id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
1 | 2301.02692v1 | 12 | [
79.73200225830078,
456.9469909667969,
517.81201171875,
563.7459716796875
] | \begin{table}[htb!]
\centering
{\small
\begin{center}
\begin{tabular}{|cl||cc|c|}
\hline
& &gamma deviance &RMSE &average\\
\hline
(0)& null model &2.085& 35,311&24,641\\\hline
(1a)& gamma GLM &1.717& 32,562&25,105\\
(1b)& gamma GLM recalibrated with $K=24$&1.641& 31,578&24,641\\\hline
(2a)& gamma FFNN &1.496& 29,673&24,526\\
(2b)& gamma FFNN recalibrated with $K=22$ &1.452& 28,806&24,641\\
(2c)& gamma FFNN tree adjustment with 4 bins (seed 1) &1.508& 29,371&24,641\\
(2d)& gamma FFNN tree adjustment with 8 bins (seed 2) &1.466& 27,942&24,641\\\hline
\end{tabular}
\end{center}}
\caption{Losses in the Swedish motorcycle example based on all available covariates. }
\label{results gamma 1}
\end{table} | [
[
"",
"gamma deviance RMSE",
"average"
],
[
"(0) null model",
"2.085 35,311",
"24,641"
],
[
"(1a) gamma GLM\n(1b) gamma GLM recalibrated with K = 24",
"1.717 32,562\n1.641 31,578",
"25,105\n24,641"
],
[
"(2a) gamma FFNN\n(2b) gamma FFNN recalibrated with K = 22\n(2c) gamma FFNN tree adjustment with 4 bins (seed 1)\n(2d) gamma FFNN tree adjustment with 8 bins (seed 2)",
"1.496 29,673\n1.452 28,806\n1.508 29,371\n1.466 27,942",
"24,526\n24,641\n24,641\n24,641"
]
] | 0.587838 | null | null |
0 | 2209.06155v1 | 13 | [
187.2102744362571,
412.39234415690106,
424.7898226651278,
486.2483418782552
] | \begin{table}[H]
\centering
\begin{tabular}{|c|c|c|}
\hline \rowcolor[HTML]{c0c0c0}
Description & Sphere & Fibonacci sphere \\ \hline
\rowcolor[HTML]{EFEFEF}
$\epsilon$ & $0.5$ & $0.25$ \\ \hline
Number of vertices & 200 & 500 \\ \hline
\rowcolor[HTML]{EFEFEF}
Number of simplices & 112094 & 4202 \\ \hline
Betti Numbers & $[1,0,1]$ & $[1,0,1]$ \\ \hline
\rowcolor[HTML]{EFEFEF}
Dimension & 3 & 3 \\ \hline
\end{tabular}
\caption{Topological properties for each sphere.}
\label{tab:sphere}
\end{table} | [
[
"Description",
"ω\n1",
"ω\n2",
"ω\n3"
],
[
"Epsilon",
"ϵ = 0.77\n1",
"ϵ = 0.33\n2",
"ϵ = 0.31\n3"
],
[
"Num of vert",
"252",
"252",
"252"
],
[
"Num of Simp",
"188087202",
"160639",
"93917"
],
[
"Betti Numbers",
"[1, 0, 0, 0]",
"[1, 0, 0, 0]",
"[1, 0, 0, 0]"
],
[
"Dimension",
"4",
"4",
"4"
]
] | 0.435685 | null | null |
1 | 2209.06155v1 | 15 | [
189.8722686767578,
518.8862915039062,
422.1278242631392,
592.7423502604166
] | \begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|}
\hline \rowcolor[HTML]{c0c0c0}
Description & $\omega_1$ & $\omega_2$ & $\omega_3$ \\ \hline
\rowcolor[HTML]{EFEFEF}
Epsilon & $\epsilon_1 = 0.77$ & $\epsilon_2 = 0.33$ & $\epsilon_3 = 0.31$ \\ \hline
Num of vert & 252 & 252 & 252 \\ \hline
\rowcolor[HTML]{EFEFEF}
Num of Simp & 188087202 & 160639 & 93917 \\ \hline
Betti Numbers & $[1,0,0,0]$ & $[1,0,0,0]$ & $[1,0,0,0]$ \\ \hline
\rowcolor[HTML]{EFEFEF}
Dimension & 4 & 4 & 4 \\ \hline
\end{tabular}
\caption{$\omega_{1,2,3}$ simplicial complexes data.}
\label{tab:results}
\end{table} | [
[
"Description",
"ω′\n1",
"ω′\n2",
"ω′\n3"
],
[
"Epsilon",
