id
int64
0
19
arxiv_id
stringlengths
11
12
page
int64
1
234
bounding_box
sequencelengths
4
4
latex_content
stringlengths
217
28.9k
extracted_content
sequencelengths
1
85
similarity_score
float64
0.36
1
table_image
unknown
page_image
unknown
14
1902.00562v1
13
[ 314.1099853515625, 78.635986328125, 560.9039916992188, 239.2340087890625 ]
\begin{table}[t] \caption{\label{tab:Reg Model RMSE Compare}\label{tab:RegModelTable} Prediction Accuracy of Regression Models on Test Data} \centering \begin{tabular}{l|l|r|r|r|r} \hline Data & Model & RMSE & MAE & MSE & R2\\ \hline 1) Base & GLM & 446.35 & 221.16 & 199227.6 & 0.12\\ \hline 2) Zip & GLM & 426.93 & 206.49 & 182270.1 & 0.19\\ \hline 3) Spatial & GLM & 382.32 & 195.00 & 146170.5 & 0.35\\ \hline 1) Base & RF & 387.99 & 174.24 & 150536.3 & 0.33\\ \hline 2) Zip & RF & 475.20 & 190.33 & 225811.7 & 0.00\\ \hline 3) Spatial & RF & 430.92 & 180.17 & 185695.5 & 0.18\\ \hline 1) Base & GBM & 384.11 & 179.27 & 147543.5 & 0.35\\ \hline 2) Zip & GBM & 454.53 & 186.00 & 206593.1 & 0.09\\ \hline 3) Spatial & GBM & 406.70 & 170.97 & 165408.0 & 0.27\\ \hline 1) Base & ANN & 363.02 & 178.58 & 131782.5 & 0.42\\ \hline 2) Zip & ANN & 360.88 & 171.22 & 130232.2 & 0.42\\ \hline 3) Spatial & ANN & 337.94 & 158.91 & 114202.0 & 0.49\\ \hline \end{tabular} \end{table}
[ [ "Data", "Model", "RMSE", "MAE", "MSE", "R2" ], [ "1) Base", "GLM", "446.35", "221.16", "199227.6", "0.12" ], [ "2) Zip", "GLM", "426.93", "206.49", "182270.1", "0.19" ], [ "3) Spatial", "GLM", "382.32", "195.00", "146170.5", "0.35" ], [ "1) Base", "RF", "387.99", "174.24", "150536.3", "0.33" ], [ "2) Zip", "RF", "475.20", "190.33", "225811.7", "0.00" ], [ "3) Spatial", "RF", "430.92", "180.17", "185695.5", "0.18" ], [ "1) Base", "GBM", "384.11", "179.27", "147543.5", "0.35" ], [ "2) Zip", "GBM", "454.53", "186.00", "206593.1", "0.09" ], [ "3) Spatial", "GBM", "406.70", "170.97", "165408.0", "0.27" ], [ "1) Base", "ANN", "363.02", "178.58", "131782.5", "0.42" ], [ "2) Zip", "ANN", "360.88", "171.22", "130232.2", "0.42" ], [ "3) Spatial", "ANN", "337.94", "158.91", "114202.0", "0.49" ] ]
1
null
null
15
1902.00562v1
15
[ 61.46799850463867, 78.57847595214844, 287.51898193359375, 239.2340087890625 ]
\begin{table}[t] \caption{\label{tab:Class Model Compare}\label{tab:ClassModelTable} Prediction Accuracy of Classification Models on Test Data} \centering \begin{tabular}{l|l|r|r|r|r} \hline Data & Model & AUC & MSE & RMSE & R2\\ \hline 1) Base & GLM & 0.57 & 0.03 & 0.17 & 0.00\\ \hline 2) Zip & GLM & 0.58 & 0.03 & 0.17 & 0.00\\ \hline 3) Spatial & GLM & 0.50 & 0.03 & 0.17 & -0.01\\ \hline 1) Base & RF & 0.58 & 0.03 & 0.17 & -0.03\\ \hline 2) Zip & RF & 0.56 & 0.03 & 0.17 & -0.06\\ \hline 3) Spatial & RF & 0.78 & 0.03 & 0.17 & 0.00\\ \hline 1) Base & GBM & 0.61 & 0.03 & 0.17 & -0.03\\ \hline 2) Zip & GBM & 0.61 & 0.03 & 0.17 & -0.03\\ \hline 3) Spatial & GBM & 0.82 & 0.03 & 0.16 & 0.04\\ \hline 1) Base & ANN & 0.55 & 0.03 & 0.17 & -0.03\\ \hline 2) Zip & ANN & 0.57 & 0.03 & 0.17 & -0.04\\ \hline 3) Spatial & ANN & 0.76 & 0.03 & 0.17 & -0.01\\ \hline \end{tabular} \end{table}
[ [ "Data", "Model", "AUC", "MSE", "RMSE", "R2" ], [ "1) Base", "GLM", "0.57", "0.03", "0.17", "0.00" ], [ "2) Zip", "GLM", "0.58", "0.03", "0.17", "0.00" ], [ "3) Spatial", "GLM", "0.50", "0.03", "0.17", "-0.01" ], [ "1) Base", "RF", "0.58", "0.03", "0.17", "-0.03" ], [ "2) Zip", "RF", "0.56", "0.03", "0.17", "-0.06" ], [ "3) Spatial", "RF", "0.78", "0.03", "0.17", "0.00" ], [ "1) Base", "GBM", "0.61", "0.03", "0.17", "-0.03" ], [ "2) Zip", "GBM", "0.61", "0.03", "0.17", "-0.03" ], [ "3) Spatial", "GBM", "0.82", "0.03", "0.16", "0.04" ], [ "1) Base", "ANN", "0.55", "0.03", "0.17", "-0.03" ], [ "2) Zip", "ANN", "0.57", "0.03", "0.17", "-0.04" ], [ "3) Spatial", "ANN", "0.76", "0.03", "0.17", "-0.01" ] ]
1
null
null
16
1902.00562v1
15
[ 50.77521896362305, 282.0411376953125, 300.02203369140625, 352.6251220703125 ]
\begin{table}[t] \caption{\label{tab:Reg VarImp}\label{tab:RegVarImp} Feature Importance of Top Performing Regression Model} \centering \resizebox{\linewidth}{!}{ \begin{tabular}{l|l|r|l} \hline Variable & Description & Scaled Importance (Max = 1) & Cumulative \%\\ \hline BuiltFAR & Floor area ratio built & 1.000 & 1.80\%\\ \hline FacilFAR & Maximum Allowable Floor Area Ratio & 0.922 & 3.40\%\\ \hline Last\_Sale\_Price\_Total & The previous sale price & 0.901 & 5.10\%\\ \hline Last\_Sale\_Date & Date of last sale & 0.893 & 6.70\%\\ \hline Last\_Sale\_Price & The previous sale price & 0.870 & 8.20\%\\ \hline Years\_Since\_Last\_Sale & Number of years since last sale & 0.823 & 9.70\%\\ \hline ResidFAR & Floor Area Ratio not yet built & 0.814 & 11.20\%\\ \hline lon & Longitude & 0.773 & 12.60\%\\ \hline Year & Year of record & 0.759 & 13.90\%\\ \hline BldgDepth & Square feet from font to back & 0.758 & 15.30\%\\ \hline \end{tabular}} \end{table}
[ [ "Variable", "Description", "Scaled Importance (Max = 1)", "Cumulative %" ], [ "BuiltFAR", "Floor area ratio built", "1.000", "1.80%" ], [ "FacilFAR", "Maximum Allowable Floor Area Ratio", "0.922", "3.40%" ], [ "Last Sale Price Total", "The previous sale price", "0.901", "5.10%" ], [ "Last Sale Date", "Date of last sale", "0.893", "6.70%" ], [ "Last Sale Price", "The previous sale price", "0.870", "8.20%" ], [ "Years Since Last Sale", "Number of years since last sale", "0.823", "9.70%" ], [ "ResidFAR", "Floor Area Ratio not yet built", "0.814", "11.20%" ], [ "lon", "Longitude", "0.773", "12.60%" ], [ "Year", "Year of record", "0.759", "13.90%" ], [ "BldgDepth", "Square feet from font to back", "0.758", "15.30%" ] ]
0.947858
null
null
17
1902.00562v1
15
[ 313.4578857421875, 78.57847595214844, 563.0432739257812, 135.37764195033483 ]
\begin{table}[t] \caption{\label{tab:Class VarImp}\label{tab:ClassVarImp} Feature Importance of Top Performing Classification Model} \centering \resizebox{\linewidth}{!}{ \begin{tabular}{l|l|r|l} \hline Variable & Description & Scaled Importance (Max = 1) & Cumulative \%\\ \hline Percent\_Neighbords\_Sold & Percent of Nearby Properties Sold in the Previous Year & 1.000 & 21.90\%\\ \hline Percent\_Office & Percent of the build which is Office & 0.698 & 37.20\%\\ \hline Percent\_Garage & Percent of the build which is Garage & 0.634 & 51.10\%\\ \hline Percent\_Storage & Percent of the build which is Storage & 0.518 & 62.40\%\\ \hline Building\_Age & The Age of the building & 0.225 & 67.40\%\\ \hline Last\_Sale\_Price & Price of building last time is was sold & 0.165 & 71.00\%\\ \hline Percent\_Retail & Percent of the build which is Retail & 0.147 & 74.20\%\\ \hline Years\_Since\_Last\_Sale & Year since building last sold & 0.121 & 76.90\%\\ \hline ExemptTot & Total tax exempted value of the building & 0.069 & 78.40\%\\ \hline Radius\_Res\_Units\_Sold\_In\_Year & Residential units within 500 meters sold in past year & 0.056 & 79.60\%\\ \hline \end{tabular}} \end{table}
[ [ "Variable", "Description", "Scaled Importance (Max = 1)", "Cumulative %" ], [ "Percent Neighbords Sold", "Percent of Nearby Properties Sold in the Previous Year", "1.000", "21.90%" ], [ "Percent Office\nPercent Garage", "Percent of the build which is Office\nPercent of the build which is Garage", "0.698\n0.634", "37.20%\n51.10%" ], [ "Percent Storage", "Percent of the build which is Storage", "0.518", "62.40%" ], [ "Building Age", "The Age of the building", "0.225", "67.40%" ], [ "Last Sale Price", "Price of building last time is was sold", "0.165", "71.00%" ], [ "Percent Retail", "Percent of the build which is Retail", "0.147", "74.20%" ], [ "Years Since Last Sale", "Year since building last sold", "0.121", "76.90%" ], [ "ExemptTot\nRadius Res Units Sold In Year", "Total tax exempted value of the building\nResidential units within 500 meters sold in past year", "0.069\n0.056", "78.40%\n79.60%" ] ]
0.700201
null
null
0
1501.04038v2
5
[ 187.17799377441406, 111.3060302734375, 408.0979919433594, 213.62200927734375 ]
\begin{table}[ht] \begin{center} \begin{tabular}{|l||l|l|l|l||l|l|l|} \hline \textbf{Records} & \multicolumn{7}{c|}{\textbf{Bins}} \\ \hline &\multicolumn{4}{c||}{$X$}&\multicolumn{3}{c|}{$Y$}\\ &$x_1$&$x_2$&...&$x_{50}$&$y_1$&$y_2$&$y_3$\\ \hline $t_1$&0&1&...&0&0&0&1\\ $t_2$&0&0&...&0&0&1&0\\ $t_3$&0&0&...&1&0&0&1\\ $...$&$...$&$...$&$...$&$...$&$...$&$...$&$...$\\ \hline \end{tabular} \end{center} \caption{\label{tbl:bitmap}An Example Bitmap Index} \end{table}
[ [ "Records", "Bins", null, null, null, null, null, null ], [ "", "X\nx x ... x\n1 2 50", null, null, null, "Y\ny y y\n1 2 3", null, null ], [ "t\n1\nt\n2\nt\n3\n...", "0\n0\n0\n...", "1\n0\n0\n...", "...\n...\n...\n...", "0\n0\n1\n...", "0\n0\n0\n...", "0\n1\n0\n...", "1\n0\n1\n..." ] ]
0.487805
null
null
1
1501.04038v2
10
[ 202.0590057373047, 111.3060302734375, 393.2170104980469, 200.37200927734375 ]
\begin{table}[ht] \begin{center} \begin{tabular}{|c|c|c|c|} \hline Attr. & \# Bins & Attr. & \# Bins \\ \hline Year & 11 & Month & 12 \\ \hline Day & 31 & Hour & 24 \\ \hline Min. & 60 & Sec. & 60 \\ \hline mSec. & 10 & $\Phi$ & $20\times 23$ \\ \hline $V$ & $20\times 36$ & $\Delta$ & $20\times 180$ \\ \hline \end{tabular} \end{center} \caption{\label{table:bins}Bins} \end{table}
[ [ "Attr.", "# Bins", "Attr.", "# Bins" ], [ "Year", "11", "Month", "12" ], [ "Day", "31", "Hour", "24" ], [ "Min.", "60", "Sec.", "60" ], [ "mSec.", "10", "Φ", "20 23\n×" ], [ "V", "20 36\n×", "∆", "20 180\n×" ] ]
0.812261
null
null
2
1501.04038v2
12
[ 64.51200103759766, 112.30303955078125, 538.7020263671875, 374.5190124511719 ]
\begin{table}[ht] \small \begin{center} \begin{tabular}{|c||p{4.8cm}|p{2.3cm}|p{2.3cm}|p{2.3cm}|p{2cm}|} \hline \textbf{ID} & \textbf{Selection Criteria} & \textbf{Linear Scan (sec)}& \textbf{MySQL (sec)} &\textbf{Bitmap (sec)} &\textbf{Records Retrieved}\\ \hline \hline 1 & Find all records where PMU1 has a magnitude Voltage Magnitude of 533. & 25.859666 & 22.469 & 0.379387 & 160 \\\hline 2 & Find all records that occurred on exactly June 24, 2013 at 21:05 hours. & 25.350993 & 0.353 & 0.854952 & 3600 \\\hline 3 & Find all records that occurred on exactly June 24, 2013 at 21:06 hours. & 28.001001 & 0.396 & 0.922941 & 3600 \\\hline 4 & Find all records that occurred on exactly June 24, 2013 at 21:07 hours. & 26.133607 & 0.225 & 0.785588 & 3600 \\\hline 5 & Find all records that occurred on exactly June 24, 2013 at 21:06 hours with PMU having a Voltage Magnitude of 533. & 28.019449 & 0.046 & 0.001772 & 0 \\\hline 6 & Find all records in 2012. & 26.720291 & 23.714 & 0.0000601 & 0 \\\hline \end{tabular} \end{center} \caption{\label{table:querycomp}Query Performance} \end{table}
[ [ "ID", "Selection Criteria", "Linear Scan\n(sec)", "MySQL (sec)", "Bitmap (sec)", "Records Re-\ntrieved" ], [ "1", "Find all records where PMU1\nhas a magnitude Voltage Mag-\nnitude of 533.", "25.859666", "22.469", "0.379387", "160" ], [ "2", "Find all records that occurred\non exactly June 24, 2013 at\n21:05 hours.", "25.350993", "0.353", "0.854952", "3600" ], [ "3", "Find all records that occurred\non exactly June 24, 2013 at\n21:06 hours.", "28.001001", "0.396", "0.922941", "3600" ], [ "4", "Find all records that occurred\non exactly June 24, 2013 at\n21:07 hours.", "26.133607", "0.225", "0.785588", "3600" ], [ "5", "Find all records that occurred\non exactly June 24, 2013 at\n21:06 hours with PMU having\na Voltage Magnitude of 533.", "28.019449", "0.046", "0.001772", "0" ], [ "6", "Find all records in 2012.", "26.720291", "23.714", "0.0000601", "0" ] ]
0.970752
null
null
0
2106.14251v3
15
[ 66.61399841308594, 71.04255676269531, 528.6754372336648, 409.6402282714844 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{3.42cm}|p{3.32cm}|p{3.0cm}|p{3.25cm}|p{3.28cm}|} %{|l|l|l|l|l|} \hline \textbf{Generic model Kurgan and Musilek} \cite{km06} & \textbf{Shmueli and Koppius }\cite{sk11} &\textbf{Chambers and Dinsmore }\cite{cd14} & \textbf{Goodfellow et al.} \cite{g16} & \textbf{Data science development process}\\ \hline Application domain understanding& Goal definition & Defines business needs &Determination of goals & Problem understanding \\ \hline Data understanding& Data collection and study design & \multirow{2}{3.0cm}{Build analysis data set} & Establish a working end-to-end pipeline& Data collection\\ \cline{1-2}\cline{5-5} \multirow{2}{3.42cm}{Data preparation and identification of data mining technology}& Data preparation& & & Data engineering \\ \cline{2-2} & Exploratory data analysis & & & \\ \cline{2-2} & Choice of variables & & & \\ \hline Data mining& Choice of potential methods & \multirow{2}{3.25cm}{Build predictive model} & Instrument the system well to determine bottlenecks in performance & Model training \\ \cline{1-2}\cline{4-5} Evaluation& Evaluation, validation and model selection & & Repeatedly make incremental changes such as gathering new data, adjusting hyperparameters, or changing algorithms& Model optimization\\ \hline Knowledge consolidation and deployment& Model use and reporting & Deploy predictive model & \textit{Beyond discussion} & \textit{Model Integration }\\ \hline \textit{Beyond discussion}& \textit{Beyond discussion}& \textit{Beyond discussion}& \textit{Beyond discussion}& Analytical decision making \\ \hline \end{tabular} \end{adjustbox} \caption{Data science development processes.} \label{tab:mldevproc} \end{table}
[ [ "Generic model\nKurgan and\nMusilek [117]", "Shmueli and\nKoppius [183]", "Chambers and\nDinsmore [39]", "Goodfellow et al.\n[78]", "Data science\ndevelopment\nprocess" ], [ "Application domain\nunderstanding", "Goal definition", "Defines business\nneeds", "Determination of\ngoals", "Problem under-\nstanding" ], [ "Data understanding", "Data collection and\nstudy design", "Build analysis\ndata set", "Establish a working\nend-to-end pipeline", "Data collection" ], [ "Data preparation\nand identification of\ndata mining\ntechnology", "Data preparation", null, null, "Data engineering" ], [ null, "Exploratory data\nanalysis", null, null, null ], [ null, "Choice of variables", null, null, null ], [ "Data mining", "Choice of potential\nmethods", "Build predictive\nmodel", "Instrument the sys-\ntem well to deter-\nmine bottlenecks in\nperformance", "Model training" ], [ "Evaluation", "Evaluation, valida-\ntion and model se-\nlection", null, "Repeatedly make\nincremental\nchanges such\nas gathering new\ndata, adjusting\nhyperparame-\nters, or changing\nalgorithms", "Model optimization" ], [ "Knowledge consoli-\ndation and deploy-\nment", "Model use and re-\nporting", "Deploy predictive\nmodel", "Beyond discussion", "Model Integration" ], [ "Beyond discussion", "Beyond discussion", "Beyond discus-\nsion", "Beyond discussion", "Analytical decision\nmaking" ] ]
0.745315
null
null
1
2106.14251v3
26
[ 66.61399841308594, 71.05728149414062, 528.6845703125, 359.6346435546875 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{4.23cm}|p{3.75cm}|p{7.75cm}|} %{|l|l|l|l|l|} \hline \textbf{Data Science Main Phases} & \textbf{Sub-Phases} &\textbf{Conceptual Modeling Concepts, Methods and Tools} \\ \hline \multirow{2}{4.23cm}{Problem understanding}&Problem statement & Business requirements, goal model\\ \cline{2-3} & Problem analysis & Business requirements, goal model; legal and ethical requirements; Data requirements \\ \hline Data collection& &Data requirements; Data quality; legal and ethical requirements, business requirements \\ \hline \multirow{3}{4.23cm}{Data engineering}& Data exploration& Data requirements; Legal requirements \\ \cline{2-3} & Data preparation& Ontologies; Domain models \\ \cline{2-3} & Feature engineering& Ontologies; Domain models\\ \hline \multirow{3}{4.23cm}{Model training}&Selection& Business requirements, legal requirements, performance requirements and conditions for acceptance \\ \cline{2-3} & Training& Performance requirements \\ \cline{2-3} & Validation& Performance requirements\\ \hline \multirow{3}{4.23cm}{Model optimization}& Parameter optimization& Domain model, resilience requirements\\ \cline{2-3} & Performance Optimization&Domain model, resilience requirements \\ \hline Model integration& & \multirow{2}{7.75cm}{Business requirements;Goal model; Legal requirements; Ethical requirements; Data requirements} \\ \cline{1-2} Analytical decision making& & \\ \hline \end{tabular} \end{adjustbox} \caption{Framework for incorporating conceptual models into data science projects.} \label{tab:framework} \end{table}
[ [ "Data Science Main\nPhases", "Sub-Phases", "Conceptual Modeling Concepts, Meth-\nods and Tools" ], [ "Problem understanding", "Problem statement", "Business requirements, goal model" ], [ null, "Problem analysis", "Business requirements, goal model; legal and\nethical requirements; Data requirements" ], [ "Data collection", "", "Data requirements; Data quality; legal and eth-\nical requirements, business requirements" ], [ "Data engineering", "Data exploration", "Data requirements; Legal requirements" ], [ null, "Data preparation", "Ontologies; Domain models" ], [ null, "Feature engineering", "Ontologies; Domain models" ], [ "Model training", "Selection", "Business requirements, legal requirements, per-\nformance requirements and conditions for ac-\nceptance" ], [ null, "Training", "Performance requirements" ], [ null, "Validation", "Performance requirements" ], [ "Model optimization", "Parameter optimiza-\ntion", "Domain model, resilience requirements" ], [ null, "Performance Opti-\nmization", "Domain model, resilience requirements" ], [ "Model integration", "", "Business requirements;Goal model; Legal\nrequirements; Ethical requirements; Data\nrequirements" ], [ "Analytical decision mak-\ning", "", null ] ]
0.563752
null
null
2
2106.14251v3
29
