"78 chars\n0.01640\n129,786",
"24 chars\n0.0003634\n70,096",
"3.25x shorter\n45x faster\n1.85x smaller"
]
] | 0.371981 | null | null |
1 | 2109.12567v1 | 6 | [
72,
581.281005859375,
529.18798828125,
614.406982421875
] | \begin{table}[ht]
\begin{tabular}{|l|l|l|l|l|}
\texttt{Metric} & \texttt{sprintf} & \texttt{{[}num2str(1) ` ' a{]}} & \texttt{1 + " " + a} & \texttt{Advantage over sprintf} \\ \hline
\texttt{Chars of M-code} & \texttt{22 chars} & \texttt{18 chars} & \texttt{11 chars} & \texttt{2x as compact} \\
\texttt{Duration (sec)} & \texttt{0.00001375} & \texttt{0.00001227} & \texttt{0.000001693} & \texttt{8.1x faster}
\end{tabular}
\caption{Comparison of MATLAB text concatenation.}
\label{table:Concat}
\end{table} | [
[
"Metric",
"sprintf",
"[num2str(1) ‘ ’ a]",
"1 + \" \" + a",
"Advantage over sprintf"
],
[
"Chars of M-code\nDuration (sec)",
"22 chars\n0.00001375",
"18 chars\n0.00001227",
"11 chars\n0.000001693",
"2x as compact\n8.1x faster"
]
] | 0.380952 | null | null |
0 | 2202.06493v1 | 4 | [
71.5479965209961,
97.43701171875,
272.7099914550781,
158.9396769205729
] | \begin{table}[htb]
\centering
\caption{Dataset for experiments}
\small
\begin{tabular}{l|rrr}
\hline \hline
\multicolumn{1}{l}{} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Fashion\\ MNIST\end{tabular}} & \multicolumn{1}{c}{CIFAR10} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Caltech\\ Birds\end{tabular}} \\
\hline
Domain & Clothing & Vehicle, Animal & Bird \\
Train data & 60,000 & 50,000 & \multirow{2}{*}{17821} \\
Test data & 10,000 & 10,000 & \\
Classes & 10 & 10 & 200 \\
Clients & 3 & 5 & 10 \\
Samples & 6,400 & 6,400 & 3,200 \\
\hline \hline
\end{tabular}
\label{tab:dataset}
\end{table} | [
[
"Domain\nTrain data\nTest data\nClasses\nClients\nSamples",
"Clothing Vehicle, Animal Bird\n60,000 50,000\n17821\n10,000 10,000\n10 10 200\n3 5 10\n6,400 6,400 3,200"
]
] | 0.65625 | null | null |
0 | 2103.13655v1 | 8 | [
149.92300415039062,
157.3800048828125,
298.0450134277344,
219.5460205078125
] | \begin{table}[h]
\centering
%
\caption{Overview of the results on the test set after optimization of the Neural Network (NN) and the Structured Deep Kernel Network (SDKN): Cross-correlation (left) and Loss (right).}
\renewcommand{\arraystretch}{1.4}
\tiny
\begin{tabular}{|ll|r|r|l|l|} \hline
%
\textbf{Cross-Correlation} & & GRU1 & GRU2 & GRU3 \\ \hline \hline
Projection & ANN & 0.9989 & 0.8163 & 0.9989 \\
& SDKN & 0.9989 & 0.9989 & 0.9988 \\ \hline
Top-Hat & ANN & 0.9992 & 0.9992 & 0.9992 \\
& SDKN & 0.9991 & 0.9992 & 0.9992 \\ \hline
Fourier \qquad \qquad & ANN & 0.9992 & 0.9993 & 0.9993 \\
& SDKN & 0.9992 & 0.9993 & 0.9993 \\ \hline
\end{tabular}
\quad
\begin{tabular}{|ll|r|r|l|l|} \hline
%
\textbf{MSE-Loss} & & GRU1 & GRU2 & GRU3 \\ \hline \hline
Projection & ANN & 3.235e-01 & 4.996e+01 & 3.233e-01 \\
& SDKN & 3.253e-01 & 3.261e-01 & 3.368e-01 \\ \hline
Top-Hat & ANN & 3.155e-02 & 2.917e-02 & 2.888e-02 \\
& SDKN & 3.222e-02 & 2.989e-02 & 2.893e-02 \\ \hline
Fourier \qquad \qquad & ANN & 1.179e-02 & 9.737e-03 & 9.452e-03 \\