"ϵ′ = 0.38\n1",
"ϵ′ = 0.32\n2",
"ϵ′ = 0.30\n3"
],
[
"Num of vert",
"252",
"252",
"252"
],
[
"Num of Simp",
"339447",
"87571",
"97341"
],
[
"Betti Numbers",
"[1, 0, 0, 0]",
"[1, 0, 0, 0]",
"[1, 0, 0, 0]"
],
[
"Dimension",
"4",
"4",
"4"
]
] | 0.534579 | null | null |
0 | 1910.05902v2 | 13 | [
82.05500030517578,
82.59463500976562,
483.1639404296875,
340.4540100097656
] | \begin{table}[htb]
\caption*{ Exhibit 2: The estimated parameters of the distribution fitted to daily SPDR S\&P 500 log-returns.}
\label{tab:Table_Option_trader}
\begin{tabularx}{\textwidth}{c *{8}{Y}}
\toprule[1pt]
{$\mu$}&{$m$}&{$\alpha$}&{$\beta$}&{$d$}&{$\rho$}&{$\sigma$}\\
\hline
0.00002&-0.00018&310.8&1.19&0.007&0.0011&2.199\\
\bottomrule[1pt]
\end{tabularx}
\end{table} | [
[
"1.0\n0.8\n0.6\n0.4\n0.2\n0.0\n0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8",
"1.0\n0.8\n0.6\n0.4\n0.2\n0.0\n0.0 0.2 0.4 0.6 0.8 1.0"
]
] | 0.363636 | null | null |
0 | 1912.07685v1 | 6 | [
180.4720001220703,
339.3900146484375,
431.52899169921875,
516.0490112304688
] | \begin{table}[ht]
\centering
\begin{tabular}{r|rrl}
Label function & Precision & Recall & Class \\
\midrule
1 & 0.896970 & 0.185232 & alt.atheism \\
2 & 0.916216 & 0.424280 & alt.atheism \\
3 & 0.934263 & 0.474696 & comp.windows.x \\
4 & 0.646739 & 0.120445 & comp.windows.x \\
5 & 0.738806 & 0.100202 & comp.windows.x \\
6 & 0.650000 & 0.039514 & sci.space \\
7 & 0.835635 & 0.612969 & sci.space \\
8 & 0.821739 & 0.191489 & sci.space \\
9 & 0.818966 & 0.096251 & sci.space \\
10 & 0.725118 & 0.310030 & sci.space \\
11 & 0.898734 & 0.071935 & sci.space \\
12 & 0.940741 & 0.257345 & sci.space \\
13 & 0.617801 & 0.152258 & talk.politics.misc \\
14 & 0.765152 & 0.130323 & talk.politics.misc \\
15 & 0.787709 & 0.181935 & talk.politics.misc \\
16 & 0.804878 & 0.052548 & talk.religion.misc \\
\bottomrule
\end{tabular}
\caption{Weak labeling functions created for a subset of 20 Newsgroup topics.}
\label{tab:labelfunc}
\end{table} | [
[
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16",
"0.896970 0.185232 alt.atheism\n0.916216 0.424280 alt.atheism\n0.934263 0.474696 comp.windows.x\n0.646739 0.120445 comp.windows.x\n0.738806 0.100202 comp.windows.x\n0.650000 0.039514 sci.space\n0.835635 0.612969 sci.space\n0.821739 0.191489 sci.space\n0.818966 0.096251 sci.space\n0.725118 0.310030 sci.space\n0.898734 0.071935 sci.space\n0.940741 0.257345 sci.space\n0.617801 0.152258 talk.politics.misc\n0.765152 0.130323 talk.politics.misc\n0.787709 0.181935 talk.politics.misc\n0.804878 0.052548 talk.religion.misc"
]
] | 0.415936 | null | null |
0 | 1303.4767v1 | 7 | [
125.7979965209961,
137.85302734375,
488.1130065917969,
251.427001953125
] | \begin{table}[htbp]
\caption{Summary of cell features. }
\centering
\begin{tabular}{| c | p{2cm} | p{7.6cm} | c |}
\hline
& Categories & Details & \# of Fea. \\
\hline\hline
1 & Intensity & Average, Std., Average $log_{10}$, Minimum, Maximum, the 25\%, 50\%, 75\% quantiles of cell pixel intensity
&8 \\
\hline
2 & Shape \& Size & Perimeter, Area, Non-convexity, Length-Width Ratio, Radius Std.