[ 66.61399841308594, 71.05497741699219, 528.67724609375, 472.21392822265625 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{2.25cm}|p{9.23cm}|p{4.5cm}|} %{|l|l|l|l|l|} \hline \textbf{Topic} & \textbf{Definition} &\textbf{Example specification languages}\\ \hline Business & description of business process that are related to the strategy and the rationale of on organization& I*, BPMB, UML, BIM, URN/GRL \cite{a10}, BMM \cite{OMG}, DSML \cite{gmp09} \\ \hline Legal& Goals that choices made during the ML development are compliant with the law (based on \cite{s09}) & Nomos, Legal GRL \cite{gar14} \\ \hline Ethical \cite{by14} & Compliance with principles, such as transparency, justice and fairness, non-maleficence, responsibility and privacy \cite{jiv19}. & textual \\ \hline Data \cite{vb19} & Requirements on semantics, quantity and quality of data &ER, UML, RDF, OWL, UFO, OCL \\ \hline ML Model \cite{jm15} & selection of architectural elements, their interactions, and the constraints on those elements and their interactions necessary to provide a framework in which to satisfy the requirements and serve as a basis for the design \cite{pw92}. & Finite state processes, labeled transition systems \cite{v03} \\ \hline Functional & statements of services the system should provide, how the system should react to particular inputs, and how the system should behave in particular situations. \cite{s04} & BPMN, UML, EPC, KAOS, DSML \cite{f13} \cite{gmp09} \\ \hline Non-functional & A non-functional requirement is an attribute of a constraint on a system \cite{glinz2007non} & UML, KAOS \\ \hline Performance & expressed as the quantitative part of a requirement to indicate how well each product function is expected to be accomplished \cite{c12} & Rules quantified by metrics \\ \hline Interpretability & Interpretable systems are explainable if their operations can be understood by humans. \cite{ab18} & Qualitative rules \\ \hline Resilience& ML models that gracefully degrade in performance under the influence of disturbances and resource limitations & Rules quantified by metrics \\ \hline \end{tabular} \end{adjustbox} \caption{Specification languages.} \label{tab:spec} \end{table}
[ [ "Topic", "Definition", "Example specification\nlanguages" ], [ "Business", "description of business process that are related to the\nstrategy and the rationale of on organization", "I*, BPMB, UML, BIM,\nURN/GRL [7], BMM\n[156], DSML [74]" ], [ "Legal", "Goals that choices made during the ML development\nare compliant with the law (based on [185])", "Nomos, Legal GRL [73]" ], [ "Ethical [26]", "Compliance with principles, such as transparency, jus-\ntice and fairness, non-maleficence, responsibility and\nprivacy [108].", "textual" ], [ "Data [209]", "Requirements on semantics, quantity and quality of\ndata", "ER, UML, RDF, OWL,\nUFO, OCL" ], [ "ML Model\n[109]", "selection of architectural elements, their interactions,\nand the constraints on those elements and their inter-\nactions necessary to provide a framework in which to\nsatisfy the requirements and serve as a basis for the de-\nsign [164].", "Finite state processes, la-\nbeled transition systems\n[205]" ], [ "Functional", "statements of services the system should provide, how\nthe system should react to particular inputs, and how\nthe system should behave in particular situations. [192]", "BPMN, UML, EPC,\nKAOS, DSML [66] [74]" ], [ "Non-\nfunctional", "A non-functional requirement is an attribute of a con-\nstraint on a system [75]", "UML, KAOS" ], [ "Performance", "expressed as the quantitative part of a requirement to\nindicate how well each product function is expected to\nbe accomplished [46]", "Rules quantified by metrics" ], [ "Interpretability", "Interpretable systems are explainable if their operations\ncan be understood by humans. [2]", "Qualitative rules" ], [ "Resilience", "ML models that gracefully degrade in performance un-\nder the influence of disturbances and resource limita-\ntions", "Rules quantified by metrics" ] ]
0.502706
null
null
3
2106.14251v3
33
[ 66.61399841308594, 71.02877044677734, 528.6655731201172, 261.3982849121094 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|} %{|l|l|l|l|l|} \hline Pregnancies (number) & Glucose (Plasma glucose concentration at 2 hours in an oral glucose tolerance test) & Blood-Pressure (Diastolic blood pressure (mm Hg) ) & Skin-Thickness (Triceps skin fold thickness (mm) ) & Insulin (2-Hour serum insulin (mu U/ml) ) & BMI (Body mass index (weight in kg/(height in m)2) ) & Diabetes-Pedigree-Function (Diabetes pedigree function ) & Age (years) & Outcome (0 / 1) \\ \hline 6 & 148 & 72 & 35 & 0 & 33.6 & 627 & 50 & 1 \\ \hline 1 & 85 & 66 & 29 & 0 & 26.6 & 351 & 31 & 0 \\ \hline 8 & 183 & 64 & 0 & 0 & 23.3 & 672 & 32 & 1 \\ \hline 1 & 89 & 66 & 23 & 94 & 28.1 & 167 & 21 & 0 \\ \hline 0 & 137 & 40 & 35 & 168 & 43.1 & 2.288 & 33 & 1 \\ \hline 5 & 116 & 74 & 0 & 0 & 25.6 & 201 & 30 & 0 \\ \hline 3 & 78 & 50 & 32 & 88 & 31 & 248 & 26 & 1 \\ \hline \end{tabular} \end{adjustbox} \caption{Dataset (selection).} \label{tab:dataset} \end{table}
[ [ "Pregnancies\n(number)", "Glucose\n(Plasma\nglucose\nconcen-\ntration at\n2 hours\nin an oral\nglucose\ntolerance\ntest)", "Blood-\nPressure\n(Diastolic\nblood\npressure\n(mm Hg) )", "Skin-\nThickness\n(Triceps\nskin fold\nthickness\n(mm) )", "Insulin\n(2-Hour\nserum in-\nsulin (mu\nU/ml) )", "BMI\n(Body\nmass\nindex\n(weight in\nkg/(height\nin m)2) )", "Diabetes-\nPedigree-\nFunction\n(Diabetes\npedigree\nfunction )", "Age\n(years)", "Outcome\n(0 / 1)" ], [ "6", "148", "72", "35", "0", "33.6", "627", "50", "1" ], [ "1", "85", "66", "29", "0", "26.6", "351", "31", "0" ], [ "8", "183", "64", "0", "0", "23.3", "672", "32", "1" ], [ "1", "89", "66", "23", "94", "28.1", "167", "21", "0" ], [ "0", "137", "40", "35", "168", "43.1", "2.288", "33", "1" ], [ "5", "116", "74", "0", "0", "25.6", "201", "30", "0" ], [ "3", "78", "50", "32", "88", "31", "248", "26", "1" ] ]
0.965919
null
null
4
2106.14251v3
33
[ 66.61399841308594, 295.5459289550781, 528.6655731201172, 410.79852294921875 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{4.74cm}|p{1.24cm}|p{1.45cm}|p{1.45cm}|p{1.45cm}|p{1.25cm}|p{1.45cm}|p{1.45cm}|p{1.45cm}|} %{|l|l|l|l|l|} \hline & count & mean & std & min & 25\% & 50\% & 75\% & max \\ \hline Pregnancies & 768 & 3.84 & 3.36 & 0.000 & 1.00 & 3.00 & 6.00 & 17.00 \\ \hline Glucose & 768 & 120.89 & 31.97 & 0.000 & 99.00 & 117.00 & 140.25 & 199.00 \\ \hline Blood¬Pressure & 768 & 69.10 & 19.35 & 0.000 & 62.00 & 72.00 & 80.00 & 122.00 \\ \hline Skin-Thickness & 768 & 20.53 & 15.95 & 0.000 & 0.00 & 23.00 & 32.00 & 99.00 \\ \hline Insulin & 768 & 79.79 & 115.24 & 0.000 & 0.00 & 30.50 & 127.25 & 846.00 \\ \hline BMI & 768 & 31.99 & 7.88 & 0.000 & 27.30 & 32.00 & 36.60 & 67.10 \\ \hline Diabetes-Pedigree-Function & 768 & 0.47 & 0.33 & 0.078 & 0.24 & 0.37 & 0.62 & 2.42 \\ \hline Age & 768 & 33.24 & 11.76 & 21.000 & 24.00 & 29.00 & 41.00 & 81.00 \\ \hline Outcome & 768 & 0.34 & 0.47 & 0.000 & 0.00 & 0.00 & 1.00 & 1.00 \\ \hline \end{tabular} \end{adjustbox} \caption{Descriptive statistics.} \label{tab:descriptives} \end{table}
[ [ "", "count", "mean", "std", "min", "25%", "50%", "75%", "max" ], [ "Pregnancies", "768", "3.84", "3.36", "0.000", "1.00", "3.00", "6.00", "17.00" ], [ "Glucose", "768", "120.89", "31.97", "0.000", "99.00", "117.00", "140.25", "199.00" ], [ "Blood¬Pressure", "768", "69.10", "19.35", "0.000", "62.00", "72.00", "80.00", "122.00" ], [ "Skin-Thickness", "768", "20.53", "15.95", "0.000", "0.00", "23.00", "32.00", "99.00" ], [ "Insulin", "768", "79.79", "115.24", "0.000", "0.00", "30.50", "127.25", "846.00" ], [ "BMI", "768", "31.99", "7.88", "0.000", "27.30", "32.00", "36.60", "67.10" ], [ "Diabetes-Pedigree-Function", "768", "0.47", "0.33", "0.078", "0.24", "0.37", "0.62", "2.42" ], [ "Age", "768", "33.24", "11.76", "21.000", "24.00", "29.00", "41.00", "81.00" ], [ "Outcome", "768", "0.34", "0.47", "0.000", "0.00", "0.00", "1.00", "1.00" ] ]
0.949731
null
null
5
2106.14251v3
37
[ 66.61399841308594, 146.69215393066406, 528.6760689871652, 456.3454895019531 ]
\begin{table}[ht] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{2.71cm}|p{2.08cm}|p{2.23cm}|p{1.69cm}|p{1.73cm}|p{1.96cm}|p{1.52cm}|p{1.22cm}|p{1.14cm}|} %{|l|l|l|l|l|} \hline & & Number of pregnancies & Glucose & Blood Pressure & Skin Thickness & Insulin & BMI & Age \\ \hline \multirow{7}{2.71cm}{Accuracy} & Believability & ++ & 0 & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Accuracy & ++ & -- & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Objectivity & ++ & 0 & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Completeness & ++ & -- & ++ & - & -- & ++ & ++ \\ \cline{2-9} & Traceability & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \cline{2-9} & Reputation & ++ & ++ & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Variety & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \multirow{6}{2.71cm}{Relevancy} & Value-added & ++ & 0 & ++ & - & - & ++ & ++ \\ \cline{2-9} & Relevancy & ++ & ++ & ++ & + + & ++ & ++ \\ \cline{2-9} & Timeliness & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \cline{2-9} & Ease of operation & ++ & ++ & ++ & 0 & 0 & ++ & ++ \\ \cline{2-9} & Appropriate amount of data & + & + & + & -- & -- & + & + \\ \cline{2-9} & Flexibility & + & + & + & + & + & + & + \\ \hline \multirow{4}{2.71cm}{Representation} & Interpretability & ++ & ++ & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Ease of understanding & + & + & + & + & + & + & + \\ \cline{2-9} & Consistency & + & + & + & 0 & 0 & + & + \\ \cline{2-9} & Conciseness & + & + & + & + & + & + & + \\ \hline \multirow{3}{2.71cm}{Accessibility} & Accessibility & ++ & ++ & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Cost-effectiveness & ++ & ++ & ++ & ++ & ++ & ++ & ++ \\ \cline{2-9} & Access security & ++ & ++ & ++ & ++ & ++ & ++ & ++ \\ \hline \end{tabular} \end{adjustbox} \caption{Data quality assessment of dataset.} \label{tab:dq} \end{table}
[ [ "", "", "Number of\npregnancies", "Glucose", "Blood\nPressure", "Skin Thick-\nness", "Insulin", "BMI", "Age" ], [ "Accuracy", "Believability", "++", "0", "++", "++", "++", "++", "++" ], [ null, "Accuracy", "++", "–", "++", "++", "++", "++", "++" ], [ null, "Objectivity", "++", "0", "++", "++", "++", "++", "++" ], [ null, "Completeness", "++", "–", "++", "-", "–", "++", "++" ], [ null, "Traceability", "0", "0", "0", "0", "0", "0", "0" ], [ null, "Reputation", "++", "++", "++", "++", "++", "++", "++" ], [ null, "Variety", "0", "0", "0", "0", "0", "0", "0" ], [ "Relevancy", "Value-added", "++", "0", "++", "-", "-", "++", "++" ], [ null, "Relevancy", "++", "++", "++", "+ +", "++", "++", "" ], [ null, "Timeliness", "0", "0", "0", "0", "0", "0", "0" ], [ null, "Ease of op-\neration", "++", "++", "++", "0", "0", "++", "++" ], [ null, "Appropriate\namount of\ndata", "+", "+", "+", "–", "–", "+", "+" ], [ null, "Flexibility", "+", "+", "+", "+", "+", "+", "+" ], [ "Representation", "Interpretabilit", "y++", "++", "++", "++", "++", "++", "++" ], [ null, "Ease of un-\nderstanding", "+", "+", "+", "+", "+", "+", "+" ], [ null, "Consistency", "+", "+", "+", "0", "0", "+", "+" ], [ null, "Conciseness", "+", "+", "+", "+", "+", "+", "+" ], [ "Accessibility", "Accessibility", "++", "++", "++", "++", "++", "++", "++" ], [ null, "Cost-\neffectiveness", "++", "++", "++", "++", "++", "++", "++" ], [ null, "Access secu-\nrity", "++", "++", "++", "++", "++", "++", "++" ] ]
0.437679
null
null
6
2106.14251v3
39
[ 66.61399841308594, 71.0660400390625, 528.3920288085938, 182.2490234375 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{4.18cm}|p{1.95cm}|p{1.22cm}|p{3.44cm}|p{1.91cm}|p{1.06cm}|} %{|l|l|l|l|l|} \hline \textbf{Model} & \textbf{Accuracy} & \textbf{AUC} & \textbf{Recall / Sensitivity} & \textbf{Precision} & \textbf{F1} \\ \hline Light Gradient Boosting & 0.89 & 0.94 & 0.84 & 0.86 & 0.85 \\ \hline Gradient boosting & 0.89 & 0.95 & 0.81 & 0.85 & 0.83 \\ \hline Logistic regression & 0.84 & 0.91 & 0.73 & 0.78 & 0.76 \\ \hline Support vector classifier & 0.85 & 0.91 & 0.75 & 0.81 & 0.78 \\ \hline Decision tree & 0.86 & 0.81 & 0.82 & 0.79 & 0.81 \\ \hline K nearest neighbors & 0.80 & 0.88 & 0.59 & 0.77 & 0.67 \\ \hline \end{tabular} \end{adjustbox} \caption{Model types.} \label{tab:modeltypes} \end{table}
[ [ "Model", "Accuracy", "AUC", "Recall / Sensitiv-\nity", "Precision", "F1" ], [ "Light Gradient Boosting", "0.89", "0.94", "0.84", "0.86", "0.85" ], [ "Gradient boosting", "0.89", "0.95", "0.81", "0.85", "0.83" ], [ "Logistic regression", "0.84", "0.91", "0.73", "0.78", "0.76" ], [ "Support vector classifier", "0.85", "0.91", "0.75", "0.81", "0.78" ], [ "Decision tree", "0.86", "0.81", "0.82", "0.79", "0.81" ], [ "K nearest neighbors", "0.80", "0.88", "0.59", "0.77", "0.67" ] ]
0.955752
null
null
7
2106.14251v3
41
[ 66.61399841308594, 71.04131317138672, 528.6863403320312, 310.98968505859375 ]
\begin{table}[] \begin{adjustbox}{max width=\textwidth} \begin{tabular}{|p{2.99cm}|p{3.0cm}|p{3.5cm}|p{3.5cm}|p{3.5cm}|} %{|l|l|l|l|l|} \hline \textbf{ML $\rightarrow$ CM} & \textbf{Rules, anomalies and explanations} & \textbf{Semantic models } (ERM, i*) & \textbf{Ontologies} & \textbf{Process models} (EPC, BPMN) \\ \hline General Supervised learning & Associative rules \cite{ais93}; rule extraction \cite{bb10} & & Ontology mapping and matching \cite{d04, nso11} & Process discovery \cite{augusto18}; event abstraction \cite{v20} \\ \hline Sequence learning & Rule extraction \cite{ms17} & Named entity recognition \cite{cn16}; link prediction \cite{c19} & Ontology matching \cite{jx20} & \\ \hline Generative learning & & Link prediction (Qin et al. 2020) & & \\ \hline Graph learning & & Link prediction \cite{h06, dettmers18} Relational learning \cite{ntk11} & & \\ \hline Unsupervised learning & Anomaly detection \cite{a17} & Link prediction \cite{llc10} & Concept learning Mi et al. 2020) & Event abstraction \cite{v20} \\ \hline Reinforcement learning & Rule extraction \cite{pv20} & & & \\ \hline \end{tabular} \end{adjustbox} \caption{Extraction of conceptual models with machine learning.} \label{tab:extraction} \end{table}
[ [ "ML → CM", "Rules, anoma-\nlies and expla-\nnations", "Semantic models\n(ERM, i*)", "Ontologies", "Process models\n(EPC, BPMN)" ], [ "General Super-\nvised learning", "Associative rules\n[3]; rule extrac-\ntion [12]", "", "Ontology map-\nping and matching\n[54, 151]", "Process discovery\n[11]; event abstrac-\ntion [207]" ], [ "Sequence learning", "Rule extraction\n[146]", "Named entity recog-\nnition [45]; link pre-\ndiction [42]", "Ontology matching\n[106]", "" ], [ "Generative learn-\ning", "", "Link prediction (Qin\net al. 2020)", "", "" ], [ "Graph learning", "", "Link prediction [6,\n51] Relational learn-\ning [152]", "", "" ], [ "Unsupervised\nlearning", "Anomaly detec-\ntion [5]", "Link prediction [122]", "Concept learning Mi\net al. 2020)", "Event abstraction\n[207]" ], [ "Reinforcement\nlearning", "Rule extraction\n[169]", "", "", "" ] ]
0.578547
null
null
0
1905.02158v2
10
[ 326.28499603271484, 341.4830017089844, 550.1749434037642, 414.1289978027344 ]
\begin{table}[h] \centering \small \vspace{-0mm} \begin{threeparttable} \caption{Capabilities and capacities of different Parsl executors and other parallel Python tools.\vspace{-3ex}} \vspace{0mm} \begin{tabular}{| c| c|c|c|} \hline \multirow{2}{*}{\textbf{Framework}} & \textbf{Maximum} & \textbf{Maximum} & \textbf{Maximum} \\ & \textbf{\# of workers}\tnote{\dag} & \textbf{\# of nodes}\tnote{\dag} & \textbf{tasks/second}\tnote{$\ddagger$} \\ \hline Parsl-IPP & \num{2048} & 64 & 330 \\ \hline Parsl-HTEX & \num{65536} & \num{2048}\tnote{*} & \num{1181}\\ \hline Parsl-EXEX & \num{262144} & \num{8192}\tnote{*} & \num{1176}\\ \hline FireWorks & \num{1024} & 32 & 4\\ \hline Dask distributed & \num{8192} & 256 & \num{2617}\\ \hline \end{tabular} \begin{tablenotes}\small \item[*] Limited by the the number of nodes we could allocate on Blue Waters during our experiments; this is not a scalability limit. \item[\dag] These results are specific to Blue Waters, one core per worker, and using default configuration as in each framework's documentation. \item[$\ddagger$] The results in this column are collected on Midway. \end{tablenotes} \label{table:maxWorkers}\vspace{-0in} \end{threeparttable} \end{table}
[ [ "Framework", "Maximum\n# of workers†", "Maximum\n# of nodes†", "Maximum\ntasks/second‡" ], [ "Parsl-IPP", "2048", "64", "330" ], [ "Parsl-HTEX", "65 536", "2048*", "1181" ], [ "Parsl-EXEX", "262 144", "8192*", "1176" ], [ "FireWorks", "1024", "32", "4" ], [ "Dask distributed", "8192", "256", "2617" ] ]
0.4125
null
null
0
2210.09217v1
39
[ 134, 72.198974609375, 478, 408.5379943847656 ]
\begin{table}[!h] \begin{center} \footnotesize \begin{tabular}{ |p{1.8cm}||p{3cm}|p{6cm}| } %\hline %\multicolumn{4}{|c|}{Imaging modalities} \\ \hline Missing mechanism&Causes& Details\\ \hline \multirow{2}{*}{MCAR} &Faulty scanning & Removal of images with corruption or susceptibility artifacts \\ \cline{2-3} &Faulty scanning & Random failure of experimental instrument \\ \cline{2-3} &Data loss & Data transfer/storage loss \\ \cline{2-3} &Data loss & Missing entries \\ \cline{2-3} &Attrition/Nonresponse & Unable to participate due to migration/move (irrelavant with the study) \\ \cline{2-3} &Study design & Study ended early \\ \cline{2-3} &Study design & Modalities were not included in the imaging protocol \\ \hline \multirow{2}{*}{MAR} &Study design & Exclusion criteria, such as age, sex, race, socioecnomic status, etc. \\ \cline{2-3} &Attrition/Nonresponse & Dropout due to side effects, such as allergy \\ \cline{2-3} &Attrition/Nonresponse & Dropout rates vary among different age or sex groups \\ \hline \multirow{2}{*}{MNAR} &Study design & Quit the study due to physical or psychological health conditions \\ \cline{2-3} &Attrition/Nonresponse & Dropout due to concerns of financial cost \\ \cline{2-3} &Attrition/Nonresponse & Dropout due to concerns of limited available time to visit \\ \cline{2-3} &Attrition/Nonresponse & Dropout due to concerns of scanning safety \\ \cline{2-3} &Attrition/Nonresponse & Dropout due to concerns of personal data unauthorised disclosure \\ \cline{2-3} &Attrition/Nonresponse & Quit the study, following another person's behavior \\ \cline{2-3} &Attrition/Nonresponse & Deliberately not willing to respond \\ \cline{2-3} \hline \end{tabular} \end{center}\caption{A summary of scenarios with different missing mechanisms in cognition/behavior-related studies}\label{tab: missing} \end{table}