& SDKN & 1.177e-02 & 1.007e-02 & 9.587e-03 \\ \hline
\end{tabular}
\label{tab:results_marius_corr}
\end{table} | [
[
"Cross-Correlation",
"GRU1",
"GRU2",
"GRU3"
],
[
"Projection ANN\nSDKN",
"0.9989\n0.9989",
"0.8163\n0.9989",
"0.9989\n0.9988"
],
[
"Top-Hat ANN\nSDKN",
"0.9992\n0.9991",
"0.9992\n0.9992",
"0.9992\n0.9992"
],
[
"Fourier ANN\nSDKN",
"0.9992\n0.9992",
"0.9993\n0.9993",
"0.9993\n0.9993"
]
] | 0.38472 | null | null |
0 | 1904.05961v3 | 8 | [
60.82500076293945,
86.8202880859375,
288.1610107421875,
156.49298095703125
] | \begin{table}[tb]
% \vspace{-.0em}
%\small
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Parameters of Datasets} \label{tab:dataset}
%\vspace{-1em}
\centering
\begin{tabular}{r|c|c|c}
\hline
dataset & size ($|P|$) & dimension ($d$) & \#distinct labels ($L$) \\
\hline
Fisher's iris & 150 & 5 & 3 \\
\hline
Facebook & 500 & 19 & 4 \\
\hline
Pendigits & 7494 & 17 & 10 \\
\hline
MNIST & 70000 & 401 & 10 \\
\hline
HAR & 10299 & 562 & 6 \\
\hline
\end{tabular}
%\vspace{-.5em}
\end{table} | [
[
"dataset\nFisher’s iris",
"size (|P|)\n150",
"dimension (d)\n5",
"#distinct labels (L)\n3"
],
[
"Facebook",
"500",
"19",
"4"
],
[
"Pendigits",
"7494",
"17",
"10"
],
[
"MNIST",
"70000",
"401",
"10"
],
[
"HAR",
"10299",
"562",
"6"
]
] | 0.848684 | null | null |
1 | 1904.05961v3 | 11 | [
54.45199966430664,
373.4720092773438,
289.3331778390067,
444.62112862723217
] | \begin{table}[t]
{
%\small
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time}
%\vspace{-1em}
\centerline{
\begin{tabular}{r|c|c|c|c|c}
\hline
algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\
\hline
FP %farthest point
& 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\
\hline
NS %nonuniform samp.
& 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\
\hline
US %uniform samp.
& 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\
\hline
RS %RCC-kmeans
& 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\
\hline
RN %RCC-kmedian
& 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\
\hline
\end{tabular}
}
}
\vspace{.5em}
\end{table} | [
[
"algorithm F",
"isher",
"Facebook",
"Pendigits",
"MNIST",
"HAR"
],
[
"FP",
"1.62",
"3.00",
"2.53",
"21.69 2",
"5.92"
],
[
"NS 0",
".019",
"0.027",
"0.095",
"7.42",
"0.69"
],
[
"US 2.",
"10e-04",
"4.60e-04",
"3.80e-04",
"0.01 0",
".0013"
],
[
"RS 0",
".0083",
"0.011",
"0.042",
"18.76",
"1.46"
],
[
"RN 0",
".028",
"0.30",
"0.40",
"100.64 1",
"2.39"
]
] | 0.712598 | null | null |
2 | 1904.05961v3 | 12 | [
119.85399627685547,
85.47900390625,
229.13198852539062,
121.64398193359375
] | \begin{table}[t]
{%\color{blue}
%\small
\footnotesize
\renewcommand{\arraystretch}{1.3}
\caption{Average Running Time (sec) } \label{tab:time, distributed}
%\vspace{-1em}
\centerline{
\begin{tabular}{r|c|c}
\hline
algorithm & MNIST & HAR \\
\hline
CDCC & 13.84 & 1.55 \\
\hline
DRCC & 31.66 & 2.42 \\
\hline
\end{tabular}
}
}
\vspace{.5em}
\end{table} | [
[
"algorithm",
"MNIST",
"HAR"
],
[
"CDCC",
"13.84",
"1.55"
],
[
"DRCC",
"31.66",
"2.42"
]
] | 0.953271 | null | null |