& 5\\
\hline
3 & Local Density & Cell densities in 5 square moving windows with different sizes & 5\\
\hline
4 & Cell Orient. & Cell angle, Angle difference with nearest neighbors, The 25\%, 50\%, 75\% quantiles of angle differences in 4 square moving windows with different sizes
&14\\
\hline
\end{tabular}
\label{TAB:summaryCellFea}
\end{table} | [
[
"",
"Categories",
"Details",
"# of Fea."
],
[
"1",
"Intensity",
"Average, Std., Average log , Minimum, Maximum,\n10\nthe 25%, 50%, 75% quantiles of cell pixel intensity",
"8"
],
[
"2",
"Shape & Size",
"Perimeter, Area, Non-convexity, Length-Width Ratio,\nRadius Std.",
"5"
],
[
"3",
"Local Density",
"Cell densities in 5 square moving windows with differ-\nent sizes",
"5"
],
[
"4",
"Cell Orient.",
"Cell angle, Angle difference with nearest neighbors,\nThe 25%, 50%, 75% quantiles of angle differences in 4\nsquare moving windows with different sizes",
"14"
]
] | 0.813347 | null | null |
1 | 1303.4767v1 | 7 | [
125.7979965209961,
288.5880126953125,
488.1130065917969,
335.6109924316406
] | \begin{table}[htbp]
\caption{Summary of additional entire-well features. }
\centering
\begin{threeparttable}
\begin{tabular}{| c | p{2cm} | p{7.6cm} | c |}
\hline
& Categories & Details & \# of Fea. \\
\hline\hline
1 & Cell Number & Number of identified cells in an image &1 \\
\hline
2 & Cell Gap & Summaries* of gap intensity
& 6\\
\cline{3-4}
& & Summaries*
of the size of circular gaps**& 6\\
\hline
\end{tabular}
\begin{tablenotes}
\item[*] Standard deviation, min., max. and the 25\%, 50\%, 75\% quantiles are used as summaries.
\item[**] These features are extracted by performing distance transformation \cite{distImage} on the IPLab segmented image. Statistical summaries of the intensity of the resulting distance image are used as a description of the size of the circular gaps among cells.
\end{tablenotes}
\end{threeparttable}
\label{TAB:summaryWellFea}
\end{table} | [
[
"",
"Categories",
"Details",
"# of Fea."
],
[
"1",
"Cell Number",
"Number of identified cells in an image",
"1"
],
[
"2",
"Cell Gap",
"Summaries* of gap intensity",
"6"
],
[
null,
null,
"Summaries* of the size of circular gaps**",
"6"
]
] | 0.463014 | null | null |
2 | 1303.4767v1 | 19 | [
125.7979965209961,
283.0880126953125,
502.77099609375,
332.37298583984375
] | \begin{table}[htbp]
\caption{Simulation results. }
\begin{threeparttable}
\begin{tabular}{| p{2.7cm} |p{1.8cm} | p{1.8cm} | p{2.5cm} | p{2.39cm}|}
\hline
Data Objects & Wells-Alone & Wells-Alone & Cell-Well Unions & Cell-Well Unions \\
\hline
Cell Analyses & Not done & Std$^{[1]}$ & PCA \& Std$^{[1]}$ & PLS \& Std$^{[1]}$ \\
\hline\hline
Uncertainty$^{[2]}$ & $1.414 \pm 0.051$ & $1.390 \pm 0.055$ & $0.471 \pm 0.088$ &$0.464 \pm 0.078$ \\
\hline
DWD Error Rate$^{[2]}$ & $0.212 \pm 0.011$ & $0.132 \pm 0.009$ & $0.105 \pm 0.009$ & $0.104 \pm 0.009$\\
\hline
\end{tabular}
\begin{tablenotes}
\item[1] Standardize the cell data (or the PC/PLS scores) for each well by their standard deviations.