[ [ "Missing\nmechanism", "Causes", "Details" ], [ "MCAR", "Faulty scanning", "Removal of images with corruption or sus-\nceptibility artifacts" ], [ null, "Faulty scanning", "Random failure of experimental instrument" ], [ null, "Data loss", "Data transfer/storage loss" ], [ null, "Data loss", "Missing entries" ], [ null, "Attrition/Nonresponse", "Unable to participate due to migra-\ntion/move (irrelavant with the study)" ], [ null, "Study design", "Study ended early" ], [ null, "Study design", "Modalities were not included in the imag-\ning protocol" ], [ "MAR", "Study design", "Exclusion criteria, such as age, sex, race,\nsocioecnomic status, etc." ], [ null, "Attrition/Nonresponse", "Dropout due to side effects, such as allergy" ], [ null, "Attrition/Nonresponse", "Dropout rates vary among different age or\nsex groups" ], [ "MNAR", "Study design", "Quit the study due to physical or psycho-\nlogical health conditions" ], [ null, "Attrition/Nonresponse", "Dropout due to concerns of financial cost" ], [ null, "Attrition/Nonresponse", "Dropout due to concerns of limited avail-\nable time to visit" ], [ null, "Attrition/Nonresponse", "Dropout due to concerns of scanning safety" ], [ null, "Attrition/Nonresponse", "Dropout due to concerns of personal data\nunauthorised disclosure" ], [ null, "Attrition/Nonresponse", "Quit the study, following another person’s\nbehavior" ], [ null, "Attrition/Nonresponse", "Deliberately not willing to respond" ] ]
0.404744
null
null
1
2210.09217v1
75
[ 72, 97.60400390625, 551.0780029296875, 736.1426798502604 ]
\begin{table}[!h] \begin{center}\caption{Summary of key information for eight neuroimaging modalities} \footnotesize \begin{tabular}{ |p{1.2cm}||p{2.8cm}|p{2cm}|p{2.5cm}|p{3.3cm}|p{2.5cm}| } %\hline %\multicolumn{4}{|c|}{Imaging modalities} \\ \hline Modality&Tracer& Resolution&Feature &Use&Software\\ \hline sMRI (T1, T2) &Fluid characteristics of different tissues& 0.5-1 mm &Cortical thickness, cortical folding, sulcal depth, voxel-based morphometry, regional volumes and shape& Measure brain cortical/subcortical structural changes for diagnosis/staging/follow-up of disease/brain development. & Freesurfer, ANTs, FSL, SPM, AFNI, Hammer, BRAINVisa, BrainSuite\\ \hline DWI &Brownian motion of water molecules within voxels & 1.25-3 mm &Fractional anisotropy, axial/radial/mean diffusivity, DKI/ NODDI parameters, structural connectivity & Delineate tumors, suspected acute ischemic brain injury, intracranial infections, masses, trauma, and edema; map structural connectome in research. &FSL, ~~~~~~Mrtrix, AFNI, TrackVis, Camino, TORTOISE, slicerDMRI, Dipy, CAMINO, DSIStudio\\ \hline fMRI & Blood-oxygen-level-dependent (BOLD) response in blood flow associated with brain function&3-4 mm (spatial); 1-3 s (temporal) &Beta image, functional connectivity, weighted and binary network metrics& Brain activity mapping under tasks, brain abnormalities detection, pre-operative brain functional mapping. & SPM, FSL, AFNI, CPAC, FuNP\\ \hline PET & Emissions from radioactive tracers&4-5 mm &Standard uptake ratio & Reveal metabolic/ biochemical functions of tissues/organs and abnormalities in brain neurophysiology/ neurochemistry& NiftyPET, SPM, Metavol, NEUROSTAT, APPIAN, kinfitr, LIFEx, Pypes, SPAMALIZE\\ \hline CT& X-ray attenuations by different tissues inside the body& Tens of nanometres-5 mm & Local and regional volumetric/thickness measures, tumor features &Diagnosing a range of conditions: abnormal blood vessels, brain atrophy, hemorrhage, swelling, stroke, tumors &ITK, SPM, PACS, Velocity, scenium, LIFEx\\ \hline EEG& Electrical field produced by neuron electrical activity& 7-10 mm &Event-related potentials, connectivity/network measures, spectral content& Diagnosis and treatment of brain tumors, damage, dysfunction and disorders &EEGLAB, MNE, ELAN, FieldTrip, NUTMEG, BrainVoyager, SPM\\ \hline MEG&Magnetic field produced by neuron electrical activity, including tangential components of postsynaptic intracellular currents& 2-3 mm &Similar derived measures with EEG& Identification of brain functional areas (centers of sensory, motor, language and memory activities), precise location mapping of the source of epileptic seizures &EEGLAB, MNE, ELAN, FieldTrip, NUTMEG, BrainVoyager, SPM\\ \hline fNIRS&Changes in cortical BOLD response associated with brain function& 650-900 nm (spatial); milliseconds (temporal) &Similar derived measures with EEG and fMRI& Study normal and pathological brain physiology in infants/children&Homer2, Homer3, FNIRSOFT, OPENFNIRS, ICNNA, nirsLAB \\ \hline \hline \end{tabular} \end{center}\label{Table:modality} \end{table}
[ [ "Modality", "Tracer", "Resolution", "Feature", "Use", "Software" ], [ "sMRI\n(T1, T2)", "Fluid character-\nistics of different\ntissues", "0.5-1 mm", "Cortical thick-\nness, cortical\nfolding, sulcal\ndepth, voxel-\nbased morphom-\netry, regional\nvolumes and\nshape", "Measure brain cor-\ntical/subcortical\nstructural changes for\ndiagnosis/staging/follow-\nup of disease/brain\ndevelopment.", "Freesurfer,\nANTs, FSL,\nSPM, AFNI,\nHammer,\nBRAINVisa,\nBrainSuite" ], [ "DWI", "Brownian motion\nof water molecules\nwithin voxels", "1.25-3 mm", "Fractional\nanisotropy,\naxial/radial/mean\ndiffusivity, DKI/\nNODDI param-\neters, structural\nconnectivity", "Delineate tumors,\nsuspected acute is-\nchemic brain injury,\nintracranial infections,\nmasses, trauma, and\nedema; map struc-\ntural connectome in\nresearch.", "FSL, Mrtrix,\nAFNI, Track-\nVis, Camino,\nTORTOISE,\nslicerDMRI,\nDipy, CAMINO,\nDSIStudio" ], [ "fMRI", "Blood-oxygen-\nlevel-dependent\n(BOLD) response\nin blood flow asso-\nciated with brain\nfunction", "3-4 mm (spa-\ntial); 1-3 s\n(temporal)", "Beta image, func-\ntional connectiv-\nity, weighted and\nbinary network\nmetrics", "Brain activity mapping\nunder tasks, brain ab-\nnormalities detection,\npre-operative brain\nfunctional mapping.", "SPM, FSL,\nAFNI, CPAC,\nFuNP" ], [ "PET", "Emissions from ra-\ndioactive tracers", "4-5 mm", "Standard uptake\nratio", "Reveal metabolic/\nbiochemical functions\nof tissues/organs and\nabnormalities in brain\nneurophysiology/\nneurochemistry", "NiftyPET, SPM,\nMetavol, NEU-\nROSTAT, AP-\nPIAN, kinfitr,\nLIFEx, Pypes,\nSPAMALIZE" ], [ "CT", "X-ray attenuations\nby different tissues\ninside the body", "Tens of\nnanometres-5\nmm", "Local and\nregional volu-\nmetric/thickness\nmeasures, tumor\nfeatures", "Diagnosing a range\nof conditions: abnor-\nmal blood vessels,\nbrain atrophy, hemor-\nrhage, swelling, stroke,\ntumors", "ITK, SPM,\nPACS, Velocity,\nscenium, LIFEx" ], [ "EEG", "Electrical field pro-\nduced by neuron\nelectrical activity", "7-10 mm", "Event-related\npotentials, con-\nnectivity/network\nmeasures, spec-\ntral content", "Diagnosis and treat-\nment of brain tumors,\ndamage, dysfunction\nand disorders", "EEGLAB, MNE,\nELAN, Field-\nTrip, NUTMEG,\nBrainVoyager,\nSPM" ], [ "MEG", "Magnetic field\nproduced by neuron\nelectrical activity,\nincluding tangential\ncomponents of\npostsynaptic intra-\ncellular currents", "2-3 mm", "Similar derived\nmeasures with\nEEG", "Identification of brain\nfunctional areas (cen-\nters of sensory, motor,\nlanguage and memory\nactivities), precise\nlocation mapping of\nthe source of epileptic\nseizures", "EEGLAB, MNE,\nELAN, Field-\nTrip, NUTMEG,\nBrainVoyager,\nSPM" ], [ "fNIRS", "Changes in cortical\nBOLD response as-\nsociated with brain\nfunction", "650-900 nm\n(spatial);\nmilliseconds\n(temporal)", "Similar derived\nmeasures with\nEEG and fMRI", "Study normal and\npathological brain\nphysiology in in-\nfants/children", "Homer2,\nHomer3,\nFNIRSOFT,\nOPENFNIRS,\nICNNA, nirsLAB" ] ]
0.980436
null
null
0
2201.04703v1
2
[ 123.6969985961914, 524.864013671875, 499.92518920898436, 576.27099609375 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|c|c|} \hline Algorithm & Model Accuracy (\%)& P. sick (\%) & P. not sick (\%) & P. Test(\%) \\ \hline \hline Decision Tree & 72.54 & 79.34 & 64.39&30 \\ \hline Random Forest & 78.43 & 92.08 & 58.53&50 \\ \hline Adaboost & 75.88 & 81.77 & 66.94&70 \\ \hline \end{tabular} \caption{Results obtained. The table shows the precision percentages of the different algorithms.} \label{tab:my_label} \end{table}
[ [ "Algorithm", "Model Accuracy (%)", "P. sick (%)", "P. not sick (%)", "P. Test(%)" ], [ "Decision Tree", "72.54", "79.34", "64.39", "30" ], [ "Random Forest", "78.43", "92.08", "58.53", "50" ], [ "Adaboost", "75.88", "81.77", "66.94", "70" ] ]
0.756381
null
null
1
2201.04703v1
2
[ 149.03199768066406, 616.9140014648438, 474.5900065104167, 641.6220092773438 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|c|} \hline \textbf{Kernel} & \textbf{C} & \textbf{Gamma} & \textbf{Degree} \\ \hline linear, sigmoid, rbf, polynomial & 0.1, 1, 2, 3, 4 & auto, scale & 2, 3, 4, 5 \\ \hline \end{tabular} \caption{Tested parameters in SVM algorithm.} \label{tab:my_label} \end{table}
[ [ "Kernel", "C", "Gamma", "Degree" ], [ "linear, sigmoid, rbf, polynomial", "0.1, 1, 2, 3, 4", "auto, scale", "2, 3, 4, 5" ] ]
0.794872
null
null
2
2201.04703v1
2
[ 159.1510009765625, 682.2650146484375, 464.4713439941406, 706.9730224609375 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|c|c|c|} \hline \textbf{Kernel} & \textbf{C} & \textbf{Gamma} & \textbf{Degree} & \textbf{Accuracy} (\%)& \textbf{P. Test}(\%)\\ \hline rbf& 4 & scale & 2 & 74.68 & 100\\ \hline \end{tabular} \caption{Best combination of SVM.} \label{tab:my_label} \end{table}
[ [ "Kernel", "C", "Gamma", "Degree", "Accuracy (%)", "P. Test(%)" ], [ "rbf", "4", "scale", "2", "74.68", "100" ] ]
0.774566
null
null
0
2405.07317v1
7
[ 55.97320022583008, 466.5610046386719, 293.01299438476565, 515.9760131835938 ]
\begin{table}[!htb] \centering \begin{tabular}{|l|c|c|c|c|} \hline Model & ACC\_bef & ACC\_af & MIA\_bef & MIA\_af \\ \hline MoCo & 70\% & 60\% & 90\% & 50\% \\ \hline SimCLR & 66\% & 60\% & 70\% & 50\% \\ \hline BYOL & 55\% & 49\% & 70\% & 50\% \\ \hline \end{tabular} \caption{Performance of different models on CIFAR-10} \end{table}
[ [ "Model", "ACC_bef", "ACC_af", "MIA_bef", "MIA_af" ], [ "MoCo", "70%", "60%", "90%", "50%" ], [ "SimCLR", "66%", "60%", "70%", "50%" ], [ "BYOL", "55%", "49%", "70%", "50%" ] ]
0.736842
null
null
0
1503.05216v1
3
[ 192.93800354003906, 72.19903564453125, 402.3382568359375, 111.25299072265625 ]
\begin{table} \begin{center} \begin{tabular}{|c||c|c|} \hline & Uninfected $\male$ & Infected $\male$\\ \hline \hline Uninfected $\female$ & \bf Uninfected & \bf \color{red}Sterile eggs \\ \hline Infected $\female$ & \bf Infected & \bf Infected \\ \hline \end{tabular} \end{center} \caption{\label{tab:incompatibilidade-citoplasm=0000E1tica}Cytoplasmic incompatibility and vertical transmission of {\em Wolbachia} bacteria. The state of the offspring is indicated, depending on the parents status} \label{ta2} \end{table}
[ [ "", "Uninfected\n♂", "Infected\n♂" ], [ "Uninfected\n♀", "Uninfected", "Sterile eggs" ], [ "Infected\n♀", "Infected", "Infected" ] ]
0.411622
null
null
1
1503.05216v1
4
[ 115.9020004272461, 72.19903564453125, 479.3729901994978, 146.72003173828125 ]
\begin{table} \begin{center} \begin{tabular}{|r|l|} \hline Notation & Meaning\\ \hline\hline $\alpha_U, \alpha_W$ & Fecundity rates of uninfected and infected insects\\ $\nu$ & Rate of transfer from the preliminary to the adult stage\\ $\mu$ & Mortality rate of uninfected and infected insects in preliminary stage\\ $\mu k$ & Characteristic of the additional mortality rate in preliminary stage\\ $\mu_U, \mu_W$ & Mortality rates of uninfected and infected insects at adult stage\\ \hline \end{tabular} \caption{List of parameters of model \eqref{eq1}} \label{ta1} \end{center} \end{table}
[ [ "Notation", "Meaning" ], [ "α , α\nU W\nν\nµ\nµk\nµ , µ\nU W", "Fecundity rates of uninfected and infected insects\nRate of transfer from the preliminary to the adult stage\nMortality rate of uninfected and infected insects in preliminary stage\nCharacteristic of the additional mortality rate in preliminary stage\nMortality rates of uninfected and infected insects at adult stage" ] ]
0.406291
null
null
0
2111.14283v1
6
[ 81.7619031270345, 113.28890991210938, 513.5358174641927, 168.597412109375 ]
\begin{table}[ht] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|l|l|c|c|c|c|} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{\textbf{models}} & \textbf{\begin{tabular}[c]{@{}c@{}}PR-AUC\\ (OOD-test set)\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}ROC-AUC\\ (OOD-test set)\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}ROC-AUC\\ Deployment Gap\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}PR-AUC\\ Deployment Gap\end{tabular}} \\ \hline DIASE & PortalCG w/o STL \& OOC-ML & 0.603±0.005 & 0.636±0.004 & -0.275±0.016 & -0.345±0.012 \\ \hline variant 1 & \begin{tabular}[c]{@{}l@{}}PortalCG w/o OOC-ML\end{tabular} & 0.629±0.005 & 0.661±0.004 & --- & --- \\ \hline variant 2 & \begin{tabular}[c]{@{}l@{}}PortalCG w/o STL\end{tabular} & 0.698±0.015 & 0.654±0.062 & --- & --- \\ \hline PortalCG & \begin{tabular}[c]{@{}l@{}}Portal learning\end{tabular} & 0.714±0.010 & 0.677±0.010 & 0.010±0.009 & 0.005±0.010 \\ \hline \end{tabular}% } \caption{Ablation study of PortalCG.} \label{tab:PRAUC} \end{table}
[ [ "", "models", "PR-AUC\n(OOD-test set)", "ROC-AUC\n(OOD-test set)", "ROC-AUC\nDeployment Gap", "PR-AUC\nDeployment Gap" ], [ "DIASE", "PortalCG w/o STL & OOC-ML", "0.603±0.005", "0.636±0.004", "-0.275±0.016", "-0.345±0.012" ], [ "variant 1", "PortalCG w/o OOC-ML", "0.629±0.005", "0.661±0.004", "—", "—" ], [ "variant 2", "PortalCG w/o STL", "0.698±0.015", "0.654±0.062", "—", "—" ], [ "PortalCG", "Portal learning", "0.714±0.010", "0.677±0.010", "0.010±0.009", "0.005±0.010" ] ]
0.445714
null
null
1
2111.14283v1
7
[ 81.80625032123767, 258.74664306640625, 513.4892674496299, 478.5331726074219 ]
\begin{table}[ht] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|} \hline \multicolumn{4}{|c|}{Docking scores of \textbf{Fenebrutinib} binding to predicted targets} \\ \hline Uniprot ID & Protein name & PDB ID & \begin{tabular}[c]{@{}c@{}}Docking score \\ (kcal/mol)\end{tabular} \\ \hline Q96B26 & Exosome complex component RRP43 & 2NN6\_C & -7.9 \\ \hline Q5JRX3 & Presequence protease, mitochondrial & 4L3T\_A & -10.8 \\ \hline Q99720 & Sigma non-opioid intracellular receptor 1 & 5HK1\_A & -9.6 \\ \hline Q5VT66 & Mitochondrial amidoxime-reducing component 1 & 6FW2\_A & -10.4 \\ \hline P29122 & Proprotein convertase subtilisin/kexin type 6 & \multicolumn{1}{l|}{AF-P29122-F1 (157-622)} & -8.5 \\ \hline Q96K12 & Fatty acyl-CoA reductase 2 & \multicolumn{1}{l|}{AF-Q96K12-F1 (1-478)} & -10.1 \\ \hline O94973 & AP-2 complex subunit alpha-2 & \multicolumn{1}{l|}{AF-O94973-F1 (3-622)} & -8.6 \\ \hline \multicolumn{4}{|c|}{Docking scores of \textbf{NMS-P715} binding to predicted targets} \\ \hline Uniprot ID & Protein name & PDB ID & \begin{tabular}[c]{@{}c@{}}Docking score\\ (kcal/mol)\end{tabular} \\ \hline Q9UN86 & Ras GTPase-activating protein-binding protein 2 & 5DRV\_A & -9.5 \\ \hline P67870 & Casein kinase II subunit beta & 1QF8\_A & -8.6 \\ \hline Q96B26 & Exosome complex component RRP43 & 2NN6\_C & -9.3 \\ \hline P62877 & E3 ubiquitin-protein ligase RBX1 & 2HYE\_D & -7.9 \\ \hline P61962 & DDB1- and CUL4-associated factor 7 & \multicolumn{1}{l|}{AF-P61962-F1 (9-341)} & -8.7 \\ \hline Q9NXH9 & tRNA (guanine(26)-N(2))-dimethyltransferase & \multicolumn{1}{l|}{AF-Q9NXH9-F1 (53-556)} & -9.0 \\ \hline Q9NQT4 & Exosome complex component RRP46 & 2NN6\_D & -8.6 \\ \hline \end{tabular}% } \caption{Docking scores for Fenebrutinib and NMS-P715} \label{tab:docking} \end{table}
[ [ "Docking scores of Fenebrutinib binding to predicted targets", null, null, null ], [ "Uniprot ID", "Protein name", "PDB ID", "Docking score\n(kcal/mol)" ], [ "Q96B26", "Exosome complex component RRP43", "2NN6_C", "-7.9" ], [ "Q5JRX3", "Presequence protease, mitochondrial", "4L3T_A", "-10.8" ], [ "Q99720", "Sigma non-opioid intracellular receptor 1", "5HK1_A", "-9.6" ], [ "Q5VT66", "Mitochondrial amidoxime-reducing component 1", "6FW2_A", "-10.4" ], [ "P29122", "Proprotein convertase subtilisin/kexin type 6", "AF-P29122-F1 (157-622)", "-8.5" ], [ "Q96K12", "Fatty acyl-CoA reductase 2", "AF-Q96K12-F1 (1-478)", "-10.1" ], [ "O94973", "AP-2 complex subunit alpha-2", "AF-O94973-F1 (3-622)", "-8.6" ], [ "Docking scores of NMS-P715 binding to predicted targets", null, null, null ], [ "Uniprot ID", "Protein name", "PDB ID", "Docking score\n(kcal/mol)" ], [ "Q9UN86", "Ras GTPase-activating protein-binding protein 2", "5DRV_A", "-9.5" ], [ "P67870", "Casein kinase II subunit beta", "1QF8_A", "-8.6" ], [ "Q96B26", "Exosome complex component RRP43", "2NN6_C", "-9.3" ], [ "P62877", "E3 ubiquitin-protein ligase RBX1", "2HYE_D", "-7.9" ], [ "P61962", "DDB1- and CUL4-associated factor 7", "AF-P61962-F1 (9-341)", "-8.7" ], [ "Q9NXH9", "tRNA (guanine(26)-N(2))-dimethyltransferase", "AF-Q9NXH9-F1 (53-556)", "-9.0" ], [ "Q9NQT4", "Exosome complex component RRP46", "2NN6_D", "-8.6" ] ]
0.923564
null
null
2
2111.14283v1
8
[ 81.83312661307198, 115.8645248413086, 513.454816545759, 229.74151611328125 ]
\begin{table}[ht] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{David Functional Annotation enrichment analysis} \\ \hline \begin{tabular}[c]{@{}c@{}}Enriched terms in \\ UniProtKB keywords\end{tabular} & \begin{tabular}[c]{@{}c@{}}Number of \\ proteins involved\end{tabular} & \begin{tabular}[c]{@{}c@{}}Percentage of \\ proteins involved\end{tabular} & P-value & \begin{tabular}[c]{@{}c@{}}Modified \\ Benjamini p-value\end{tabular} \\ \hline {\color[HTML]{080808} Alternative splicing} & 171 & 66.5 & 7.70E-07 & 2.00E-04 \\ \hline {\color[HTML]{080808} Phosphoprotein} & 140 & 54.5 & 2.60E-06 & 3.40E-04 \\ \hline {\color[HTML]{080808} Cytoplasm} & 91 & 35.4 & 1.30E-05 & 1.10E-03 \\ \hline {\color[HTML]{080808} Nucleus} & 93 & 36.2 & 1.20E-04 & 8.10E-03 \\ \hline {\color[HTML]{080808} Metal-binding} & 68 & 26.5 & 4.20E-04 & 2.20E-02 \\ \hline {\color[HTML]{080808} Zinc} & 48 & 18.7 & 6.60E-04 & 2.90E-02 \\ \hline \end{tabular}% } \caption{Functional Annotation enrichment for undruggable human disease proteins selected by PortalCG} \label{tab:enrichment} \end{table}