\item[2] The 95\% confidence intervals from 500 simulations are shown.
\end{tablenotes}
\end{threeparttable}
\label{TAB:simulations}
\end{table} | [
[
"Data Objects",
"Wells-Alone",
"Wells-Alone",
"Cell-Well Unions",
"Cell-Well Unions"
],
[
"Cell Analyses",
"Not done",
"Std[1]",
"PCA & Std[1]",
"PLS & Std[1]"
],
[
"Uncertainty[2]",
"1.414±0.051",
"1.390±0.055",
"0.471 ± 0.088",
"0.464 ± 0.078"
],
[
"DWD Error Rate[2]",
"0.212±0.011",
"0.132±0.009",
"0.105 ± 0.009",
"0.104 ± 0.009"
]
] | 0.599455 | null | null |
0 | 2401.07126v2 | 16 | [
98.17620086669922,
49.96826171875,
513.823486328125,
168.779052734375
] | \begin{table}[!ht]
\caption{Group 1 tests cases IVIM parameters correlation with GA in the canicular and saccular stages}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
~ & Dt\_can & Dt\_sac & Dp\_can & Dp\_sac & Fp\_can & Fp\_sac \\ \hline
SLS-TRF & 0.111 & 0.118 & 0.279 & 0.008 & 0.267 & 0.107 \\ \hline
Affine-TRF reg to b0 & 0.022 & 0.089 & 0.052 & 0.004 & 0.253 & 0.202 \\ \hline
SyN-TRF reg to b0 & 0.145 & 0.000 & 0.021 & 0.002 & 0.002 & 0.000 \\ \hline
SyN-TRF reg to next b & 0.297 & 0.018 & 0.023 & 0.001 & 0.385 & 0.009 \\ \hline
Iterative SyN-TRF & 0.203 & 0.124 & 0.004 & 0.001 & 0.190 & 0.048 \\ \hline
\textbf{IVIM-Morph} & 0.075 & 0.417 & 0.286 & 0.040 & \textbf{0.439} & 0.125 \\ \hline
VoxelMorph & 0.074 & 0.101 & 0.254 & 0.026 & 0.070 & 0.121 \\ \hline
\end{tabular}
\end{table} | [
[
"",
"Dt can",
"Dt sac",
"Dp can",
"Dp sac",
"Fp can",
"Fp sac"
],
[
"SLS-TRF",
"0.111",
"0.118",
"0.279",
"0.008",
"0.267",
"0.107"
],
[
"Affine-TRF reg to b0",
"0.022",
"0.089",
"0.052",
"0.004",
"0.253",
"0.202"
],
[
"SyN-TRF reg to b0",
"0.145",
"0.000",
"0.021",
"0.002",
"0.002",
"0.000"
],
[
"SyN-TRF reg to next b",
"0.297",
"0.018",
"0.023",
"0.001",
"0.385",
"0.009"
],
[
"Iterative SyN-TRF",
"0.203",
"0.124",
"0.004",
"0.001",
"0.190",
"0.048"
],
[
"IVIM-Morph",
"0.075",
"0.417",
"0.286",
"0.040",
"0.439",
"0.125"
],
[
"VoxelMorph",
"0.074",
"0.101",
"0.254",
"0.026",
"0.070",
"0.121"
]
] | 0.99 | null | null |
1 | 2401.07126v2 | 16 | [
98.17620086669922,
218.6815185546875,
513.823486328125,
337.4923400878906
] | \begin{table}[!ht]
\caption{Group 2 tests cases IVIM parameters correlation with GA in the canicular and saccular stages}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
~ & Dt\_can & Dt\_sac & Dp\_can & Dp\_sac & Fp\_can & Fp\_sac \\ \hline
SLS-TRF & 0.007 & 0.000 & 0.299 & 0.058 & 0.249 & 0.027 \\ \hline
Affine-TRF reg to b0 & 0.007 & 0.042 & 0.360 & 0.216 & 0.004 & 0.007 \\ \hline
SyN-TRF reg to b0 & 0.095 & 0.007 & 0.478 & 0.129 & 0.003 & 0.017 \\ \hline
SyN-TRF reg to next b & 0.023 & 0.000 & 0.445 & 0.056 & 0.002 & 0.021 \\ \hline
Iterative SyN-TRF & 0.000 & 0.002 & 0.420 & 0.063 & 0.016 & 0.001 \\ \hline
\textbf{IVIM-Morph} & 0.400 & 0.008 & 0.425 & 0.013 & \textbf{0.517} & 0.042 \\ \hline
VoxelMorph & 0.027 & 0.132 & 0.069 & 0.068 & 0.139 & 0.121 \\ \hline
\end{tabular}
\end{table} | [
[
"",
"Dt can",
"Dt sac",
"Dp can",
"Dp sac",
"Fp can",
"Fp sac"
],
[
"SLS-TRF",
"0.007",
"0.000",
"0.299",
"0.058",
"0.249",
"0.027"
],
[
"Affine-TRF reg to b0",
"0.007",
"0.042",
"0.360",
"0.216",
"0.004",
"0.007"
],
[
"SyN-TRF reg to b0",
"0.095",
"0.007",
"0.478",
"0.129",
"0.003",
"0.017"
],
[
"SyN-TRF reg to next b",
"0.023",
"0.000",
"0.445",
"0.056",
"0.002",
"0.021"
],
[
"Iterative SyN-TRF",
"0.000",
"0.002",
"0.420",
"0.063",
"0.016",
"0.001"
],
[
"IVIM-Morph",
"0.400",
"0.008",
"0.425",
"0.013",
"0.517",
"0.042"
],
[
"VoxelMorph",
"0.027",
"0.132",
"0.069",
"0.068",
"0.139",
"0.121"
]
] | 0.99 | null | null |
2 | 2401.07126v2 | 5 | [
337.2514953613281,
143.01397705078125,
512.7132415771484,
181.5140380859375
] | \begin{table}[t!]
\caption{Prior bounds on the IVIM parameters}
\label{Table: parameters range}
\centering
\begin{tabular}
{ |p{1.5cm}|p{1cm}|p{1cm}|p{1cm}| }
\hline
Parameter & $D (\frac{mm^2}{sec})$ & f (\%) & $D^* (\frac{mm^2}{sec}$)\\
\hline
minimum & 0.0003 & 7 & 0.006 \\
\hline
maximum & 0.0032 & 50 & 0.15 \\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"D( m sem c2 )",
"f (%)",
"D∗( m sem c2 )"
],
[
"minimum",
"0.0003",
"7",
"0.006"
],
[
"maximum",
"0.0032",
"50",
"0.15"
]
] | 0.878613 | null | null |
3 | 2401.07126v2 | 9 | [
72.95643823797053,
341.9444274902344,
299.10120936802457,
432.8461608886719
] | \begin{table}[!t]
\small
\caption{\label{Table:times} Methods running times}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Method} & \textbf{Time (s)} & \textbf{Machine} \\ \hline
SLS-TRF & $57.93 \pm 1.26$ & CPU \\ \hline
Affine - Reg to b0 & $53.32 \pm 3.09$ & CPU \\ \hline
SyN - Reg to b0 & $54.04 \pm 2.14$ & CPU \\ \hline
RSyN - Reg to next b & $53.11\pm 2.29$ & CPU \\ \hline
Iterative SyN-TRF & $261.16 \pm 67.61$ & CPU \\ \hline
VoxelMorph + SLS - TRF & $84.738 \pm 7.23$ & CPU+GPU \\ \hline
IVIM-Morph & $52.69 \pm 1.90$ & GPU \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Time (s)",
"Machine"
],
[
"SLS-TRF",
"57.93 ± 1.26",
"CPU"
],
[
"Afnfi e - Reg to b0",
"53.32 ± 3.09",
"CPU"
],
[
"SyN - Reg to b0",
"54.04 ± 2.14",
"CPU"
],
[
"RSyN - Reg to next b",
"53.11 ± 2.29",
"CPU"
],
[
"Iterative SyN-TRF",
"261.16 ± 67.61",
"CPU"
],
[
"VoxelMorph + SLS - TRF",
"84.738 ± 7.23",
"CPU+GPU"
],
[
"IVIM-Morph",
"52.69 ± 1.90",
"GPU"
]
] | 0.953445 | null | null |
0 | 2201.10105v1 | 2 | [
314.31190321180554,
365.2760009765625,
556.8881361219618,
646.4219970703125
] | \begin{table}[h]%[t]
\caption{The feature set extracted from heart and lung sounds}
\centering
\begin{tabular}{|p{1.9cm}||p{5.7cm}|}%{ |p{3cm}||p{12.4cm}| }
\hline
\textbf{Title}
& \textbf{Description}
\\
\hline
Statistical Features
& Variance, skewness and kurtosis of audio and autocorrelation signal
\\
\hline
Entropy
& Sample, Shannon, Renyi and Tsallis entropy
\\
\hline
Power Features