[ [ "David Functional Annotation enrichment analysis", null, null, null, null ], [ "Enriched terms in\nUniProtKB keywords", "Number of\nproteins involved", "Percentage of\nproteins involved", "P-value", "Modified\nBenjamini p-value" ], [ "Alternative splicing", "171", "66.5", "7.70E-07", "2.00E-04" ], [ "Phosphoprotein", "140", "54.5", "2.60E-06", "3.40E-04" ], [ "Cytoplasm", "91", "35.4", "1.30E-05", "1.10E-03" ], [ "Nucleus", "93", "36.2", "1.20E-04", "8.10E-03" ], [ "Metal-binding", "68", "26.5", "4.20E-04", "2.20E-02" ], [ "Zinc", "48", "18.7", "6.60E-04", "2.90E-02" ] ]
0.390086
null
null
3
2111.14283v1
8
[ 81.83312661307198, 287.95269775390625, 513.454816545759, 440.1861572265625 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|} \hline DiseaseName & \# of undruggable proteins associated with disease \\ \hline Breast Carcinoma & 90 \\ \hline Tumor Cell Invasion & 86 \\ \hline Carcinogenesis & 83 \\ \hline Neoplasm Metastasis & 75 \\ \hline Colorectal Carcinoma & 73 \\ \hline Liver carcinoma & 66 \\ \hline Malignant neoplasm of lung & 56 \\ \hline Non-Small Cell Lung Carcinoma & 56 \\ \hline Carcinoma of lung & 54 \\ \hline Alzheimer's Disease & 54 \\ \hline \end{tabular}% } \caption{Top ranked diseases associated with the undruggable human disease proteins selected by PortalCG} \label{tab:disease} \end{table}
[ [ "DiseaseName", "# of undruggable proteins associated with disease" ], [ "Breast Carcinoma", "90" ], [ "Tumor Cell Invasion", "86" ], [ "Carcinogenesis", "83" ], [ "Neoplasm Metastasis", "75" ], [ "Colorectal Carcinoma", "73" ], [ "Liver carcinoma", "66" ], [ "Malignant neoplasm of lung", "56" ], [ "Non-Small Cell Lung Carcinoma", "56" ], [ "Carcinoma of lung", "54" ], [ "Alzheimer’s Disease", "54" ] ]
0.842407
null
null
4
2111.14283v1
28
[ 81.74528198242187, 63.3190803527832, 508.6380258236291, 127.82867431640625 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|c|l} \cline{1-5} IhChIKey & Number of hits & Drug name & Clinical trail & Mechanism of Action & \\ \cline{1-5} WNEODWDFDXWOLU-QHCPKHFHSA-N & 7 & fenebrutinib & phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & \\ \cline{1-5} JFOAJUGFHDCBJJ-UHFFFAOYSA-N & 7 & NMS-P715 & preclinical & protein kinase inhibitor & \\ \cline{1-5} QHLVBNKYJGBCQJ-UHFFFAOYSA-N & 4 & NMS-1286937 & phase 2 & PLK inhibitor & \\ \cline{1-5} FUXVKZWTXQUGMW-FQEVSTJZSA-N & 4 & 9-aminocamptothecin & phase 2 & topoisomerase inhibitor & \\ \cline{1-5} DKZYXHCYPUVGAF-JCNLHEQBSA-N & 2 & OTS167 & phase 1/phase 2 & maternal embryonic leucine zipper kinase inhibitor & \\ \cline{1-5} VYLOOGHLKSNNEK-PIIMJCKOSA-N & 1 & tropifexor & phase 2 & FXR agonist & \\ \cline{1-5} TZKBVRDEOITLRB-UHFFFAOYSA-N & 1 & GZD824 & preclinical & Bcr-Abl kinase inhibitor & \\ \cline{1-5} KZSKGLFYQAYZCO-UHFFFAOYSA-N & 1 & cilofexor & phase 3 & FXR agonist & \\ \cline{1-5} \end{tabular}% } \caption{Drugs predicted to interact with SARS-COVID-2 interactors} \label{tab:drug-covid-interactors} \end{table}
[ [ "IhChIKey", "Number of hits", "Drug name", "Clinical trail", "Mechanism of Action" ], [ "WNEODWDFDXWOLU-QHCPKHFHSA-N", "7", "fenebrutinib", "phase 2", "Bruton’s tyrosine kinase (BTK) inhibitor" ], [ "JFOAJUGFHDCBJJ-UHFFFAOYSA-N", "7", "NMS-P715", "preclinical", "protein kinase inhibitor" ], [ "QHLVBNKYJGBCQJ-UHFFFAOYSA-N", "4", "NMS-1286937", "phase 2", "PLK inhibitor" ], [ "FUXVKZWTXQUGMW-FQEVSTJZSA-N", "4", "9-aminocamptothecin", "phase 2", "topoisomerase inhibitor" ], [ "DKZYXHCYPUVGAF-JCNLHEQBSA-N", "2", "OTS167", "phase 1/phase 2", "maternal embryonic leucine zipper kinase inhibitor" ], [ "VYLOOGHLKSNNEK-PIIMJCKOSA-N", "1", "tropifexor", "phase 2", "FXR agonist" ], [ "TZKBVRDEOITLRB-UHFFFAOYSA-N", "1", "GZD824", "preclinical", "Bcr-Abl kinase inhibitor" ], [ "KZSKGLFYQAYZCO-UHFFFAOYSA-N", "1", "cilofexor", "phase 3", "FXR agonist" ] ]
0.890052
null
null
5
2111.14283v1
34
[ 81.79529350034652, 31.63299560546875, 513.4839969758065, 254.85946655273438 ]
\begin{table}[ht] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|} \hline Drug name & Clinical phase & Mechanism of Action & \begin{tabular}[c]{@{}c@{}}Number of \\ targeted proteins\end{tabular} \\ \hline AI-10-49 & Preclinical & core binding factor inhibitor & 63 \\ \hline Fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 56 \\ \hline PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 42 \\ \hline Abemaciclib & Launched & CDK inhibitor & 21 \\ \hline MK-5046 & Preclinical & bombesin receptor agonist & 18 \\ \hline CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 14 \\ \hline CCT137690 & Preclinical & Aurora kinase inhibitor & 11 \\ \hline Tropifexor & Phase 2 & FXR agonist & 5 \\ \hline NMS-1286937 & Phase 2 & PLK inhibitor & 5 \\ \hline NMS-P715 & Preclinical & protein kinase inhibitor & 5 \\ \hline Elbasvir & Launched & HCV inhibitor & 5 \\ \hline Cilofexor & Phase 3 & FXR agonist & 4 \\ \hline CDK9-IN-6 & Preclinical & CDK inhibitor & 3 \\ \hline piperaquine-phosphate & Launched & antimalarial agent & 3 \\ \hline Q-203 & Phase 2 & ATP synthase inhibitor & 3 \\ \hline ABT 702 dihydrochloride & Preclinical & adenosine kinase inhibitor & 2 \\ \hline Ziritaxestat & Phase 3 & autotaxin inhibitor & 2 \\ \hline Adapalene & Launched & retinoid receptor agonist & 1 \\ \hline Acalabrutinib & Launched & Bruton's tyrosine kinase (BTK) inhibitor & 1 \\ \hline IACS-10759 Hydrochloride & Preclinical & mitochondrial complex I inhibitor & 1 \\ \hline NVP-CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline \end{tabular}% } \caption{Chemicals interacted with undruggable human proteins} \label{tab:chemicals} \end{table}
[ [ "Drug name", "Clinical phase", "Mechanism of Action", "Number of\ntargeted proteins" ], [ "AI-10-49", "Preclinical", "core binding factor inhibitor", "63" ], [ "Fenebrutinib", "Phase 2", "Bruton’s tyrosine kinase (BTK) inhibitor", "56" ], [ "PF-05190457", "Phase 2", "growth hormone secretagogue receptor inverse agonist", "42" ], [ "Abemaciclib", "Launched", "CDK inhibitor", "21" ], [ "MK-5046", "Preclinical", "bombesin receptor agonist", "18" ], [ "CFI-402257", "Phase 1/Phase 2", "dual specificity protein kinase inhibitor", "14" ], [ "CCT137690", "Preclinical", "Aurora kinase inhibitor", "11" ], [ "Tropifexor", "Phase 2", "FXR agonist", "5" ], [ "NMS-1286937", "Phase 2", "PLK inhibitor", "5" ], [ "NMS-P715", "Preclinical", "protein kinase inhibitor", "5" ], [ "Elbasvir", "Launched", "HCV inhibitor", "5" ], [ "Cilofexor", "Phase 3", "FXR agonist", "4" ], [ "CDK9-IN-6", "Preclinical", "CDK inhibitor", "3" ], [ "piperaquine-phosphate", "Launched", "antimalarial agent", "3" ], [ "Q-203", "Phase 2", "ATP synthase inhibitor", "3" ], [ "ABT 702 dihydrochloride", "Preclinical", "adenosine kinase inhibitor", "2" ], [ "Ziritaxestat", "Phase 3", "autotaxin inhibitor", "2" ], [ "Adapalene", "Launched", "retinoid receptor agonist", "1" ], [ "Acalabrutinib", "Launched", "Bruton’s tyrosine kinase (BTK) inhibitor", "1" ], [ "IACS-10759 Hydrochloride", "Preclinical", "mitochondrial complex I inhibitor", "1" ], [ "NVP-CGM097", "Phase 1", "MDM inhibitor", "1" ] ]
0.956407
null
null
6
2111.14283v1
35
[ 81.80681849888393, 31.689193725585938, 513.4833426339286, 177.4393310546875 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|} \hline Disease Name & \# of undruggable proteins associated with the disease \\ \hline Breast Carcinoma & 89 \\ \hline Tumor Cell Invasion & 85 \\ \hline Carcinogenesis & 83 \\ \hline Neoplasm Metastasis & 73 \\ \hline Colorectal Carcinoma & 68 \\ \hline Liver carcinoma & 66 \\ \hline Non-Small Cell Lung Carcinoma & 56 \\ \hline Malignant neoplasm of lung & 56 \\ \hline Carcinoma of lung & 54 \\ \hline Alzheimer's Disease & 54 \\ \hline \end{tabular}% } \caption{Top ranked diseases associated with proteins in Tbio selected by portal learning} \label{tab:tbiodisease} \end{table}
[ [ "Disease Name", "# of undruggable proteins associated with the disease" ], [ "Breast Carcinoma", "89" ], [ "Tumor Cell Invasion", "85" ], [ "Carcinogenesis", "83" ], [ "Neoplasm Metastasis", "73" ], [ "Colorectal Carcinoma", "68" ], [ "Liver carcinoma", "66" ], [ "Non-Small Cell Lung Carcinoma", "56" ], [ "Malignant neoplasm of lung", "56" ], [ "Carcinoma of lung", "54" ], [ "Alzheimer’s Disease", "54" ] ]
0.857963
null
null
7
2111.14283v1
35
[ 81.80681849888393, 223.64443969726562, 513.4833426339286, 454.4203186035156 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|} \hline %Drug\_name & Clinical phase & Mechanism of Action & Number of targeted proteins \\ \hline rug name & Clinical phase & Mechanism of Action & \begin{tabular}[c]{@{}c@{}}Number of \\ targeted proteins\end{tabular} \\ \hline AI-10-49 & Preclinical & core binding factor inhibitor & 52 \\ \hline fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 45 \\ \hline PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 36 \\ \hline abemaciclib & Launched & CDK inhibitor & 20 \\ \hline MK-5046 & Preclinical & bombesin receptor agonist & 15 \\ \hline CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 14 \\ \hline CCT137690 & Preclinical & Aurora kinase inhibitor & 7 \\ \hline NMS-1286937 & Phase 2 & PLK inhibitor & 5 \\ \hline tropifexor & Phase 2 & FXR agonist & 4 \\ \hline NMS-P715 & Preclinical & protein kinase inhibitor & 4 \\ \hline cilofexor & Phase 3 & FXR agonist & 3 \\ \hline CDK9-IN-6 & Preclinical & CDK inhibitor & 3 \\ \hline piperaquine-phosphate & Launched & antimalarial agent & 3 \\ \hline elbasvir & Launched & HCV inhibitor & 3 \\ \hline ABT-702 & Preclinical & adenosine kinase inhibitor & 2 \\ \hline adapalene & Launched & retinoid receptor agonist & 2 \\ \hline Q-203 & Phase 2 & ATP synthase inhibitor & 2 \\ \hline ziritaxestat & Phase 3 & autotaxin inhibitor & 2 \\ \hline acalabrutinib & Launched & Bruton's tyrosine kinase (BTK) inhibitor & 1 \\ \hline IACS-10759 & Preclinical & mitochondrial complex I inhibitor & 1 \\ \hline CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline \end{tabular}% } \caption{Chemicals interacted with human proteins in Tbio} \label{tab:Tbiochemicals} \end{table}
[ [ "rug name", "Clinical phase", "Mechanism of Action", "Number of\ntargeted proteins" ], [ "AI-10-49", "Preclinical", "core binding factor inhibitor", "52" ], [ "fenebrutinib", "Phase 2", "Bruton’s tyrosine kinase (BTK) inhibitor", "45" ], [ "PF-05190457", "Phase 2", "growth hormone secretagogue receptor inverse agonist", "36" ], [ "abemaciclib", "Launched", "CDK inhibitor", "20" ], [ "MK-5046", "Preclinical", "bombesin receptor agonist", "15" ], [ "CFI-402257", "Phase 1/Phase 2", "dual specificity protein kinase inhibitor", "14" ], [ "CCT137690", "Preclinical", "Aurora kinase inhibitor", "7" ], [ "NMS-1286937", "Phase 2", "PLK inhibitor", "5" ], [ "tropifexor", "Phase 2", "FXR agonist", "4" ], [ "NMS-P715", "Preclinical", "protein kinase inhibitor", "4" ], [ "cilofexor", "Phase 3", "FXR agonist", "3" ], [ "CDK9-IN-6", "Preclinical", "CDK inhibitor", "3" ], [ "piperaquine-phosphate", "Launched", "antimalarial agent", "3" ], [ "elbasvir", "Launched", "HCV inhibitor", "3" ], [ "ABT-702", "Preclinical", "adenosine kinase inhibitor", "2" ], [ "adapalene", "Launched", "retinoid receptor agonist", "2" ], [ "Q-203", "Phase 2", "ATP synthase inhibitor", "2" ], [ "ziritaxestat", "Phase 3", "autotaxin inhibitor", "2" ], [ "acalabrutinib", "Launched", "Bruton’s tyrosine kinase (BTK) inhibitor", "1" ], [ "IACS-10759", "Preclinical", "mitochondrial complex I inhibitor", "1" ], [ "CGM097", "Phase 1", "MDM inhibitor", "1" ] ]
0.945839
null
null
8
2111.14283v1
36
[ 81.7912101158729, 36.13667297363281, 513.4895958533654, 142.05706787109375 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{David Functional Annotation enrichment analysis} \\ \hline \begin{tabular}[c]{@{}c@{}}Enriched terms \\ in UniProtKB keyword\end{tabular} & \begin{tabular}[c]{@{}c@{}}Number of \\ proteins involved\end{tabular} & \begin{tabular}[c]{@{}c@{}}Percentage of \\ proteins involved (\%)\end{tabular} & P-value & \begin{tabular}[c]{@{}c@{}}Modified\\ Benjamini p-value\end{tabular} \\ \hline {\color[HTML]{080808} Zinc-finger} & 80 & 23 & 7.60E-16 & 1.20E-13 \\ \hline {\color[HTML]{080808} Zinc} & 85 & 24.4 & 1.20E-11 & 9.90E-10 \\ \hline {\color[HTML]{080808} Metal-binding} & 96 & 27.6 & 4.30E-06 & 2.30E-04 \\ \hline {\color[HTML]{080808} DNA-binding} & 62 & 17.8 & 7.90E-06 & 3.20E-04 \\ \hline {\color[HTML]{080808} Transcription regulation} & 61 & 17.5 & 5.60E-04 & 1.80E-02 \\ \hline {\color[HTML]{080808} Transcription} & 61 & 17.5 & 1.10E-03 & 3.00E-02 \\ \hline \end{tabular}% } \caption{Functional Annotation enrichment for undruggable human disease proteins without Tbio selected by PortalCG} \label{tab:without-tbio-enrichment} \end{table}
[ [ "David Functional Annotation enrichment analysis", null, null, null, null ], [ "Enriched terms\nin UniProtKB keyword", "Number of\nproteins involved", "Percentage of\nproteins involved (%)", "P-value", "Modified\nBenjamini p-value" ], [ "Zinc-finger", "80", "23", "7.60E-16", "1.20E-13" ], [ "Zinc", "85", "24.4", "1.20E-11", "9.90E-10" ], [ "Metal-binding", "96", "27.6", "4.30E-06", "2.30E-04" ], [ "DNA-binding", "62", "17.8", "7.90E-06", "3.20E-04" ], [ "Transcription regulation", "61", "17.5", "5.60E-04", "1.80E-02" ], [ "Transcription", "61", "17.5", "1.10E-03", "3.00E-02" ] ]
0.366081
null
null
9
2111.14283v1
36
[ 81.7912101158729, 193.24740600585938, 513.4895958533654, 340.41900634765625 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|} \hline Disease Name & \# of undruggable proteins associated with the disease \\ \hline Body Height & 31 \\ \hline Colorectal Carcinoma & 28 \\ \hline Malignant neoplasm of breast & 26 \\ \hline Breast Carcinoma & 18 \\ \hline Blood Protein Measurement & 18 \\ \hline Leukemia, Myelocytic, Acute & 17 \\ \hline Carcinogenesis & 17 \\ \hline Neoplasm Metastasis & 17 \\ \hline Liver carcinoma & 15 \\ \hline Malignant neoplasm of prostate & 15 \\ \hline \end{tabular}% } \caption{Top ranked diseases associated with undruggable human proteins excluding Tbio selected by portal learning} \label{tab:undrugnoTbiodisease} \end{table}
[ [ "Disease Name", "# of undruggable proteins associated with the disease" ], [ "Body Height", "31" ], [ "Colorectal Carcinoma", "28" ], [ "Malignant neoplasm of breast", "26" ], [ "Breast Carcinoma", "18" ], [ "Blood Protein Measurement", "18" ], [ "Leukemia, Myelocytic, Acute", "17" ], [ "Carcinogenesis", "17" ], [ "Neoplasm Metastasis", "17" ], [ "Liver carcinoma", "15" ], [ "Malignant neoplasm of prostate", "15" ] ]
0.827128
null
null
10
2111.14283v1
36
[ 81.7912101158729, 391.56207275390625, 513.4895958533654, 768.1460571289062 ]
\begin{table}[ht] \resizebox{\textwidth}{!}{% \begin{tabular}{|c|c|c|c|} \hline Drug\_name & Clinical phase & Mechanism of Action & Number of targeted proteins \\ \hline fenebrutinib & Phase 2 & Bruton's tyrosine kinase (BTK) inhibitor & 80 \\ \hline PF-05190457 & Phase 2 & growth hormone secretagogue receptor inverse agonist & 50 \\ \hline MK-5046 & Preclinical & bombesin receptor agonist & 38 \\ \hline CCT137690 & Preclinical & Aurora kinase inhibitor & 36 \\ \hline AI-10-49 & Preclinical & core binding factor inhibitor & 31 \\ \hline abemaciclib & Launched & CDK inhibitor & 26 \\ \hline CFI-402257 & Phase 1/Phase 2 & dual specificity protein kinase inhibitor & 20 \\ \hline NMS-P715 & Preclinical & protein kinase inhibitor & 14 \\ \hline NMS-1286937 & Phase 2 & PLK inhibitor & 11 \\ \hline elbasvir & Launched & HCV inhibitor & 8 \\ \hline cilofexor & Phase 3 & FXR agonist & 7 \\ \hline ABBV-744 & Phase 1 & bromodomain inhibitor & 7 \\ \hline tropifexor & Phase 2 & FXR agonist & 7 \\ \hline CDK9-IN-6 & Preclinical & CDK inhibitor & 6 \\ \hline adapalene & Launched & retinoid receptor agonist & 4 \\ \hline Q-203 & Phase 2 & ATP synthase inhibitor & 4 \\ \hline PLX8394 & Phase 1/Phase 2 & serine/threonine kinase inhibitor & 4 \\ \hline ABT-702 & Preclinical & adenosine kinase inhibitor & 4 \\ \hline NVP-BSK805 & Preclinical & JAK inhibitor & 3 \\ \hline OTS167 & Phase 1/Phase 2 & maternal embryonic leucine zipper kinase inhibitor & 3 \\ \hline CHIR-99021 & Preclinical & glycogen synthase kinase inhibitor & 3 \\ \hline DBPR-211 & Preclinical & cannabinoid receptor antagonist & 2 \\ \hline A-887826 & Preclinical & sodium channel blocker & 2 \\ \hline integrin-antagonist-1 & Phase 1 & integrin antagonist & 2 \\ \hline piperaquine-phosphate & Launched & antimalarial agent & 2 \\ \hline cenerimod & Phase 2 & sphingosine 1-phosphate receptor modulator & 1 \\ \hline peposertib & Phase 1/Phase 2 & DNA dependent protein kinase inhibitor & 1 \\ \hline tezacaftor & Launched & CFTR channel agonist & 1 \\ \hline cot-inhibitor-2 & Preclinical & MAPK-interacting kinase inhibitor & 1 \\ \hline itacitinib & Phase 3 & JAK inhibitor & 1 \\ \hline 10-hydroxycamptothecin & Preclinical & topoisomerase inhibitor & 1 \\ \hline alectinib & Launched & ALK tyrosine kinase receptor inhibitor & 1 \\ \hline adarotene & Phase 1 & retinoid receptor agonist & 1 \\ \hline acalabrutinib & Launched & Bruton's tyrosine kinase (BTK) inhibitor & 1 \\ \hline XL041 & Preclinical & LXR agonist & 1 \\ \hline WAY-207024 & Preclinical & gonadotropin releasing factor hormone receptor antagonist & 1 \\ \hline MK-5108 & Phase 1 & Aurora kinase inhibitor & 1 \\ \hline CGM097 & Phase 1 & MDM inhibitor & 1 \\ \hline CD-437 & Preclinical & retinoid receptor agonist & 1 \\ \hline AMG-925 & Phase 1 & CDK inhibitor|FLT3 inhibitor & 1 \\ \hline ACT-132577 & Launched & endothelin receptor antagonist & 1 \\ \hline ziritaxestat & Phase 3 & autotaxin inhibitor & 1 \\ \hline \end{tabular}% } \caption{Chemicals interacted with undruggable human proteins excluding Tbio} \label{tab:UndrugnoTbiochemicals} \end{table}