& Power spectrum represented in dB/octave and intercept and slope of linear regression line calculated. Power spectrum fitted using a 4-term Gaussian mixture model, and the number of peaks, frequency of peaks and 2 highest peaks frequency difference calculated from this.
Total power, various power ratios from 100-1000Hz, 3dB bandwidth, 1st, 2nd and 3rd quartile, interquartile range, standard deviation, mean frequency, power centroid and max power of power spectrum were calculated.
\\
\hline
Mel-Frequency Cepstral Coefficients (MFCCs)
& 13 level decomposition in Mel filter scale and log energy were calculated using a window length of 25\,ms and overlap length of 15\,ms, then minimum, maximum, mean, median, mode, variance and skewness of these frames were calculated.
\\
\hline
Vital Sign Features
& Heart rate and breathing rate estimated using 10\,s sliding window with 1\,s hop size and then variability calculated \cite{grooby2020neonatal,grooby2021real}.
\\
\hline
Abnormal Chest Sound Features
& Using YAMNet, a deep convolutional neural network for sound classification, the probability of groan, grunt, wheeze, gasp, pant, cough and throat clearing sounds present in each from the audio recording was determined \cite{hershey2017cnn,chakraborty2020feature}.
\\
\hline
Autocorrelation Features
& Correlation prominence, sinusoid correlation and Hjorth activity to measure the strength of periodicity of the signal \cite{grooby2020neonatal}.
\\
\hline
\end{tabular}
\label{tab1:features}
\end{table} | [
[
"Title",
"Description"
],
[
"Statistical\nFeatures",
"Variance, skewness and kurtosis of audio and\nautocorrelation signal"
],
[
"Entropy",
"Sample, Shannon, Renyi and Tsallis entropy"
],
[
"Power Features",
"Power spectrum represented in dB/octave and\nintercept and slope of linear regression line cal-\nculated. Power spectrum fitted using a 4-term\nGaussian mixture model, and the number of peaks,\nfrequency of peaks and 2 highest peaks frequency\ndifference calculated from this.\nTotal power, various power ratios from 100-\n1000Hz, 3dB bandwidth, 1st, 2nd and 3rd quartile,\ninterquartile range, standard deviation, mean fre-\nquency, power centroid and max power of power\nspectrum were calculated."
],
[
"Mel-Frequency\nCepstral\nCoefficients\n(MFCCs)",
"13 level decomposition in Mel filter scale and log\nenergy were calculated using a window length of\n25 ms and overlap length of 15 ms, then minimum,\nmaximum, mean, median, mode, variance and\nskewness of these frames were calculated."
],
[
"Vital Sign Fea-\ntures",
"Heart rate and breathing rate estimated using\n10 s sliding window with 1 s hop size and then\nvariability calculated [9], [10]."
],
[
"Abnormal Chest\nSound Features",
"Using YAMNet, a deep convolutional neural net-\nwork for sound classification, the probability of\ngroan, grunt, wheeze, gasp, pant, cough and throat\nclearing sounds present in each from the audio\nrecording was determined [12], [13]."