[ [ "Drug_name", "Clinical phase", "Mechanism of Action", "Number of targeted proteins" ], [ "fenebrutinib", "Phase 2", "Bruton’s tyrosine kinase (BTK) inhibitor", "80" ], [ "PF-05190457", "Phase 2", "growth hormone secretagogue receptor inverse agonist", "50" ], [ "MK-5046", "Preclinical", "bombesin receptor agonist", "38" ], [ "CCT137690", "Preclinical", "Aurora kinase inhibitor", "36" ], [ "AI-10-49", "Preclinical", "core binding factor inhibitor", "31" ], [ "abemaciclib", "Launched", "CDK inhibitor", "26" ], [ "CFI-402257", "Phase 1/Phase 2", "dual specificity protein kinase inhibitor", "20" ], [ "NMS-P715", "Preclinical", "protein kinase inhibitor", "14" ], [ "NMS-1286937", "Phase 2", "PLK inhibitor", "11" ], [ "elbasvir", "Launched", "HCV inhibitor", "8" ], [ "cilofexor", "Phase 3", "FXR agonist", "7" ], [ "ABBV-744", "Phase 1", "bromodomain inhibitor", "7" ], [ "tropifexor", "Phase 2", "FXR agonist", "7" ], [ "CDK9-IN-6", "Preclinical", "CDK inhibitor", "6" ], [ "adapalene", "Launched", "retinoid receptor agonist", "4" ], [ "Q-203", "Phase 2", "ATP synthase inhibitor", "4" ], [ "PLX8394", "Phase 1/Phase 2", "serine/threonine kinase inhibitor", "4" ], [ "ABT-702", "Preclinical", "adenosine kinase inhibitor", "4" ], [ "NVP-BSK805", "Preclinical", "JAK inhibitor", "3" ], [ "OTS167", "Phase 1/Phase 2", "maternal embryonic leucine zipper kinase inhibitor", "3" ], [ "CHIR-99021", "Preclinical", "glycogen synthase kinase inhibitor", "3" ], [ "DBPR-211", "Preclinical", "cannabinoid receptor antagonist", "2" ], [ "A-887826", "Preclinical", "sodium channel blocker", "2" ], [ "integrin-antagonist-1", "Phase 1", "integrin antagonist", "2" ], [ "piperaquine-phosphate", "Launched", "antimalarial agent", "2" ], [ "cenerimod", "Phase 2", "sphingosine 1-phosphate receptor modulator", "1" ], [ "peposertib", "Phase 1/Phase 2", "DNA dependent protein kinase inhibitor", "1" ], [ "tezacaftor", "Launched", "CFTR channel agonist", "1" ], [ "cot-inhibitor-2", "Preclinical", "MAPK-interacting kinase inhibitor", "1" ], [ "itacitinib", "Phase 3", "JAK inhibitor", "1" ], [ "10-hydroxycamptothecin", "Preclinical", "topoisomerase inhibitor", "1" ], [ "alectinib", "Launched", "ALK tyrosine kinase receptor inhibitor", "1" ], [ "adarotene", "Phase 1", "retinoid receptor agonist", "1" ], [ "acalabrutinib", "Launched", "Bruton’s tyrosine kinase (BTK) inhibitor", "1" ], [ "XL041", "Preclinical", "LXR agonist", "1" ], [ "WAY-207024", "Preclinical", "gonadotropin releasing factor hormone receptor antagonist", "1" ], [ "MK-5108", "Phase 1", "Aurora kinase inhibitor", "1" ], [ "CGM097", "Phase 1", "MDM inhibitor", "1" ], [ "CD-437", "Preclinical", "retinoid receptor agonist", "1" ], [ "AMG-925", "Phase 1", "CDK inhibitor|FLT3 inhibitor", "1" ], [ "ACT-132577", "Launched", "endothelin receptor antagonist", "1" ], [ "ziritaxestat", "Phase 3", "autotaxin inhibitor", "1" ] ]
0.977946
null
null
11
2111.14283v1
37
[ 81.76521653395433, 351.75054931640625, 513.5269024188702, 452.48394775390625 ]
\begin{table}[ht] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{|c|l|r|} \hline \multirow{2}{*}{Protein descriptor} & layers & Albert --\textgreater Resnet \\ \cline{2-3} & embedding dimension & 256 \\ \hline \multirow{5}{*}{Chemical descriptor} & backbone & GIN \\ \cline{2-3} & number of layers & 5 \\ \cline{2-3} & embedding dimension & 300 \\ \cline{2-3} & aggregation methods & sum \\ \cline{2-3} & drop out ratio & 0.5 \\ \hline \multirow{2}{*}{Interaction learner} & layers & Attentive pooling --\textgreater{}2 layers of MLP \\ \cline{2-3} & embedding dimension & 128 \\ \hline \multicolumn{1}{|l|}{Structure residue-atom pair wise feature learner} & layers & matrix multiplication of protein and chemical embedding vectors \\ \hline \multirow{2}{*}{Classifier} & layers & 2 layers of MLP \\ \cline{2-3} & embedding dimension & 64 \\ \hline \end{tabular}% } \caption{Model architecture configuration} \label{tab:config} \end{table}
[ [ "Protein descriptor", "layers", "Albert –>Resnet" ], [ null, "embedding dimension", "256" ], [ "Chemical descriptor", "backbone", "GIN" ], [ null, "number of layers", "5" ], [ null, "embedding dimension", "300" ], [ null, "aggregation methods", "sum" ], [ null, "drop out ratio", "0.5" ], [ "Interaction learner", "layers", "Attentive pooling –>2 layers of MLP" ], [ null, "embedding dimension", "128" ], [ "Structure residue-atom pair wise feature learner", "layers", "matrix multiplication of protein and chemical embedding vectors" ], [ "Classifier", "layers", "2 layers of MLP" ], [ null, "embedding dimension", "64" ] ]
0.878286
null
null
0
2012.06283v2
34
[ 85.03900146484375, 85.239013671875, 535.1939697265625, 127.08203125 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|c|c|c|c|} \hline Option &Euler Maruyama & Milstein & strong order 1.5 & strong order 2 & strong order 3\\ \hline European & 0.976999 & 1.962848 & 2.970166 & 3.964626 & 5.958417\\ \hline Digital & 0.473426 & 0.869393 & 1.452448 & 1.775679 & NAN\\ \hline \end{tabular} \caption{numerical estimates of $\beta$ based on linear regression for five schemes} \label{tab:tab2} \end{table}
[ [ "Option", "Euler Maruyama", "Milstein", "strong order 1.5", "strong order 2", "strong order 3" ], [ "European", "0.976999", "1.962848", "2.970166", "3.964626", "5.958417" ], [ "Digital", "0.473426", "0.869393", "1.452448", "1.775679", "NAN" ] ]
0.81549
null
null
1
2012.06283v2
34
[ 85.03900146484375, 161.35302734375, 535.1939697265625, 203.196044921875 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|c|c|c|c|} \hline Option &Euler Maruyama & Milstein & strong order 1.5 & strong order 2 & strong order 3 \\ \hline European & 1.136214 & 0.979572 & 1.747239 & 1.970829 & 2.961041 \\ \hline Digital & 1.023176 & 0.791818 & 1.853158 & 1.827618 & NAN\\ \hline \end{tabular} \caption{numerical estimates of $\alpha$ based on linear regression for five schemes} \label{tab:tab3} \end{table}
[ [ "Option", "Euler Maruyama", "Milstein", "strong order 1.5", "strong order 2", "strong order 3" ], [ "European", "1.136214", "0.979572", "1.747239", "1.970829", "2.961041" ], [ "Digital", "1.023176", "0.791818", "1.853158", "1.827618", "NAN" ] ]
0.813636
null
null
0
2107.08761v1
3
[ 72, 119.5789794921875, 540.0140380859375, 536.9140014648438 ]
\begin{table} \centering \caption{Overview. Models and parameters analyzed in this study.}\label{tab:paraOver} \begin{tabulary}{\textwidth}{L | L | L} \hline Model & Hyperparameter \hspace*{2cm} & Comment \\ \hline knn &\paramk & number of neighbors \\ &\paramp & $p$ norm \\ \hline Elastic net &\paramalpha & weight term of the loss-function \\ &\paramlambda & trade-off between model quality and complexity\\ &\paramthresh & threshold for model convergence, i.e., convergence of the internal coordinate descent\\ \hline Decision trees&\paramminsplit & minimum number of observations required for a split\\ &\paramminbucket & minimum number of observations in an end node (leaf) \\ &\paramcp & complexity parameter\\ &\parammaxdepth & maximum depth of a leaf in the decision tree\\ \hline Random forest & \paramnumtrees & number of trees that are combined in the overall ensemble model \\ &\parammtry & number of randomly chosen features are considered for each split\\ &\paramsamplefraction & number of observations that are randomly drawn for training a specific tree\\ &\paramreplace & replacement of randomly drawn samples\\ &\texttt{respect.-} & \\ &\texttt{unordered.factors} & handling of splits of categorical variables \\ \hline xgBoost & \parameta & learning rate, also called \enquote{shrinkage} parameter.\\ &\paramnrounds & number of boosting steps\\ &\paramlambda & regularization of the model\\ &\paramalpha & parameter for the L1 regularization of the weights \\ &\paramsubsample & portion of the observations that is randomly selected in each iteration\\ &\paramcolsample & number of features that chosen for the splits of a tree\\ &\paramgamma & number of splits of a tree by assuming a minimal improvement for each split\\ &\parammaxdepthx & maximum depth of a leaf in the decision trees\\ &\paramminchild & restriction of the number of splits of each tree\\ \hline Support vector machines &\paramdegree & degree of the polynomial (parameter of the polynomial kernel function)\\ &\paramgamma & parameter of the polynomial, radial basis, and sigmoid kernel functions\\ &\paramcoefz & parameter of the polynomial and sigmoid kernel functions\\ &\paramcost & regularization parameter, weights constraint violations of the model\\ &\paramepsilon & regularization parameter, defines ribbon around predictions\\ %&\paramtolerance & \\ %not tuned \hline % Neural networks &\paramhidden \\ % &\paramactiv \\ % &\paramdropout \\ % &\paramlosstype\\ % &\paramlearnrates \\ % &\parambatchsize \\ % &\paramnepochs\\ \end{tabulary} \end{table}
[ [ "Model", "Hyperparameter", "Comment" ], [ "knn", "k\np", "number of neighbors\np norm" ], [ "Elastic net", "alpha\nlambda\nthresh", "weight term of the loss-function\ntrade-off between model quality and complexity\nthreshold for model convergence, i.e., convergence of the\ninternal coordinate descent" ], [ "Decision trees", "minsplit\nminbucket\ncp\nmaxdepth", "minimum number of observations required for a split\nminimum number of observations in an end node (leaf)\ncomplexity parameter\nmaximum depth of a leaf in the decision tree" ], [ "Random forest", "num.trees\nmtry\nsample.fraction\nreplace\nrespect.-\nunordered.factors", "number of trees that are combined in the overall ensemble model\nnumber of randomly chosen features are considered for each split\nnumber of observations that are randomly drawn for training a\nspecific tree\nreplacement of randomly drawn samples\nhandling of splits of categorical variables" ], [ "xgBoost", "eta\nnrounds\nlambda\nalpha\nsubsample\ncolsample bytree\ngamma\nmax depth\nmin child weight", "learning rate, also called “shrinkage” parameter.\nnumber of boosting steps\nregularization of the model\nparameter for the L1 regularization of the weights\nportion of the observations that is randomly selected in each\niteration\nnumber of features that chosen for the splits of a tree\nnumber of splits of a tree by assuming a minimal improvement\nfor each split\nmaximum depth of a leaf in the decision trees\nrestriction of the number of splits of each tree" ], [ "Support vector\nmachines", "degree\ngamma\ncoef0\ncost\nepsilon", "degree of the polynomial (parameter of the polynomial kernel\nfunction)\nparameter of the polynomial, radial basis, and sigmoid kernel\nfunctions\nparameter of the polynomial and sigmoid kernel functions\nregularization parameter, weights constraint violations of the\nmodel\nregularization parameter, defines ribbon around predictions" ] ]
0.527778
null
null
0
1903.00954v2
28
[ 187.8470001220703, 486.22100830078125, 424.15301513671875, 653.593994140625 ]
\begin{table}[h] \centering \begin{tabular}{|l|c|c|} \hline & MDN & KMN \\ \hline hidden layer sizes & (16,16) & (16,16) \\ \hline hidden non-linearity & tanh & tanh \\ \hline training epochs & 1000 & 1000 \\ \hline Adam learning rate & 0.001 & 0.001 \\ \hline $K$: number of components & 20 & 50 \\ \hline $\eta_x$: noise std x & 0.2 & 0.2 \\ \hline $\eta_y$: noise std y & 0.1 & 0.1 \\ \hline weight normalization & True & True \\ \hline data normalization & True & True \\ \hline initialization of scales & - & [0.7, 0.3] \\ \hline trainable scales & - & True \\ \hline \end{tabular} \caption{$\quad$ Default hyper-parameter configuration for MDN and KMN} \label{tab:standard_params} \end{table}
[ [ "", "MDN", "KMN" ], [ "hidden layer sizes", "(16,16)", "(16,16)" ], [ "hidden non-linearity", "tanh", "tanh" ], [ "training epochs", "1000", "1000" ], [ "Adam learning rate", "0.001", "0.001" ], [ "K: number of components", "20", "50" ], [ "η : noise std x\nx", "0.2", "0.2" ], [ "η : noise std y\ny", "0.1", "0.1" ], [ "weight normalization", "True", "True" ], [ "data normalization", "True", "True" ], [ "initialization of scales", "-", "[0.7, 0.3]" ], [ "trainable scales", "-", "True" ] ]
0.823056
null
null
1
1903.00954v2
29
[ 133.802001953125, 193.6400146484375, 478.19812393188477, 291.27398681640625 ]
\begin{table}[h] \centering \begin{tabular}{|r|c|c|c|} \hline & MDN-CV & KMN-CV & LSCDE-CV\\ \hline training epochs & 500 & 500 & -\\ \hline $K$: number of components & 10 & 200 & 1000\\ \hline $\eta_x$: noise std x & 0.3 & 0.2 & -\\ \hline $\eta_y$: noise std y & 0.15 & 0.15 & - \\ \hline bandwidth & - & - & 0.5 \\ \hline $\lambda$: LSCDE damping parameter & - & - & 0.1 \\ \hline \end{tabular} \caption{$\quad$ Hyper-parameter configuration determined with 10-fold cross-validation on the EuroStoxx 50 data set} \label{tab:cv_params} \end{table}
[ [ "", "MDN-CV", "KMN-CV", "LSCDE-CV" ], [ "training epochs", "500", "500", "-" ], [ "K: number of components", "10", "200", "1000" ], [ "η : noise std x\nx", "0.3", "0.2", "-" ], [ "η : noise std y\ny", "0.15", "0.15", "-" ], [ "bandwidth", "-", "-", "0.5" ], [ "λ: LSCDE damping parameter", "-", "-", "0.1" ] ]
0.725146
null
null
0
1805.03933v1
2
[ 102.6760025024414, 73.19598388671875, 247.33400181361608, 152.3380126953125 ]
\begin{table}[tb] \caption{Description of the datasets used.} \centering \begin{tabular}{|c|c|c|} \hline & DTS1 & DTS2 \\ \hline Sampling rate(Hz) & 256 & 160 \\ \hline Time task(seg) & 120 & 60 \\ \hline Total points & 30720 & 9600 \\ \hline Number of electrodes & 16 & 64 \\ \hline Number of subjects & 71 & 109 \\ \hline \end{tabular} \label{tb:1} \end{table}
[ [ "", "DTS1", "DTS2" ], [ "Sampling rate(Hz)", "256", "160" ], [ "Time task(seg)", "120", "60" ], [ "Total points", "30720", "9600" ], [ "Number of electrodes", "16", "64" ], [ "Number of subjects", "71", "109" ] ]
0.981685
null
null
0
1908.06719v1
8
[ 49.11310166579027, 130.46595764160156, 295.56217507755053, 180.2318115234375 ]
\begin{table}[h] \resizebox{0.48\textwidth}{!}{% \begin{tabular}{l|l|l|l|l|l|} \cline{2-6} & \multicolumn{5}{c|}{\textbf{Dataset Name}} \\ \cline{2-6} & \multicolumn{1}{c|}{\textbf{XS}} & \multicolumn{1}{c|}{\textbf{S}} & \multicolumn{1}{c|}{\textbf{M}} & \multicolumn{1}{c|}{\textbf{L}} & \multicolumn{1}{c|}{\textbf{XL}} \\ \hline \multicolumn{1}{|l|}{Number of Records} & 0.5 mil & 1.25 mil & 2.5 mil & 3.75 mil & 5 mil \\ \hline \multicolumn{1}{|l|}{JSON File Size} & 1 GB & 2.5 GB & 5 GB & 7.5 GB & 10 GB \\ \hline \multicolumn{1}{|l|}{Parquet File Size} & 43 MB & 110 MB & 217 MB & 317 MB & 426 MB \\ \hline \multicolumn{1}{|l|}{CSV File Size} & 715 MB & 2.3 GB & 4.6 GB & 6.8 GB & 9.3 GB \\ \hline \end{tabular}% } \caption{Dataset Summary (mil = million)} \label{tab:onenode} \vspace{-1em} \end{table}
[ [ "", "Dataset Name", null, null, null, null ], [ null, "XS", "S", "M", "L", "XL" ], [ "Number of Records", "0.5 mil", "1.25 mil", "2.5 mil", "3.75 mil", "5 mil" ], [ "JSON File Size", "1 GB", "2.5 GB", "5 GB", "7.5 GB", "10 GB" ], [ "Parquet File Size", "43 MB", "110 MB", "217 MB", "317 MB", "426 MB" ], [ "CSV File Size", "715 MB", "2.3 GB", "4.6 GB", "6.8 GB", "9.3 GB" ] ]
0.779271
null
null
1
1908.06719v1
8
[ 49.11310166579027, 456.09898376464844, 295.56217507755053, 494.6641540527344 ]
\begin{table}[h] \resizebox{0.48\textwidth}{!}{% \begin{tabular}{l|l|l|l|l|} \cline{2-5} & \textbf{1 node} & \textbf{2 nodes} & \textbf{3 nodes} & \textbf{4 nodes} \\ \hline \multicolumn{1}{|l|}{\textbf{Aggregate Memory}} & 8 GB & 16 GB & 24 GB & 32 GB \\ \hline \multicolumn{1}{|l|}{\textbf{JSON File Size}} & 10 GB & 10 GB & 10GB & 10 GB \\ \hline \multicolumn{1}{|l|}{\textbf{Parquet File Size}} & 426 MB & 426 MB & 426 MB & 426 MB \\ \hline \end{tabular}% } \caption{Speedup Experiment Setup} \label{tab:speedup} \end{table}
[ [ "", "1 node", "2 nodes", "3 nodes", "4 nodes" ], [ "Aggregate Memory", "8 GB", "16 GB", "24 GB", "32 GB" ], [ "JSON File Size", "10 GB", "10 GB", "10GB", "10 GB" ], [ "Parquet File Size", "426 MB", "426 MB", "426 MB", "426 MB" ] ]
0.760736
null
null
2
1908.06719v1
8
[ 49.11310166579027, 608.3164672851562, 295.56217507755053, 645.968994140625 ]
\begin{table}[h] \resizebox{0.48\textwidth}{!}{% \begin{tabular}{l|l|l|l|l|} \cline{2-5} & \textbf{1 node} & \textbf{2 nodes} & \textbf{3 nodes} & \textbf{4 nodes} \\ \hline \multicolumn{1}{|l|}{\textbf{Aggregated Memory}} & 8 GB & 16 GB & 24 GB & 32 GB \\ \hline \multicolumn{1}{|l|}{\textbf{JSON File Size}} & 10 GB & 20 GB & 30GB & 40 GB \\ \hline \multicolumn{1}{|l|}{\textbf{Parquet File Size}} & 426 MB & 818 MB & 1.33 GB & 1.75 GB \\ \hline \end{tabular}% } \caption{Scaleup Experiment Setup} \label{tab:scaleup} \end{table}
[ [ "", "1 node", "2 nodes", "3 nodes", "4 nodes" ], [ "Aggregated Memory", "8 GB", "16 GB", "24 GB", "32 GB" ], [ "JSON File Size", "10 GB", "20 GB", "30GB", "40 GB" ], [ "Parquet File Size", "426 MB", "818 MB", "1.33 GB", "1.75 GB" ] ]
0.76506
null
null
0
1512.06228v1
4
[ 103.01200103759766, 360.625, 247.01100158691406, 393.302001953125 ]
\begin{table}[!htb] %\label{tab:title} \begin{center} \begin{tabular}{ |l|c|c| } \hline \textbf{Algorithm} & Actual $\Uparrow$ & Actual $\Downarrow$ \\ \hline SVM & 62.58\% & 58.59\% \\ Logistic Regression & 62.5\% & 59.09\% \\ Neural Network & 60.46\% & 56.95\% \\ \hline \end{tabular} \caption {Test Precision rate for each direction} \end{center} \end{table}
[ [ "Algorithm", "Actual ⇑", "Actual ⇓" ], [ "SVM\nLogistic Regression\nNeural Network", "62.58%\n62.5%\n60.46%", "58.59%\n59.09%\n56.95%" ] ]
0.565056
null
null
1
1512.06228v1
4
[ 103.01200103759766, 504.3179931640625, 247.01100158691406, 536.9949951171875 ]
\begin{table}[!htb] %\label{tab:title} \begin{center} \begin{tabular}{ |l|c|c| } \hline \textbf{Algorithm} & Actual $\Uparrow$ & Actual $\Downarrow$ \\ \hline SVM & 60.92\% & 59.65\% \\ Logistic Regression & 60.45\% & 58.86\% \\ Neural Network & 55.42\% & 66.35\% \\ \hline \end{tabular} \caption {Training Precision rate for each direction} \end{center} \end{table}
[ [ "Algorithm", "Actual ⇑", "Actual ⇓" ], [ "SVM\nLogistic Regression\nNeural Network", "60.92%\n60.45%\n55.42%", "59.65%\n58.86%\n66.35%" ] ]
0.552727
null
null
0
1502.00225v1
16
[ 75.7490005493164, 129.53997802734375, 527.2510375976562, 360.14166259765625 ]
\begin{table}[!htbp] \begin{center} \caption{Searched terms and DJIA component stocks} %\vspace{0.5cm} \label{query} \footnotesize \begin{tabular}{c | c | ccc} \hline\hline No.&Company full name&Company short name&Ticker&Search query\\ \hline \#1&3M Company&3M&MMM&3M\\ \#2&Caterpillar Incorporated&Caterpillar&CAT&Caterpillar\\ \#3&Coca-Cola Company&Coca Cola&KO&Coca Cola\\ \#4&E. I. du Pont de Nemours and Company&Du Pont&DD&DuPont\\ \#5&Exxon Mobil Company&Exxon Mobil&XOM&Exxon\\ \#6&General Electric Company&General Electric&GE&GE\\ \#7&Home Depot Incorporated&Home Depot&HD&Home Depot\\ \#8&Intel Corporation&Intel&INTC&Intel\\ \#9&International Business Machines&IBM&IBM&IBM\\ \#10&J. P. Morgan Chase&J. P. Morgan&JPM&JP Morgan\\ \#11&Johnson \& Johnson&Johnson \& Johnson&JNJ&Johnson Johnson\\ \#12&McDonald's Corporation&McDonald's&MCD&McDonalds\\ \#13&Merck \& Co., Inc.&Merck&MRK&Merck\\ \#14&Microsoft Corporation&Microsoft&MSFT&Microsoft\\ \#15&Procter \& Gamble Company&Procter \& Gamble&PG&P\&G\\ \#16&The Boeing Company&Boeing&BA&Boeing\\ \#17&United Technologies Corporation&United Technologies&UTX&UTC\\ \#18&Walt Disney Company&Walt Disney&DIS&Disney\\ \hline \hline \end{tabular} %\vspace{-0.7cm} \end{center} \end{table}
[ [ "No.", "Company full name", "Company short name Ticker Search query" ], [ "#1\n#2\n#3\n#4\n#5\n#6\n#7\n#8\n#9\n#10\n#11\n#12\n#13\n#14\n#15\n#16\n#17\n#18", "3M Company\nCaterpillar Incorporated\nCoca-Cola Company\nE. I. du Pont de Nemours and Company\nExxon Mobil Company\nGeneral Electric Company\nHome Depot Incorporated\nIntel Corporation\nInternational Business Machines\nJ. P. Morgan Chase\nJohnson & Johnson\nMcDonald’s Corporation\nMerck & Co., Inc.\nMicrosoft Corporation\nProcter & Gamble Company\nThe Boeing Company\nUnited Technologies Corporation\nWalt Disney Company", "3M MMM 3M\nCaterpillar CAT Caterpillar\nCoca Cola KO Coca Cola\nDu Pont DD DuPont\nExxon Mobil XOM Exxon\nGeneral Electric GE GE\nHome Depot HD Home Depot\nIntel INTC Intel\nIBM IBM IBM\nJ. P. Morgan JPM JP Morgan\nJohnson & Johnson JNJ Johnson Johnson\nMcDonald’s MCD McDonalds\nMerck MRK Merck\nMicrosoft MSFT Microsoft\nProcter & Gamble PG P&G\nBoeing BA Boeing\nUnited Technologies UTX UTC\nWalt Disney DIS Disney" ] ]
0.480345
null
null
0
2403.02185v1
3
[ 320.3070068359375, 631.2216796875, 557.194091796875, 680.929931640625 ]
\begin{table}[] \centering \resizebox{0.47\textwidth}{!}{\begin{tabular}{l|c|c|c|c} \hline \bf Model & \bf \#Tokens & \bf Size & \bf $F_1$ vs. Teacher & \bf $F_1$ vs. Human\\ \hline Paraphrase Albert & 256 & 43MB & $46.8\%$ & $61.9\%$\\ MiniLM-L6 & 256 & 120MB & $55.1\%$ & $60.3\%$ \\ MPNET & 384 & 420MB & $63.1\%$ & $72.8\%$ \\ DistilBERT & 512 & 420MB & $61.3\%$ & $74.4\%$\\ FinBERT & 512 & 438MB & $48.8\%$ & $54.5\%$ \\ \hline \end{tabular}} \caption{Topic Classification Models Performance.} \label{tab:topic_perf} \end{table}
[ [ "Model", "#Tokens", "Size", "F1 vs. Teacher", "F1 vs. Human" ], [ "Paraphrase Albert\nMiniLM-L6\nMPNET\nDistilBERT\nFinBERT", "256\n256\n384\n512\n512", "43MB\n120MB\n420MB\n420MB\n438MB", "46.8%\n55.1%\n63.1%\n61.3%\n48.8%", "61.9%\n60.3%\n72.8%\n74.4%\n54.5%" ] ]
0.420168
null
null
1
2403.02185v1
4
[ 72.447998046875, 155.1525115966797, 274.05072021484375, 174.4007568359375 ]
\begin{table}[] \centering \resizebox{0.4\textwidth}{!}{\begin{tabular}{l|c|c|c} \hline %\bf Model & \bf $F_1$ vs. Human & \bf Lower 95\% & \bf Upper 95\% \\ \bf Model & \bf MPNET & \bf FinBERT & \bf ChatGPT 3.5 \\ \hline $F_1$ vs. Human & 77.8\% & 65.3\% & 83.1\% \\ %MPNET & 77.8\% & 76.7\% & 78.9\% \\ %FinBERT & 65.3\% & 63.8\% & 66.7\% \\ %Chat GPT3.5 & 83.1\% & 82.2\% & 84.0\%\\ \hline \end{tabular}} \caption{Sentiment Classification Models Performance.} \label{tab:sentiment_perf} \end{table}
[ [ "Model", "MPNET", "FinBERT", "ChatGPT 3.5" ], [ "F vs. Human\n1", "77.8%", "65.3%", "83.1%" ] ]
0.365931
null
null
2
2403.02185v1
5
[ 54, 243.6122283935547, 280.8023681640625, 308.3586730957031 ]
\begin{table}[] \resizebox{0.45\textwidth}{!}{\begin{tabular}{l|ll|ll} \hline & \multicolumn{2}{c|}{Earnings} & \multicolumn{2}{c}{Revenue} \\ \hline Filter & Outlook & Trailling & Outlook & Trailling \\ \hline Earnings & High & High & Medium & Medium \\ Revenue & Medium & Medium & High & High \\ Guidance & High & Low & High & Low \\ Others & Low & Low & Low & Low \\ \hline \end{tabular}} \caption{Filter intensity for earnings and revenue sentiments trends.} \label{tab:filtering_rev} \end{table}
[ [ "", "Earnings", "Revenue" ], [ "Filter", "Outlook Trailling", "Outlook Trailling" ], [ "Earnings\nRevenue\nGuidance\nOthers", "High High\nMedium Medium\nHigh Low\nLow Low", "Medium Medium\nHigh High\nHigh Low\nLow Low" ] ]
0.62181
null
null
0
2201.00207v2
20
[ 133.9346694946289, 256.56298828125, 482.2949930826823, 419.95098876953125 ]
\begin{table}[htbp] \centering \caption{Primitives used in automated feature engineering} \renewcommand\tabularxcolumn[1]{m{#1}} \newcolumntype{C}{>{\centering\arraybackslash}X} \begin{tabularx}{350pt}{|c|C|} \hline Module & Primitives \\ \hline Scaler & StandardScaler MaxAbsScaler RobustScaler Normalizer \\ \hline Feature Generation & PolynomialFeature KBinsDiscretizer SplineTransformer Nystroem RBFSampler \\ \hline Matrix Decomposition & FastICA IncrementalICA PCA SparsePCA TruncatedSVD Factoranalysis \\ \hline Feature Selection & SelectFwe SelectFdr SelectFpr SelectPercentile VarianceThreshold RFE \\ \hline \end{tabularx} \end{table}
[ [ "Module", "Primitives" ], [ "Scaler", "StandardScaler MaxAbsScaler RobustScaler\nNormalizer" ], [ "Feature Generation", "PolynomialFeature KBinsDiscretizer\nSplineTransformer Nystroem RBFSampler" ], [ "Matrix Decomposition", "FastICA IncrementalICA PCA SparsePCA\nTruncatedSVD Factoranalysis" ], [ "Feature Selection", "SelectFwe SelectFdr SelectFpr SelectPercentile\nVarianceThreshold RFE" ] ]
1
null
null
1
2201.00207v2
21
[ 133.90133666992188, 254.968994140625, 482.32799275716144, 560.6229858398438 ]
\begin{table}[htbp] \centering \caption{Primitives used in automated ensemble strategy selection} \renewcommand\tabularxcolumn[1]{m{#1}} \newcolumntype{C}{>{\centering\arraybackslash}X} \begin{tabularx}{350pt}{|c|C|} \hline Classifier Primitives & HistGradientBoostingClassifier RidgeClassifier GaussianNB BernoulliNB BaggingClassifier DecisionTreeClassifier ExtraTreesClassifier RandomForestClassifier GradientBoostingClassifier KNeighborsClassifier LinearSVC SGDClassifier LogisticRegression Perceptron MLPClassifier LGBMClassifier PassiveAggressiveClassifier RUSBoostClassifier\\ \hline Ensemble Strategies Primitives & SingleBest StackedGeneralization StaticSelection LCA MCB OLA Rank DESClustering DESKNN DESMI KNORAE KNORAU KNOP METADES DESKL Exponential Logarithmic RRC MinimumDifference APriori APosteriori \\ \hline \end{tabularx} \end{table}
[ [ "Classifier Primitives", "HistGradientBoostingClassifier\nRidgeClassifier GaussianNB BernoulliNB\nBaggingClassifier DecisionTreeClassifier\nExtraTreesClassifier\nRandomForestClassifier\nGradientBoostingClassifier\nKNeighborsClassifier LinearSVC\nSGDClassifier LogisticRegression\nPerceptron MLPClassifier LGBMClassifier\nPassiveAggressiveClassifier\nRUSBoostClassifier" ], [ "Ensemble Strategies Primitives", "SingleBest StackedGeneralization\nStaticSelection LCA MCB OLA Rank\nDESClustering DESKNN DESMI\nKNORAE KNORAU KNOP METADES\nDESKL Exponential Logarithmic RRC\nMinimumDifference APriori APosteriori" ] ]
1
null
null
0
2309.03451v2
3
[ 41.164124488830566, 83.946044921875, 281.89487075805664, 149.5 ]
\begin{table} \centering \caption{Sound Types and Characteristics of the data with $Principal Component 1 > 40$.} \begin{tabular}{|P{1.8cm}|c|P{3.5cm}|} \hline Sound Type & Number of Data & Occurrence Date \\ \hline Bearded Seal & 1033 & Mar. or May 2018 \\ \hline Walrus & 9 & Sept. or Oct. 2017 \\ \hline Airgun & 275 & Sept. 2017 \\ \hline Sea ice & 1 & Aug. 25 2017 00:00:00 \\ \hline Whales & 12 & Sept. 11 or 19 2017 \\ \hline Mammal & 7 & Sept. 23 2017 17:00:00 \\ \hline \end{tabular} \label{tab:sound_data} \end{table}
[ [ "Sound Type", "Number of Data", "Occurrence Date" ], [ "Bearded Seal", "1033", "Mar. or May 2018" ], [ "Walrus", "9", "Sept. or Oct. 2017" ], [ "Airgun", "275", "Sept. 2017" ], [ "Sea ice", "1", "Aug. 25 2017 00:00:00" ], [ "Whales", "12", "Sept. 11 or 19 2017" ], [ "Mammal", "7", "Sept. 23 2017 17:00:00" ] ]
0.969163
null
null
0
1504.04296v1
18
[ 144.3159942626953, 590.8070068359375, 450.96002197265625, 629.2630004882812 ]
\begin{table}[htbp] \begin{center} \caption{Autocorrelation tests for $chron$} \label{autocor_pair_impair} \begin{tabular}{c c c| c c c} \multicolumn{3}{c}{case1}&\multicolumn{3}{c}{case2}\\ \hline $\chi-square$&deg. lib.&\emph{p-value}&$\chi-square$-&deg. lib.&\emph{p-value}\\ \hline \hline 0.0096&1&0.9219&1.1169& 1&0.2906\\ 29.6655& 36 &0.7629&45.4802&36&0.1337\\ \end{tabular} \end{center} \begin{center} \small{$H_{0}$: $chron$ is not autocorrelated.} \end{center} \end{table}
[ [ "χ square deg. lib. p-value\n−", "χ square- deg. lib. p-value\n−" ], [ "0.0096 1 0.9219\n29.6655 36 0.7629", "1.1169 1 0.2906\n45.4802 36 0.1337" ] ]
0.69863
null
null
0
2305.09783v1
12
[ 173.31700134277344, 584.6239624023438, 438.6829833984375, 681.9649658203125 ]
\begin{table}[htbp] \centering \caption{\textbf{PINN results for the inverse HJB equation with estimation of three parameters.} Unknown parameters $c_e$, $\alpha$, and $c_f$ as well as moment targets $e_\text{target}$, $z_\text{target}$, $\ell_\text{target}$ and $l^*_\text{target}$ are shown.} \label{tab:hjb-inv-three-var} \begin{tabular}{c|ccc} \toprule & True value & Predicted value & Relative error \\ \midrule $c_e$ & 0.1 & 0.0934 & 6.60\% \\ $\alpha$ & 0.3 & 0.314 & 4.59\% \\ $c_f$ & 0.03 & 0.0299 & 0.49\% \\ $e_\mathrm{target}$ & 0.418 & 0.385 & 7.96\% \\ $z_\mathrm{target}$ & 7.524 & 7.786 & 3.47\% \\ $\ell_\mathrm{target}$ & 4.697 & 4.955 & 5.50\% \\ $l^*_\mathrm{target}$ & 0.00647 & 0.00677 & 4.70\% \\ \bottomrule \end{tabular} \end{table}
[ [ "c\ne\nα\nc\nf\ne\ntarget\nz\ntarget\nℓ\ntarget\nl∗\ntarget", "0.1 0.0934 6.60%\n0.3 0.314 4.59%\n0.03 0.0299 0.49%\n0.418 0.385 7.96%\n7.524 7.786 3.47%\n4.697 4.955 5.50%\n0.00647 0.00677 4.70%" ] ]
0.469173
null
null
0
2304.10521v1
16
[ 57.20637512207031, 189.56417846679688, 499.25604248046875, 250.9649658203125 ]
\begin{table} \centering \resizebox{\textwidth}{!} { \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|} \toprule M & 1000 & 2000 & 3000 & 4000 & 5000 & 6000 & 7000 & 8000 & 9000 & 10000\\ \midrule scores & 0.93&0.9492&0.9551&0.9619&0.9649&0.9666&0.9692&0.9707&0.9708&0.9726\\ \midrule times & 1.26&2.83&5.12&8.53&11.10&16.28&22.41&30.37&40.06&48.68\\ \midrule $1-\dK(X,Z)$ & 0.9194&0.9384&0.9534&0.9537&0.9610&0.9561&0.9580&0.9586&0.9598&0.9654 \\ \bottomrule \end{tabular} } \caption{ Extrapolation -- scores and times} % {tab:unnamed-chunk-2} \label{extrapolation} \end{figure} %\end{table}
[ [ "M", "1000", "2000", "3000", "4000", "5000", "6000", "7000", "8000", "9000", "10000" ], [ "scores", "0.93", "0.9492", "0.9551", "0.9619", "0.9649", "0.9666", "0.9692", "0.9707", "0.9708", "0.9726" ], [ "times", "1.26", "2.83", "5.12", "8.53", "11.10", "16.28", "22.41", "30.37", "40.06", "48.68" ], [ "1 −dK(X, Z)", "0.9194", "0.9384", "0.9534", "0.9537", "0.9610", "0.9561", "0.9580", "0.9586", "0.9598", "0.9654" ] ]
0.753173
null
null
0
1504.03655v4
8
[ 172.1540069580078, 252.14034016927084, 439.84503173828125, 328.128662109375 ]
\begin{table}[h!] \centering \setlength{\tabcolsep}{2pt} \caption{Relation between various subspaces. \label{tb:relation} } \vspace{-2mm} \begin{tabular}{c|c|c|c|c} \hline \hline Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\ \hline $V$ & -- & -- & -- & -- \\ $F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\ $G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\ $\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\ $H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\ \hline \hline \end{tabular} \end{table}
[ [ "Subspace", "Evaluation", "Orth.", "Data Mini-batch", "RF Mini-batch" ], [ "V\nF\nt\nG\nt\nG˜\nt\nH\nt", "–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt", "–\n\u0013\n\u0017\n\u0017\n\u0017", "–\n\u0013\n\u0013\n\u0013\n\u0013", "–\n\u0017\n\u0017\n\u0017\n\u0013" ] ]
0.554517
null
null
1
1504.03655v4
14
[ 176.8730010986328, 86.14697265625, 435.12701416015625, 174.21697998046875 ]
\begin{table} \vspace{-4pt} \setlength{\tabcolsep}{10pt} \centering \caption{KCCA results on MNIST 8M (top 50 largest correlations)}\label{table:cca_mnist}\vspace{-4pt} \begin{tabular}{c|c|c|c|c} \hline \multirow{2}{*}{ \# of feat} & \multicolumn{2}{c|}{Random features} & \multicolumn{2}{c}{Nystrom features} \\ \cline{2-5} & corrs. & minutes & corrs. & minutes\\ \hline \hline 256 & 25.2 & 3.2 & 30.4 & 3.0 \\\hline 512 & 30.7 & 7.0 & 35.3 & 5.1 \\\hline 1024 & 35.3 & 13.9 & 38.0 & 10.1 \\\hline 2048 & 38.8 & 54.3 & 41.1 & 27.0 \\\hline 4096 & 41.5 & 186.7 & 42.7 & 71.0 \\\hline \end{tabular}\\ \bigskip \begin{tabular}{c|c|c|c} \hline \multicolumn{2}{c|}{DSGD-KCCA} & \multicolumn{2}{c}{linear CCA}\\ \hline corrs. & minutes & corrs. & minutes\\ \hline \hline 43.5 & 183.2 & 27.4 & 1.1\\\hline \end{tabular} \vspace{-4pt} \end{table}
[ [ "# of feat", "Random features", null, "Nystrom features", null ], [ null, "corrs.", "minutes", "corrs.", "minutes" ], [ "256", "25.2", "3.2", "30.4", "3.0" ], [ "512", "30.7", "7.0", "35.3", "5.1" ], [ "1024", "35.3", "13.9", "38.0", "10.1" ], [ "2048", "38.8", "54.3", "41.1", "27.0" ], [ "4096", "41.5", "186.7", "42.7", "71.0" ] ]
0.772
null
null
2
1504.03655v4
22
[ 172.1540069580078, 285.20733642578125, 439.84503173828125, 361.19500732421875 ]
\begin{table}[h!] \centering \setlength{\tabcolsep}{2pt} \caption{Relation between various subspaces. \label{app_tb:relation} } \begin{tabular}{c|c|c|c|c} \hline \hline Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\ \hline $V$ & -- & -- & -- & -- \\ $F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\ $G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\ $\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\ $H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\ \hline \hline \end{tabular} \end{table}
[ [ "Subspace", "Evaluation", "Orth.", "Data Mini-batch", "RF Mini-batch" ], [ "V\nF\nt\nG\nt\nG˜\nt\nH\nt", "–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt", "–\n\u0013\n\u0017\n\u0017\n\u0017", "–\n\u0013\n\u0013\n\u0013\n\u0013", "–\n\u0017\n\u0017\n\u0017\n\u0013" ] ]
0.554517
null
null
0
1810.02442v1
11
[ 201.96400451660156, 72.198974609375, 407.30999755859375, 130.3809814453125 ]
\begin{table}[tbp] \centering \begin{tabular}{c|c|c|c} \hline Dataset $\#$ & \textsc{w/o L1} & \textsc{DGS} & \textsc{AutoLoss} \\ \hline \hline \emph{1} & .1337 & \textbf{.1019} & .1037 \\ \hline \emph{2} & .1294 & .1035 & \textbf{.1016} \\ \hline \emph{3} & .1318 & .1022 & \bf{.0997} \\ \hline \end{tabular} \vspace{-5pt} \caption{Comparing \textsc{AutoLoss} to other methods when transferring a trained AutoLoss controller for MLP classification to different data distributions.} \label{tab:MLP_transfer} \vspace{-10pt} \end{table}
[ [ "Dataset #", "W/O L1", "DGS", "AUTOLOSS" ], [ "1", ".1337", ".1019", ".1037" ], [ "2", ".1294", ".1035", ".1016" ], [ "3", ".1318", ".1022", ".0997" ] ]
0.461538
null
null
1
1810.02442v1
18
[ 208.13400268554688, 72.198974609375, 403.86700439453125, 144.3289794921875 ]
\begin{table} \centering \begin{tabular}{c|c} \hline Feature to drop & \texttt{MSE} \\ \hline \hline (2) normalized gradient magnitude & .086 \\ \hline (3) loss values& .101 \\ \hline (4) validation metrics & .085 \\ \hline None & \textbf{.070} \\ \hline \end{tabular} \caption{The MSE performance on the regression task when some features presented in \S\ref{sec:applications} are ablated.} \label{tab:feature_importance} \end{table}
[ [ "Feature to drop", "MSE" ], [ "(2) normalized gradient magnitude", ".086" ], [ "(3) loss values", ".101" ], [ "(4) validation metrics", ".085" ], [ "None", ".070" ] ]
0.641096
null
null
0
1808.09545v1
4
[ 402.7860107421875, 132.6719970703125, 467.1180114746094, 188.86102294921875 ]
\begin{table}[!htbp] \begin{center} \begin{small} \begin{tabular}{|c|c|c|} \hline TID & A & B \\\hline $t_1$ & $a_1$ & $b_1$ \\\hline $t_2$ & $a_1$ & $b_1$ \\\hline $t_3$ & $a_1$ & $b_2$ \\\hline $t_4$ & $a_1$ & $b_3$ \\\hline $t_5$ & $a_2$ & $b_2$ \\\hline \end{tabular} \end{small} \caption{\label{tb:1f1d}An example of data instance $D$ ($FD: A\rightarrow B$)} \end{center} \end{table}
[ [ "TID", "A", "B" ], [ "t1", "a1", "b1" ], [ "t2", "a1", "b1" ], [ "t3", "a1", "b2" ], [ "t4", "a1", "b3" ], [ "t5", "a2", "b2" ] ]
0.626506
null
null
1
1808.09545v1
7
[ 335.9429931640625, 300.5929870605469, 536.7839965820312, 365.74798583984375 ]
\begin{table} \begin{center} \begin{tabular}{|c|c|}\hline Target attribute set & Covered instance vertex \\\hline $\{AB\}$& $v_{1}$, $v_{2}$, $v_{3}$ (3 vertices)\\\hline $\{A\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{4}$ (4 vertices)\\\hline $\{B\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{5}$ (4 vertices)\\\hline $\{C\}$& $v_{5}$, $v_{6}$ (2 vertices)\\\hline $\{BC\}$& $v_{5}$, $v_{7}$ (2 vertices)\\\hline \end{tabular} \caption{\label{table:target} An example of target vertex sets} \end{center} \vspace{-0.3in} \end{table}
[ [ "Target attribute set", "Covered instance vertex" ], [ "{AB}", "v 1, v 2, v (3 vertices)\n3" ], [ "{A}", "v 1, v 2, v 3, v (4 vertices)\n4" ], [ "{B}", "v 1, v 2, v 3, v (4 vertices)\n5" ], [ "{C}", "v 5, v (2 vertices)\n6" ], [ "{BC}", "v 5, v (2 vertices)\n7" ] ]
0.372414
null
null
0
1508.07096v1
6
[ 108, 453.9549865722656, 580.7239990234375, 476.66900634765625 ]
\begin{table}[h!] \centering \begin{tabular}[h!]{|c|c|c|c|c|c|}\hline Algorithms & Sequential & Weight Averaging & Majority Vote & Synchronous Update & Asynchronous Update \\ \hline Error Rate (\%) & 1.08 & 0.98 & 1.04 & 0.97 & 1.06 \\ \hline \end{tabular} \caption{Test error rate using different algorithms for 200 epochs of fine tuning. Weight averaging and majority vote algorithms collect final weights from $7$ independent runs of the standard dropout algorithms. Synchronous update and asynchronous update algorithms combine results from two processes after each input instance. Dropout rate is 50\% for all algorithms. } \end{table}
[ [ "Algorithms", "Sequential", "Weight Averaging", "Majority Vote", "Synchronous Update", "Asynchronous Update" ], [ "Error Rate (%)", "1.08", "0.98", "1.04", "0.97", "1.06" ] ]