],
[
"Autocorrelation\nFeatures",
"Correlation prominence, sinusoid correlation and\nHjorth activity to measure the strength of period-\nicity of the signal [9]."
]
] | 0.955302 | null | null |
0 | 2306.17626v1 | 2 | [
353.7330017089844,
374.0010070800781,
523.4429931640625,
411.46099853515625
] | \begin{table}[h]
\centering
\caption{The average number of steps for PPO.}
\label{flags_and_perfs}
\begin{tabular}{ | p{1.0cm} | p{1.1cm} | p{1.0cm} |p{1.2cm} |}
\hline
Machine & power & voltage & PPO steps \\ \hline
% \quad 1 & 2500 \tiny{kW} & 10000 \tiny{V} & 11 \\ \hline
\quad 1 & 2500 kW & 10000 V & 11 \\ \hline
\quad 2 & 600 kW & 6000 V & 12 \\ \hline
\quad 3 & 2100 kW & 6000 V & 5 \\ \hline
\end{tabular}
\end{table} | [
[
"Machine",
"power",
"voltage",
"PPO steps"
],
[
"1",
"2500 kW",
"10000 V",
"11"
],
[
"2",
"600 kW",
"6000 V",
"12"
],
[
"3",
"2100 kW",
"6000 V",
"5"
]
] | 0.81448 | null | null |
0 | 1811.03687v1 | 11 | [
113.59249877929688,
109.06103515625,
489.4075012207031,
313.09600830078125
] | \begin{table}[H]
\tiny
\begin{center}
\begin{tabular}{ l | l }
\hline
Item & Description \\
\hline
instr & Instructor's identifier \\
class& Course code (descriptor)\\
repeat& Number of times the student is taking this course\\
attendance& Code of the level of attendance\\
difficulty& Level of difficulty of the course as perceived by the student; values taken from \\
Q1& The semester course content, teaching method and evaluation system were provided at the start.\\
Q2& The course aims and objectives were clearly stated at the beginning of the period.\\
Q3& The course was worth the amount of credit assigned to it.\\
Q4& The course was taught according to the syllabus announced on the first day of class.\\
Q5& The class discussions, homework assignments, applications and studies were satisfactory.\\
Q6& The textbook and other courses resources were sufficient and up to date.\\
Q7& The course allowed field work, applications, laboratory, discussion and other studies.\\
Q8& The quizzes, assignments, projects and exams contributed to helping the learning.\\
Q9& I greatly enjoyed the class and was eager to actively participate during the lectures.\\
Q10& My initial expectations about the course were met at the end of the period or year.\\
Q11& The course was relevant and beneficial to my professional development.\\
Q12& The course helped me look at life and the world with a new perspective.\\
Q13& The Instructor's knowledge was relevant and up to date.\\
Q14& The Instructor came prepared for classes.\\
Q15& The Instructor taught in accordance with the announced lesson plan.\\
Q16& The Instructor was committed to the course and was understandable.\\
Q17& The Instructor arrived on time for classes.\\
Q18& The Instructor has a smooth and easy to follow delivery/speech.\\
Q19& The Instructor made effective use of class hours.\\
Q20& The Instructor explained the course and was eager to be helpful to students.\\
Q21& The Instructor demonstrated a positive approach to students.\\
Q22& The Instructor was open and respectful of the views of students about the course.\\
Q23& The Instructor encouraged participation in the course.\\
Q24& The Instructor gave relevant homework assignments/projects, and helped/guided students.\\
Q25& The Instructor responded to questions about the course inside and outside of the course.\\
Q26& The Instructor's evaluation system (midterm, assignments, etc.) effectively measured the course objectives.\\
Q27& The Instructor provided solutions to exams and discussed them with students.\\
Q28& The Instructor treated all students in a right and objective manner.\\
\hline
\multicolumn{2}{ l }{Q1-Q28 are all Likert-type, meaning that the values are taken from {1,2,3,4,5}} \\
%Q1-Q28 are all Likert-type, meaning that the values are taken from {1,2,3,4,5}
\hline
\end{tabular}