0.420712
null
null
0
1908.00868v2
3
[ 70.93057141985211, 52.27398681640625, 282.1504385811942, 115.83502197265625 ]
\begin{table} \centering \begin{tabular}{| l || r | } \hline {\bf SVM}&{\bf Ecology}\\ \hline Data point &Species\\ KKT Multiplier & Species Abundance\\ Feature Space & Trait Space\\ Kernel & Niche Overlap\\ Support Vectors & Species that survive in ecosystem\\ \hline \end{tabular} \caption{Conceptual mapping between SVMs and ecology \label{ecotable} } \end{table}
[ [ "SVM", "Ecology" ], [ "Data point\nKKT Multiplier\nFeature Space\nKernel\nSupport Vectors", "Species\nSpecies Abundance\nTrait Space\nNiche Overlap\nSpecies that survive in ecosystem" ] ]
0.598958
null
null
0
1802.00382v1
4
[ 307.76683807373047, 169.9580078125, 525.1287536621094, 257.23004150390625 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.6 cm}|p{1.2 cm}|p{1.4 cm}|l|l|} \hline \bf Source & \bf Labels & \bf Methods & \bf Rec & \bf F1\\ \hline \hline Gehrmann et al., 2017 & 10 own labels & LR 3-gram & 1.6K & 34.6 \\ \hline Gehrmann et al., 2017 & 10 own labels & CNN & 1.6K & 76 \\ \hline This Paper & 17 ICD-9 & CNN & 5K & 76.2 \\ \hline \end{tabular} \end{center} \caption{Classification of MIMIC clinical notes into labels representing high level phenotype categories (20 epochs for both CNN models)} \label{table:CNN_5k} \end{table}
[ [ "Source", "Labels", "Methods", "Rec", "F1" ], [ "Gehrmann\net al., 2017", "10 own\nlabels", "LR\n3-gram", "1.6K", "34.6" ], [ "Gehrmann\net al., 2017", "10 own\nlabels", "CNN", "1.6K", "76" ], [ "This Paper", "17 ICD-\n9", "CNN", "5K", "76.2" ] ]
0.677686
null
null
1
1802.00382v1
4
[ 307.76683807373047, 483.7920227050781, 525.1287536621094, 571.0640258789062 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.7 cm}|p{3 cm}|l|l|} \hline \bf Source & \bf Methods & \bf Recs & \bf F1 \\ \hline \hline This Paper & LSTM& 5k &64.6 \\ This Paper & LSTM-Attention & 5k& 67 \\ \hline This Paper & Hierarchical LSTM-Attention & 5k & 67.6 \\ \hline This Paper & CNN& 5k& 69 \\ This Paper & CNN-Attention& 5k & 72.8 \\ \hline \end{tabular} \end{center} \caption{Classification of MIMIC clinical notes into Level 1 ICD-9 Codes. Evaluation with 17 classes, 5k records, 5 epochs} \label{table:attention} \end{table}
[ [ "Source", "Methods", "Recs", "F1" ], [ "This Paper\nThis Paper", "LSTM\nLSTM-Attention", "5k\n5k", "64.6\n67" ], [ "This Paper", "Hierarchical LSTM-\nAttention", "5k", "67.6" ], [ "This Paper\nThis Paper", "CNN\nCNN-Attention", "5k\n5k", "69\n72.8" ] ]
0.598802
null
null
2
1802.00382v1
5
[ 72.03700256347656, 504.38702392578125, 290.2309926350911, 604.0140380859375 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.8 cm}|p {2.6 cm}|l|l|} \hline \bf Source & \bf Methods & \bf N. Rec & \bf F1\\ \hline \hline Perotte et al., 2014& Hierarchal SVM (all codes) & 22K & 39.5 \\ \hline Previous Project Reports\footnotemark& LSTM & 32K & 41.6 \\ \hline This paper &Baseline & 46K & 35 \\ \hline This paper &CNN & 46K & 72.4 \\ \hline \end{tabular} \end{center} \caption{\label{font-table} Classification of MIMIC clinical notes into most common Level 5 ICD-9 Codes} \label{table:top_20} \end{table}
[ [ "Source", "Methods", "N. Rec", "F1" ], [ "Perotte et\nal., 2014", "Hierarchal SVM\n(all codes)", "22K", "39.5" ], [ "Previous\nProject\nReports15", "LSTM", "32K", "41.6" ], [ "This paper", "Baseline", "46K", "35" ], [ "This paper", "CNN", "46K", "72.4" ] ]
0.724576
null
null
3
1802.00382v1
5
[ 309.1499938964844, 63.00799560546875, 523.6692016601562, 113.6180419921875 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.8 cm}|l|l|l|} \hline \bf Source & \bf Methods & \bf Recs &\bf F1 \\ \hline \hline This Paper & Baseline & 52.6K& 53 \\ This Paper &CNN & 52.6K& 79.7 \\ This Paper &CNN w/ Attention & 52.6K & 78.2 \\ \hline \end{tabular} \end{center} \caption{\label{font-table} Classification of MIMIC clinical notes into 17 Level 1 ICD-9 Codes} \label{table:full_data} \end{table}
[ [ "Source", "Methods", "Recs", "F1" ], [ "This Paper\nThis Paper\nThis Paper", "Baseline\nCNN\nCNN w/ Attention", "52.6K\n52.6K\n52.6K", "53\n79.7\n78.2" ] ]
0.432749
null
null
0
1907.13308v2
15
[ 335.26256016322543, 612.7529907226562, 533.4745570591518, 683.8040161132812 ]
\begin{table}[!ht] \centering \caption{Outcomes of Holm post-hoc test for AGGLO-2} \small { \begin{tabular}{|l|l|c|c|c|} \hline $ i $ & AGGLO-2 vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\ \hline 1 & SVM & 2.9764 & 0.0029 & 0.01 \\ 2 & Decision tree & -1.4174 & 0.1564 & 0.0125 \\ 3 & Naive Bayes & -0.6143 & 0.5390 & 0.0167 \\ 4 & KNN & 0.4725 & 0.6366 & 0.025 \\ 5 & Online GFMM & -0.2835 & 0.7768 & 0.05 \\ \hline \end{tabular} } \label{holm-agglo} \end{table}
[ [ "i", "AGGLO-2 vs.", "z\ni", "p\ni", "α\nk −i" ], [ "1\n2\n3\n4\n5", "SVM\nDecision tree\nNaive Bayes\nKNN\nOnline GFMM", "2.9764\n-1.4174\n-0.6143\n0.4725\n-0.2835", "0.0029\n0.1564\n0.5390\n0.6366\n0.7768", "0.01\n0.0125\n0.0167\n0.025\n0.05" ] ]
0.475452
null
null
1
1907.13308v2
16
[ 65.57342638288226, 77.0419921875, 277.1364310128348, 148.093017578125 ]
\begin{table}[!ht] \centering \caption{Outcomes of Holm post-hoc test for incremental learning based GFMM} \small { \begin{tabular}{|l|l|c|c|c|} \hline $ i $ & Online GFMM vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\ \hline 1 & SVM & 3.2599 & 0.0011 & 0.01 \\ 2 & Decision tree & -1.1339 & 0.2568 & 0.0125 \\ 3 & KNN & 0.7559 & 0.4497 & 0.0167 \\ 4 & Naive Bayes & -0.3308 & 0.7408 & 0.025 \\ 5 & AGGLO-2 & 0.2835 & 0.7768 & 0.05 \\ \hline \end{tabular} } \label{holm-oln} \end{table}
[ [ "i", "Online GFMM vs.", "z\ni", "p\ni", "α\nk −i" ], [ "1\n2\n3\n4\n5", "SVM\nDecision tree\nKNN\nNaive Bayes\nAGGLO-2", "3.2599\n-1.1339\n0.7559\n-0.3308\n0.2835", "0.0011\n0.2568\n0.4497\n0.7408\n0.7768", "0.01\n0.0125\n0.0167\n0.025\n0.05" ] ]
0.475196
null
null
2
1907.13308v2
5
[ 315.9509497748481, 209.1729736328125, 559.0630560980903, 398.06500244140625 ]
\begin{table}[!ht] \caption{Datasets were used for experiments} \label{table1} \centering \begin{tabular}{|l|L{2cm}|C{1.4cm}|C{1.4cm}|C{1.3cm}|} \hline ID & Dataset & No. samples & No. features & No. classes \\ \hline 1 & Circle & 1000 & 3 & 2 \\ \hline 2 & Complex9 & 3031 & 2 & 9 \\ \hline 3 & Diagnostic Breast Cancer & 569 & 30 & 2 \\ \hline 4 & Glass & 214 & 9 & 6 \\ \hline 5 & Ionosphere & 351 & 34 & 2 \\ \hline 6 & Iris & 150 & 4 & 3 \\ \hline 7 & Ringnorm & 7400 & 20 & 2 \\ \hline 8 & Segmentation & 2310 & 19 & 7 \\ \hline 9 & Spherical\_5\_2 & 250 & 2 & 5 \\ \hline 10 & Spiral & 1000 & 2 & 2 \\ \hline 11 & Thyroid & 215 & 5 & 3 \\ \hline 12 & Twonorm & 7400 & 20 & 2 \\ \hline 13 & Waveform & 5000 & 21 & 3 \\ \hline 14 & Wine & 178 & 13 & 3 \\ \hline 15 & Yeast & 1484 & 8 & 10 \\ \hline 16 & Zelnik6 (Toy dataset) & 238 & 2 & 3 \\ \hline \end{tabular} \end{table}
[ [ "ID", "Dataset", "No.\nsamples", "No. features", "No. classes" ], [ "1", "Circle", "1000", "3", "2" ], [ "2", "Complex9", "3031", "2", "9" ], [ "3", "Diagnostic\nBreast Cancer", "569", "30", "2" ], [ "4", "Glass", "214", "9", "6" ], [ "5", "Ionosphere", "351", "34", "2" ], [ "6", "Iris", "150", "4", "3" ], [ "7", "Ringnorm", "7400", "20", "2" ], [ "8", "Segmentation", "2310", "19", "7" ], [ "9", "Spherical 5 2", "250", "2", "5" ], [ "10", "Spiral", "1000", "2", "2" ], [ "11", "Thyroid", "215", "5", "3" ], [ "12", "Twonorm", "7400", "20", "2" ], [ "13", "Waveform", "5000", "21", "3" ], [ "14", "Wine", "178", "13", "3" ], [ "15", "Yeast", "1484", "8", "10" ], [ "16", "Zelnik6 (Toy\ndataset)", "238", "2", "3" ] ]
0.994911
null
null
0
2201.13299v4
10
[ 57.19740676879883, 218.53099060058594, 287.6843566894531, 242.64083862304688 ]
\begin{table}[ht] \caption{Performance of different ablated RES models on the ATOM3D dataset.}\label{table:resr_ab} \vspace{0.3em} \centering \resizebox{\linewidth}{!}{ \begin{tabular}{l|cccc} \toprule %\hline Model & No DirectedLinear & No Interaction & No Equivariance & DW-GNN \\ \midrule Acc \% & 47.3 & 47.7 & 33.0 & \textbf{50.2}\\ \bottomrule % \hline \end{tabular} } \end{table}
[ [ "Model", "No DirectedLinear No Interaction No Equivariance DW-GNN" ], [ "Acc %", "47.3 47.7 33.0 50.2" ] ]
0.890052
null
null
0
1801.07358v2
14
[ 179.4199981689453, 183.20098876953125, 432.58099365234375, 273.89467366536456 ]
\begin{table}[h] \centering \begin{tabular}{ c | c c } \hline Scenario& IMCC & Regular ES\\ \hline (i) Independent & 12.48 & 3.28 \\ (ii) Uniform Positive Corr & 28.57 & 16.70 \\ (iii) Positive-RF-Corr & 18.28 & 7.81 \\ (iv) Positive-LH-Corr & 21.00 & 7.59 \\ \hline \hline \end{tabular} \caption {FRTB IMCC v.s. Regular ES}\label{mytable_frtb_es} \end{table}
[ [ "Scenario", "IMCC Regular ES" ], [ "(i) Independent\n(ii) Uniform Positive Corr\n(iii) Positive-RF-Corr\n(iv) Positive-LH-Corr", "12.48 3.28\n28.57 16.70\n18.28 7.81\n21.00 7.59" ] ]
0.68144
null
null
1
1801.07358v2
17
[ 190.96299743652344, 105.6619873046875, 421.0369873046875, 178.64202880859375 ]
\begin{table}[h] \centering \begin{tabular}{ c | c c } \hline Scenario& IMCC & Regular ES \\ \hline (i) RF Hedging & 7.90 & 2.17 \\ (ii) LH Hedging & 8.43 & 2.55 \\ (iii) Position Hedging & 0.84 & 0.33 \\ \hline \hline \end{tabular} \caption { FRTB IMCC v.s. Regular ES}\label{mytable_frtb_es_test2} \end{table}
[ [ "Scenario", "IMCC Regular ES" ], [ "(i) RF Hedging\n(ii) LH Hedging\n(iii) Position Hedging", "7.90 2.17\n8.43 2.55\n0.84 0.33" ] ]
0.656716
null
null
2
1801.07358v2
19
[ 157.29400634765625, 442.1390075683594, 454.70599365234375, 497.4049987792969 ]
\begin{table}[h] \centering \begin{tabular}{ c | c c c c c c} \hline & CM & CR&EQ & FX & IR & Unconstrained\\ \hline Set A & 80\% & 100\%&97\% & 100\% & 100\% & 95\% \\ Set B & 97\% & 100\% &94\% & 100\% & 100\%& 98\% \\ \hline \hline \end{tabular} \caption {Ratios between ES using the reduced set and the full set. }\label{mytable_1} \end{table}
[ [ "", "CM CR EQ FX IR Unconstrained" ], [ "Set A\nSet B", "80% 100% 97% 100% 100% 95%\n97% 100% 94% 100% 100% 98%" ] ]
0.462151
null
null
3
1801.07358v2
20
[ 81.89199829101562, 68.05999755859375, 530.1080322265625, 141.03997802734375 ]
\begin{table}[h] \centering \begin{tabular}{ c | c c c c} \hline {} & Set A & Set A & Set B& Set B \\ {} & (Adjustment) & (Without adj)& (Adjustment) & (Without adj)\\ \hline CM.60 days.Position 2 & 4.00\% & 2.24\% & 1.43\% & 1.43\% \\ EQ.40 days.Position 1 & 5.04\% & 3.26\% & 2.11\% & 2.11\% \\ \hline \hline \end{tabular} \caption {Percentages of allocations with and without stress-scaling adjustment using different reduced factor sets. Columns labeled adjustment report allocations using \eqref{IMCC-ES}, columns labeled without adj report allocation using \eqref{Euler-IMCC}. The total IMCC are the same in both methods: IMCC(Set A)=11.55; IMCC(Set B)=3.14.}\label{allocationRatio} \end{table}
[ [ "", "Set A Set A Set B Set B\n(Adjustment) (Without adj) (Adjustment) (Without adj)" ], [ "CM.60 days.Position 2\nEQ.40 days.Position 1", "4.00% 2.24% 1.43% 1.43%\n5.04% 3.26% 2.11% 2.11%" ] ]
0.422789
null
null
0
1902.10027v3
5
[ 329.3611145019531, 53.42999267578125, 544.3990173339844, 137.218994140625 ]
\begin{table}[t] %\vspace*{-0.1in} \centering \caption{Notations used in \FT approach} \vspace*{-0.1in} \label{table:notation} \begin{tabular}{| c | p{6cm} | } \hline $G$ & A grammar used to generate test inputs \\ \hline $\mathbb{I}_{G}$ & All inputs described by a grammar $G$ \\ \hline $\mathbb{T}_{G}$ & The derivation trees of any input $I \in \mathbb{I}_{G}$ \\ \hline $f_1, f_2$ & Classifiers under test. \\ \hline $J$ & A pre-determined Jaccard Threshold \\ \hline $\tau_G$ & A function $\mathbb{I}_{G} \rightarrow \mathbb{T}_{G}$ which outputs the derivation tree of an input $I \in \mathbb{I}_{G}$ \\ \hline $S$ & The initial input to the directed search. $S$ conforms to grammar $G$ \\ \hline % $Perturb$ & The perturbation function \\ \hline \end{tabular} \vspace*{-0.15in} \end{table}
[ [ "G", "A grammar used to generate test inputs" ], [ "IG", "All inputs described by a grammar G" ], [ "TG", "The derivation trees of any input I ∈IG" ], [ "f1, f2", "Classifiers under test." ], [ "J", "A pre-determined Jaccard Threshold" ], [ "τG", "A function IG → TG which outputs the derivation\ntree of an input I ∈IG" ], [ "S", "The initial input to the directed search. S conforms\nto grammar G" ] ]
0.568681
null
null
1
1902.10027v3
8
[ 327.6671997070313, 53.42999267578125, 546.0927856445312, 103.15802001953125 ]
\begin{table}[t] %\vspace*{-0.1in} \centering \caption{Notations used in Evaluation} \vspace*{-0.1in} \label{table:eval-notation} \begin{tabular}{| c | p{6cm} | } \hline \#inputs & Total number of \revise{unique} generated test inputs \\ \hline \#err & Total number of \revise{unique} erroneous inputs \\ \hline $err_r$ & $\frac{\#err}{\#inputs}$ \\ \hline Imp\% & Improvement of $err_r$ of \FT with respect to the $err_r$ of random test\\ \hline \end{tabular} \vspace*{-0.15in} \end{table}
[ [ "#inputs", "Total number of unique generated test inputs" ], [ "#err", "Total number of unique erroneous inputs" ], [ "errr", "#err\n#inputs" ], [ "Imp%", "Improvement of errr of OGMA with respect to the\nerrr of random test" ] ]
0.940568
null
null
2
1902.10027v3
9
[ 70.71820220947265, 145.3060302734375, 275.04180908203125, 183.0799530029297 ]
\begin{table}[h] \caption{\revise{Jaccard Thresholds}} \centering \begin{tabular}{| c | c | c | c | c | c | c | c |} \hline Grammars & \multicolumn{1}{l|}{A} & \multicolumn{1}{l|}{B} & \multicolumn{1}{l|}{C} & \multicolumn{1}{l|}{D} & \multicolumn{1}{l|}{E} & \multicolumn{1}{l|}{F} \\ \hline $\mathbb{R}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.15 & 0.15 \\ \hline $\mathbb{U}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.1 & 0.1 \\ \hline $\mathbb{R}$-$\mathbb{U}$ & 0.3 & 0.15 & 0.15 & 0.3 & 0.15 & 0.15 \\ \hline \end{tabular} \label{table:thresholds} \end{table}
[ [ "Grammars", "A", "B", "C", "D", "E", "F" ], [ "R-A", "0.15", "0.15", "0.1", "0.15", "0.15", "0.15" ], [ "U-A", "0.15", "0.15", "0.1", "0.15", "0.1", "0.1" ], [ "R-U", "0.3", "0.15", "0.15", "0.3", "0.15", "0.15" ] ]
0.868914
null
null
3
1902.10027v3
11
[ 54.1738338470459, 698.4149780273438, 293.8263346354167, 745.406982421875 ]
\begin{table}[h] \caption{Sensitivity of \FT w.r.t. Grammars} \vspace*{-0.2in} \label{classifiers} \begin{center} \begin{tabular}{| c | c | c | c | c |} \hline & \multicolumn{2}{c|}{Grammar A - F} & \multicolumn{2}{c|}{$G_{bad}$} \\ \hline & \%unique inps & \%error inps & \%unique inps & \%error inps \\ \hline $\mathbb{R}$-$\mathbb{A}$ & 97\% & 88\% & 52\% & 22\% \\ \hline $\mathbb{U}$-$\mathbb{A}$ & 96\% & 84\% & 49\% & 34\% \\ \hline $\mathbb{R}$-$\mathbb{U}$ & 96\% & 66\% & 51\% & 28\% \\ \hline \end{tabular} \end{center} \label{table:badGrammar} \vspace*{-0.1in} \end{table}
[ [ "", "Grammar A - F", null, "Gbad", null ], [ "", "%unique inps", "%error inps", "%unique inps", "%error inps" ], [ "R-A", "97%", "88%", "52%", "22%" ], [ "U-A", "96%", "84%", "49%", "34%" ], [ "R-U", "96%", "66%", "51%", "28%" ] ]
0.780488
null
null
0
2002.10904v3
14
[ 135.67627970377603, 265.01898193359375, 487.0430145263672, 319.81298828125 ]
\begin{table} \centering \caption{Summary statistics for pretest touches by treatment group.\label{tab:pretest}}. \begin{tabular}{ l c c c c c | c c c c c } \hline & \multicolumn{5}{c}{Experiment 1} & \multicolumn{5}{c}{Experiment 2} \\ & CT & HH & HL & LH & LL & CT & HH & HL & LH & LL\\ \hline Mean & 31.3 & 34.3 & 32.3 & 30.9 & 30.2 & 32.4 & 33.7 & 33.1 & 34.4 & 32.6 \\ SD & 13.4 & 14.6 & 13.6 & 14.3 & 12.6 & 13.6 & 13.1 & 13.5 & 14.2 & 13.6 \\ N & 213 & 150 & 219 & 230 & 257 & 363 & 394 & 416 & 423 & 395 \\ %Shapiro-Wilk & 3e-08 & 4e-4 & 3e-4 & 1e-4 & 8e-05 & 1e-8 & 7e-4 & 5e-8 & 2e-7 & 3e-9\\ \hline \end{tabular} \end{table}
[ [ "CT HH HL LH LL", "CT HH HL LH LL" ], [ "Mean 31.3 34.3 32.3 30.9 30.2\nSD 13.4 14.6 13.6 14.3 12.6\nN 213 150 219 230 257", "32.4 33.7 33.1 34.4 32.6\n13.6 13.1 13.5 14.2 13.6\n363 394 416 423 395" ] ]
0.582781
null
null
0
2112.15448v1
5
[ 102.88400268554688, 128.98699951171875, 408.64801025390625, 294.2659912109375 ]
\begin{table}[H] \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline cases & $\lambda$ & n & m & corr & ETE & $p_p$ & $p$ \\ \hline\hline case 1 & 0.000018 & 5 & 30 & 0.992473 & 0.0841 & 67 & 72 \\ \hline case 2 & 0.000019 & 15 & 10 & 0.984619 & 0.1150 & 67 & 67 \\ \hline case 3 & 0.00002 & 5 & 10 & 0.980843 & 0.1574 & 54 & 63 \\ \hline case 4 & 0.00002 & 5 & 5 & 0.980935 & 0.0485 & 59 & 63 \\ \hline case 5 & 0.000025 & 5 & 5 & 0.975577 & 0.1269 & 48 & 53 \\ \hline case 6 & 0.00004 & 5 & 10 & 0.965080 & 0.1297 & 26 & 26 \\ \hline case 7 & 0.000045 & 5 & 5 & 0.923647 & 0.07925 & 22 & 22 \\ \hline case 8 & 0.000048 & 5 & 5 & 0.954842 & 0.1210 & 16 & 17 \\ \hline case 9 & 0.00005 & 5 & 10 & 0.872521 & 0.1790 & 16 & 16 \\ \hline case 10 & 0.00005 & 20 & 5 & 0.971625 & 0.1220 & 16 & 16 \\ \hline \end{tabular} \caption{experiments on using exact POSI for Lasso on S\&P500} \label{table-experiments} \end{table}
[ [ "cases", "λ", "n", "m", "corr", "ETE", "p\np", "p" ], [ "case 1", "0.000018", "5", "30", "0.992473", "0.0841", "67", "72" ], [ "case 2", "0.000019", "15", "10", "0.984619", "0.1150", "67", "67" ], [ "case 3", "0.00002", "5", "10", "0.980843", "0.1574", "54", "63" ], [ "case 4", "0.00002", "5", "5", "0.980935", "0.0485", "59", "63" ], [ "case 5", "0.000025", "5", "5", "0.975577", "0.1269", "48", "53" ], [ "case 6", "0.00004", "5", "10", "0.965080", "0.1297", "26", "26" ], [ "case 7", "0.000045", "5", "5", "0.923647", "0.07925", "22", "22" ], [ "case 8", "0.000048", "5", "5", "0.954842", "0.1210", "16", "17" ], [ "case 9", "0.00005", "5", "10", "0.872521", "0.1790", "16", "16" ], [ "case 10", "0.00005", "20", "5", "0.971625", "0.1220", "16", "16" ] ]
0.919918
null
null
0
2404.13079v1
13
[ 118.56900024414062, 89.08099365234375, 493.4309997558594, 155.33197021484375 ]
\begin{table}[htbp] \centering \caption{Digikala dataset Results} \label{tab:table4} \begin{tabular}{|c|ccc|ccc|} \hline \multirow{3}{*}{Model} & \multicolumn{3}{c|}{2 class} & \multicolumn{3}{c|}{3 class} \\ \cline{2-7} & \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} & \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} \\ \cline{2-7} & \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score & \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score \\ \hline ParsBERT & 68 & 87 & 72 & 57 & 62 & 55 \\ ParsBERT + GCN & 70 & 91.1 & 74 & 58 & 63.9 & 55 \\ ParsBERT + RGCN & 70.36 & 91.17 & 74.15 & 58.29 & 63.94 & 55.11\\ \hline \end{tabular} \end{table}
[ [ "Model", "2 class", null, null, "3 class", null, null ], [ null, "balanced", "imbalance", null, "balanced", "imbalance", null ], [ null, "accuracy", "accuracy", "F1-score", "accuracy", "accuracy", "F1-score" ], [ "ParsBERT\nParsBERT + GCN\nParsBERT + RGCN", "68 87 72\n70 91.1 74\n70.36 91.17 74.15", null, null, "57 62 55\n58 63.9 55\n58.29 63.94 55.11", null, null ] ]
0.390681
null
null
0
2310.01739v1
44
[ 77.89800262451172, 302.9320068359375, 517.3779907226562, 391.2010192871094 ]
\begin{table}[!h] \centering \caption{Asymptotic complexities of various randomized pivoting-based skeleton selection algorithms based on \Cref{algo:sketch_pivot_CUR_general}.} \label{tab:complexity_rand_pivot} \begin{tabular}{c|c|c} \hline Algorithm & Row basis approximator construction (Line 1,2) & Pivoting (Line 3) \\ \hline Rand-LUPP & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\ Rand-LUPP-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\ \hline Rand-CPQR & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\ Rand-CPQR-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\ \hline RSVD-DEIM & $O\rbr{T_s(l,\Ab) + (m+n)l^2 + \nnz(\Ab) l}$ & $O(nl^2)$ \\ \hline \end{tabular} \end{table}
[ [ "Algorithm", "Row basis approximator construction (Line 1,2)", "Pivoting (Line 3)" ], [ "Rand-LUPP\nRand-LUPP-1piter", "O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns", "O(nl2)\nO(nl2)" ], [ "Rand-CPQR\nRand-CPQR-1piter", "O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns", "O(nl2)\nO(nl2)" ], [ "RSVD-DEIM", "O (T (l, A) + (m + n)l2 + nnz(A)l)\ns", "O(nl2)" ] ]
0.670194
null
null
1
2310.01739v1
90
[ 165.48599243164062, 90.6300048828125, 429.78997802734375, 134.7650146484375 ]
\begin{table}[t] % \begin{wraptable}{hr}{0.65\columnwidth} % \vspace{-1em} \centering \caption{DAC helps FixMatch when the unlabeled data is scarce.} \vspace{-0.5em} \label{table:combining_with_SSL} \begin{tabular}{c|ccc} \hline Number of Unlabeled Data & 5000 & 10000 & 20000 \\ \hline FixMatch & 67.74 & 69.23 & 70.76 \\ FixMatch + DAC ($\lambda=1$) & \textbf{71.24} & \textbf{72.7} & \textbf{74.04} \\ \hline \end{tabular} % \end{wraptable} \end{table}
[ [ "Number of Unlabeled Data", "5000 10000 20000" ], [ "FixMatch\nFixMatch + DAC (λ = 1)", "67.74 69.23 70.76\n71.24 72.7 74.04" ] ]
0.776256
null
null
0
2307.04012v1
16
[ 210.34889221191406, 110.8193359375, 401.6507568359375, 243.7833251953125 ]
\begin{table}[] \begin{tabular}{r|c|} \cline{2-2} & \textbf{\begin{tabular}[c]{@{}c@{}}CCSD(T) Error\\ kcal/mol\end{tabular}} \\ \hline \multicolumn{1}{|r|}{\textbf{AN1-1x dx}} & 6.44 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 6.98 \\ \hline \multicolumn{1}{|r|}{\textbf{GEOM}} & 16.46 \\ \hline \multicolumn{1}{|r|}{\textbf{Transition1x}} & 11.73 \\ \hline \multicolumn{1}{|r|}{\textbf{QM7-x}} & 8.26 \\ \hline \multicolumn{1}{|r|}{\textbf{Qmugs}} & 14.69 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1ccx}} & 13.9 \\ \hline \end{tabular} \caption{The error for the CCSD(T) data after first fitting the six datasets. The ANI-1ccx result is when no previous training is carried out. } \label{tab:ind_err}. \end{table}
[ [ "", "CCSD(T) Error\nkcal/mol" ], [ "AN1-1x dx", "6.44" ], [ "ANI-1x tz", "6.98" ], [ "GEOM", "16.46" ], [ "Transition1x", "11.73" ], [ "QM7-x", "8.26" ], [ "Qmugs", "14.69" ], [ "ANI-1ccx", "13.9\n." ] ]
0.506394
null
null
1
2307.04012v1
19
[ 190.17642211914062, 348.9042205810547, 421.82335408528644, 467.4153747558594 ]
\begin{table}[] \begin{tabular}{r|c|} \cline{2-2} & \textbf{Number of Structures} \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x dz}} & 855,028 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 732,154 \\ \hline \multicolumn{1}{|r|}{\textbf{Qmugs}} & 103,374 \\ \hline \multicolumn{1}{|r|}{\textbf{QM7-x}} & 1,085,249 \\ \hline \multicolumn{1}{|r|}{\textbf{GEOM}} & 122,552 \\ \hline \multicolumn{1}{|r|}{\textbf{Transition-1x}} & 251,095 \\ \hline \multicolumn{1}{|r|}{\textbf{Total}} & 3,149,452 \\ \hline \end{tabular} \caption{The number of structures included from each dataset. } \label{tab:AL_DS} \end{table}
[ [ "", "Number of Structures" ], [ "ANI-1x dz", "855,028" ], [ "ANI-1x tz", "732,154" ], [ "Qmugs", "103,374" ], [ "QM7-x", "1,085,249" ], [ "GEOM", "122,552" ], [ "Transition-1x", "251,095" ], [ "Total", "3,149,452" ] ]
0.682216
null
null
0
2212.03481v1
9
[ 198.73899841308594, 294.1889953613281, 410.39809163411456, 368.4110107421875 ]
\begin{table}[h!] \centering \begin{tabular}{|l|l|l|} \hline \textbf{Station} & \textbf{\# of samples} & \textbf{Execution time} \\ \hline 1 & 84 & 13h 46min \\ \hline 2 & 94 & 24h 26min \\ \hline 3 & 38 & 6h 37min \\ \hline Total & 216 & 44h 49min\\ \hline \end{tabular} \label{train1:time} \caption{Station-wise and total number of samples and execution time of the nf-core HLA typing train} \end{table}
[ [ "Station", "# of samples", "Execution time" ], [ "1", "84", "13h 46min" ], [ "2", "94", "24h 26min" ], [ "3", "38", "6h 37min" ], [ "Total", "216", "44h 49min" ] ]
0.655629
null
null
1
2212.03481v1
10
[ 89.46900177001953, 392.0169982910156, 522.531005859375, 481.0830078125 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|c|c|c|} \hline \textbf{Station} & \textbf{pre\_run} & \textbf{Execution time} & \textbf{post\_run} & \textbf{Acc}& \textbf{Sens}\\ \hline 1 & 0 / 0MB / 10s & 11h 26m 29s & 8 / 625 MB / 1min 2s & 0.737 & 0.737\\ \hline 2 & 8 / 625 MB / 59s & 12h 47m 24s & 13 / 625 MB / 1m 5s & 0.829 & 0.784\\ \hline 3 & 13 / 625 MB / 57s & 12h 55m 22s & 3 / 654.64MB / 1m 1s & 0.681 & 0.69\\ \hline \textbf{Total} & time 2m 6s & 1d 13h 9m 8s & time 3m 25s & 0.68 & 0.69 \\ \hline \textbf{Central} & 0 / 0MB / 8.817s & 3d 23h 46m 25s & 3 / 654.64MB / 1m 1s & 0.684 & 0.625 \\ \hline \end{tabular} \caption{Execution time and performance of ISIC showcase model at different stations. \textit{pre\_run} and \textit{post\_run} protocols are security protocol steps. Number of files / file size / execution time is reported at each station in the protocol columns. Weighted accuracy (Acc) and weighted sensitivity (Sens) is averaged over all classes and reported from the last epoch at each station.} \label{exp2:time} \end{table}
[ [ "Station", "pre run", "Execution time", "post run", "Acc", "Sens" ], [ "1", "0 / 0MB / 10s", "11h 26m 29s", "8 / 625 MB / 1min 2s", "0.737", "0.737" ], [ "2", "8 / 625 MB / 59s", "12h 47m 24s", "13 / 625 MB / 1m 5s", "0.829", "0.784" ], [ "3", "13 / 625 MB / 57s", "12h 55m 22s", "3 / 654.64MB / 1m 1s", "0.681", "0.69" ], [ "Total", "time 2m 6s", "1d 13h 9m 8s", "time 3m 25s", "0.68", "0.69" ], [ "Central", "0 / 0MB / 8.817s", "3d 23h 46m 25s", "3 / 654.64MB / 1m 1s", "0.684", "0.625" ] ]
0.650362
null
null
2
2212.03481v1
19
[ 80.77300262451172, 72.198974609375, 531.2269897460938, 695.6600341796875 ]
\begin{table}[H] \centering \begin{tabular}{|l|l|} \hline \textbf{Term} & \textbf{Description} \\ \hline $A$ & Algorithm files defined by the User \\ \hline AK & Actinic keratosis \\ \hline BCC & Basal cell carcinoma \\ \hline BKL & Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis) \\ \hline $C_I$ & Container created of image $I$ \\ \hline $CR$ & Container Registry \\ \hline $D_{i}$ & Data (A,Q, and Model / Results) of party $i$ as cargo of the train\\ \hline DF & Dermatofibroma \\ \hline DNN & Deep Neural Network \\ \hline $DS_i$ & Digital Signature of party $i$ \\ \hline $\mathcal{E}_{D}$ & Encrypted value of data $D$\\ \hline GB & Gigabytes \\ \hline GPU & Graphical Processing Unit \\ \hline h & hours \\ \hline HLA & Human Leukocyte Antigen \\ \hline $I$ & Base image \\ \hline $ID_i$ & $ID$ of party $i$ \\ \hline $ID_U$ & Identifier of user $U$ \\ \hline $K$ & Random generated number of length $l$ as session key of the analysis \\ \hline KB & Kilobytes \\ \hline $N$ & Random generated number of length $l$ as session $ID$ of the analysis\\ \hline NV & Melanocytic nevus \\ \hline m & minutes \\ \hline MEL& Melanoma \\ \hline MHC& Major Histocompatibility Complex \\ \hline PDR& Private Docker Registry \\ \hline PHT& Personal Health Train \\ \hline $PK{_i}$ & Public key of the party $i$ \\ \hline $Q$ & Query operated on database defined by the User\\ \hline $R$ & Defined Route of the train defined by the User\\ \hline RE & Result extraction process\\ \hline $S$ & Station \\ \hline SCC & Squamous cell carcinoma \\ \hline $SK{_i}$ & Private key of the party $i$ \\ \hline SMPC & Secure Multi-Party Computation \\ \hline TB & Train building process \\ \hline $U$ & User \\ \hline $UI$ & central User Interface do manage trains and submit algorithms\\ \hline $URI$ & Uniform Resource Identifier \\ \hline VASC & Vascular lesion \\ \hline vCPU & virtual Central Processing Unit \\ \hline \end{tabular}\label{supp:notations} \caption{Notations and abbreviations used in this paper.} \end{table}
[ [ "Term", "Description" ], [ "A", "Algorithm files defined by the User" ], [ "AK", "Actinic keratosis" ], [ "BCC", "Basal cell carcinoma" ], [ "BKL", "Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis)" ], [ "C\nI", "Container created of image I" ], [ "CR", "Container Registry" ], [ "D\ni", "Data (A,Q, and Model / Results) of party i as cargo of the train" ], [ "DF", "Dermatofibroma" ], [ "DNN", "Deep Neural Network" ], [ "DS\ni", "Digital Signature of party i" ], [ "ED", "Encrypted value of data D" ], [ "GB", "Gigabytes" ], [ "GPU", "Graphical Processing Unit" ], [ "h", "hours" ], [ "HLA", "Human Leukocyte Antigen" ], [ "I", "Base image" ], [ "ID\ni", "ID of party i" ], [ "ID\nU", "Identifier of user U" ], [ "K", "Random generated number of length l as session key of the analysis" ], [ "KB", "Kilobytes" ], [ "N", "Random generated number of length l as session ID of the analysis" ], [ "NV", "Melanocytic nevus" ], [ "m", "minutes" ], [ "MEL", "Melanoma" ], [ "MHC", "Major Histocompatibility Complex" ], [ "PDR", "Private Docker Registry" ], [ "PHT", "Personal Health Train" ], [ "PK\ni", "Public key of the party i" ], [ "Q", "Query operated on database defined by the User" ], [ "R", "Defined Route of the train defined by the User" ], [ "RE", "Result extraction process" ], [ "S", "Station" ], [ "SCC", "Squamous cell carcinoma" ], [ "SK\ni", "Private key of the party i" ], [ "SMPC", "Secure Multi-Party Computation" ], [ "TB", "Train building process" ], [ "U", "User" ], [ "UI", "central User Interface do manage trains and submit algorithms" ], [ "URI", "Uniform Resource Identifier" ], [ "VASC", "Vascular lesion" ], [ "vCPU", "virtual Central Processing Unit" ] ]
0.973525
null
null
0
1912.10204v1
3
[ 56.18338203430176, 305.4561462402344, 290.3208923339844, 358.287353515625 ]
\begin{table} \vspace{2ex} \resizebox{\columnwidth}{!}{ \begin{tabular}{l | c | c | c} \toprule \textbf{Dataset} & \textbf{\# instances} & \textbf{\# authors} & \textbf{\# texts/author}\\ \midrule \textit{development} & 1000 & 50 & 20\\ \textit{cross-validation} & 3500 & 50 & 70\\ \textit{holdout test} & 500 & 50 & 10\\ \bottomrule \end{tabular} } \centering \caption{Distribution of instances in the different datasets} \label{dist} \end{table}
[ [ "Dataset", "# instances", "# authors", "# texts/author" ], [ "development\ncross-validation\nholdout test", "1000\n3500\n500", "50\n50\n50", "20\n70\n10" ] ]
0.513369
null
null
0
2109.12567v1
3
[ 72, 479.2279968261719, 501.5459899902344, 523.2630004882812 ]
\begin{table}[ht] \begin{tabular}{|l|l|l|l|} \texttt{Metric} & \texttt{c = arrayfun(@(idx)} & \texttt{s = "TestResult" +} & \texttt{String advantage} \\ \hline \texttt{Characters of M-code} & \texttt{78 chars} & \texttt{24 chars} & \texttt{3.25x shorter} \\ \texttt{Duration (sec)} & \texttt{0.01640} & \texttt{0.0003634} & \texttt{45x faster} \\ \texttt{Bytes} & \texttt{129,786} & \texttt{70,096} & \texttt{1.85x smaller} \end{tabular} \caption{Performance comparison of string building for cell and string array} \label{table:StringBuilding} \end{table}
[ [ "Metric", "c = arrayfun(@(idx)", "s = \"TestResult\" +", "String advantage" ], [ "Characters of M-code\nDuration (sec)\nBytes", "78 chars\n0.01640\n129,786", "24 chars\n0.0003634\n70,096", "3.25x shorter\n45x faster\n1.85x smaller" ] ]
0.371981
null
null
1
2109.12567v1
6
[ 72, 581.281005859375, 529.18798828125, 614.406982421875 ]
\begin{table}[ht] \begin{tabular}{|l|l|l|l|l|} \texttt{Metric} & \texttt{sprintf} & \texttt{{[}num2str(1) ` ' a{]}} & \texttt{1 + " " + a} & \texttt{Advantage over sprintf} \\ \hline \texttt{Chars of M-code} & \texttt{22 chars} & \texttt{18 chars} & \texttt{11 chars} & \texttt{2x as compact} \\ \texttt{Duration (sec)} & \texttt{0.00001375} & \texttt{0.00001227} & \texttt{0.000001693} & \texttt{8.1x faster} \end{tabular} \caption{Comparison of MATLAB text concatenation.} \label{table:Concat} \end{table}
[ [ "Metric", "sprintf", "[num2str(1) ‘ ’ a]", "1 + \" \" + a", "Advantage over sprintf" ], [ "Chars of M-code\nDuration (sec)", "22 chars\n0.00001375", "18 chars\n0.00001227", "11 chars\n0.000001693", "2x as compact\n8.1x faster" ] ]
0.380952
null
null
0
2202.06493v1
4
[ 71.5479965209961, 97.43701171875, 272.7099914550781, 158.9396769205729 ]
\begin{table}[htb] \centering \caption{Dataset for experiments} \small \begin{tabular}{l|rrr} \hline \hline \multicolumn{1}{l}{} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Fashion\\ MNIST\end{tabular}} & \multicolumn{1}{c}{CIFAR10} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Caltech\\ Birds\end{tabular}} \\ \hline Domain & Clothing & Vehicle, Animal & Bird \\ Train data & 60,000 & 50,000 & \multirow{2}{*}{17821} \\ Test data & 10,000 & 10,000 & \\ Classes & 10 & 10 & 200 \\ Clients & 3 & 5 & 10 \\ Samples & 6,400 & 6,400 & 3,200 \\ \hline \hline \end{tabular} \label{tab:dataset} \end{table}
[ [ "Domain\nTrain data\nTest data\nClasses\nClients\nSamples", "Clothing Vehicle, Animal Bird\n60,000 50,000\n17821\n10,000 10,000\n10 10 200\n3 5 10\n6,400 6,400 3,200" ] ]
0.65625
null
null
0
2103.13655v1
8
[ 149.92300415039062, 157.3800048828125, 298.0450134277344, 219.5460205078125 ]
\begin{table}[h] \centering % \caption{Overview of the results on the test set after optimization of the Neural Network (NN) and the Structured Deep Kernel Network (SDKN): Cross-correlation (left) and Loss (right).} \renewcommand{\arraystretch}{1.4} \tiny \begin{tabular}{|ll|r|r|l|l|} \hline % \textbf{Cross-Correlation} & & GRU1 & GRU2 & GRU3 \\ \hline \hline Projection & ANN & 0.9989 & 0.8163 & 0.9989 \\ & SDKN & 0.9989 & 0.9989 & 0.9988 \\ \hline Top-Hat & ANN & 0.9992 & 0.9992 & 0.9992 \\ & SDKN & 0.9991 & 0.9992 & 0.9992 \\ \hline Fourier \qquad \qquad & ANN & 0.9992 & 0.9993 & 0.9993 \\ & SDKN & 0.9992 & 0.9993 & 0.9993 \\ \hline \end{tabular} \quad \begin{tabular}{|ll|r|r|l|l|} \hline % \textbf{MSE-Loss} & & GRU1 & GRU2 & GRU3 \\ \hline \hline Projection & ANN & 3.235e-01 & 4.996e+01 & 3.233e-01 \\ & SDKN & 3.253e-01 & 3.261e-01 & 3.368e-01 \\ \hline Top-Hat & ANN & 3.155e-02 & 2.917e-02 & 2.888e-02 \\ & SDKN & 3.222e-02 & 2.989e-02 & 2.893e-02 \\ \hline Fourier \qquad \qquad & ANN & 1.179e-02 & 9.737e-03 & 9.452e-03 \\ & SDKN & 1.177e-02 & 1.007e-02 & 9.587e-03 \\ \hline \end{tabular} \label{tab:results_marius_corr} \end{table}
[ [ "Cross-Correlation", "GRU1", "GRU2", "GRU3" ], [ "Projection ANN\nSDKN", "0.9989\n0.9989", "0.8163\n0.9989", "0.9989\n0.9988" ], [ "Top-Hat ANN\nSDKN", "0.9992\n0.9991", "0.9992\n0.9992", "0.9992\n0.9992" ], [ "Fourier ANN\nSDKN", "0.9992\n0.9992", "0.9993\n0.9993", "0.9993\n0.9993" ] ]
0.38472
null
null
0
1904.05961v3
8
[ 60.82500076293945, 86.8202880859375, 288.1610107421875, 156.49298095703125 ]
\begin{table}[tb] % \vspace{-.0em} %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Parameters of Datasets} \label{tab:dataset} %\vspace{-1em} \centering \begin{tabular}{r|c|c|c} \hline dataset & size ($|P|$) & dimension ($d$) & \#distinct labels ($L$) \\ \hline Fisher's iris & 150 & 5 & 3 \\ \hline Facebook & 500 & 19 & 4 \\ \hline Pendigits & 7494 & 17 & 10 \\ \hline MNIST & 70000 & 401 & 10 \\ \hline HAR & 10299 & 562 & 6 \\ \hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset\nFisher’s iris", "size (|P|)\n150", "dimension (d)\n5", "#distinct labels (L)\n3" ], [ "Facebook", "500", "19", "4" ], [ "Pendigits", "7494", "17", "10" ], [ "MNIST", "70000", "401", "10" ], [ "HAR", "10299", "562", "6" ] ]
0.848684
null
null
1
1904.05961v3
11
[ 54.45199966430664, 373.4720092773438, 289.3331778390067, 444.62112862723217 ]
\begin{table}[t] { %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\ \hline FP %farthest point & 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\ \hline NS %nonuniform samp. & 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\ \hline US %uniform samp. & 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\ \hline RS %RCC-kmeans & 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\ \hline RN %RCC-kmedian & 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "algorithm F", "isher", "Facebook", "Pendigits", "MNIST", "HAR" ], [ "FP", "1.62", "3.00", "2.53", "21.69 2", "5.92" ], [ "NS 0", ".019", "0.027", "0.095", "7.42", "0.69" ], [ "US 2.", "10e-04", "4.60e-04", "3.80e-04", "0.01 0", ".0013" ], [ "RS 0", ".0083", "0.011", "0.042", "18.76", "1.46" ], [ "RN 0", ".028", "0.30", "0.40", "100.64 1", "2.39" ] ]
0.712598
null
null
2
1904.05961v3
12
[ 119.85399627685547, 85.47900390625, 229.13198852539062, 121.64398193359375 ]
\begin{table}[t] {%\color{blue} %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) } \label{tab:time, distributed} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c} \hline algorithm & MNIST & HAR \\ \hline CDCC & 13.84 & 1.55 \\ \hline DRCC & 31.66 & 2.42 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "algorithm", "MNIST", "HAR" ], [ "CDCC", "13.84", "1.55" ], [ "DRCC", "31.66", "2.42" ] ]
0.953271
null
null