\caption{Items and questions in the data set}
\label{tab:data}
\end{center}
\end{table} | [
[
"Item",
"Description"
],
[
"instr\nclass\nrepeat\nattendance\ndifficulty\nQ1\nQ2\nQ3\nQ4\nQ5\nQ6\nQ7\nQ8\nQ9\nQ10\nQ11\nQ12\nQ13\nQ14\nQ15\nQ16\nQ17\nQ18\nQ19\nQ20\nQ21\nQ22\nQ23\nQ24\nQ25\nQ26\nQ27\nQ28",
"Instructor’s identifier\nCourse code (descriptor)\nNumber of times the student is taking this course\nCode of the level of attendance\nLevel of difficulty of the course as perceived by the student; values taken from\nThe semester course content, teaching method and evaluation system were provided at the start.\nThe course aims and objectives were clearly stated at the beginning of the period.\nThe course was worth the amount of credit assigned to it.\nThe course was taught according to the syllabus announced on the first day of class.\nThe class discussions, homework assignments, applications and studies were satisfactory.\nThe textbook and other courses resources were sufficient and up to date.\nThe course allowed field work, applications, laboratory, discussion and other studies.\nThe quizzes, assignments, projects and exams contributed to helping the learning.\nI greatly enjoyed the class and was eager to actively participate during the lectures.\nMy initial expectations about the course were met at the end of the period or year.\nThe course was relevant and beneficial to my professional development.\nThe course helped me look at life and the world with a new perspective.\nThe Instructor’s knowledge was relevant and up to date.\nThe Instructor came prepared for classes.\nThe Instructor taught in accordance with the announced lesson plan.\nThe Instructor was committed to the course and was understandable.\nThe Instructor arrived on time for classes.\nThe Instructor has a smooth and easy to follow delivery/speech.\nThe Instructor made effective use of class hours.\nThe Instructor explained the course and was eager to be helpful to students.\nThe Instructor demonstrated a positive approach to students.\nThe Instructor was open and respectful of the views of students about the course.\nThe Instructor encouraged participation in the course.\nThe Instructor gave relevant homework assignments/projects, and helped/guided students.\nThe Instructor responded to questions about the course inside and outside of the course.\nThe Instructor’s evaluation system (midterm, assignments, etc.) effectively measured the course objectives.\nThe Instructor provided solutions to exams and discussed them with students.\nThe Instructor treated all students in a right and objective manner."
]
] | 0.899665 | null | null |
1 | 1811.03687v1 | 13 | [
124.54199981689453,
363.3080139160156,
478.4579772949219,
386.02301025390625
] | \begin{table}[ht]
\small
\centering
\begin{tabular}{r|ccccc}
\hline
& Regression & Lasso & Variational model& LME model&Ridge\\
\hline
Mean square error &1.45 & 1.43 & 1.45 & 1.45 & 1.54\\
\hline
\end{tabular}
\caption{Cross validated mean square error of the various models }
\label{tab:predResults}
\end{table} | [
[
"",
"Regression Lasso Variational model LME model Ridge"
],
[
"Mean square error",
"1.45 1.43 1.45 1.45 1.54"
]
] | 0.72093 | null | null |
0 | 2308.12827v1 | 6 | [
53.060417387220596,
405.3980712890625,
277.7935791015625,
457.772705078125
] | \begin{table}[h]
\centering
\resizebox{8cm}{!} {
\begin{tabular}{|c|c|}
\hline
Observation time (months) & GBMCMC catalogue UCBs \\
\hline
1.5 & 1998 \\ \hline
3.0 & 2758 \\ \hline
6.0 & 6196 \\ \hline
12.0 & 10027 \\
\hline
\end{tabular}}
\caption{Total number of GBMCMC catalogue UCBs as a function of observation time.}
\label{table1}
\end{table} | [
[
"Observation time (months)",
"GBMCMC catalogue UCBs"
],
[
"1.5",
"1998"
],
[
"3.0",
"2758"
],
[
"6.0",
"6196"
],
[
"12.0",
"10027"
]
] | 0.68 | null | null |
0 | 1809.04684v1 | 1 | [
317.9549865722656,
240.21002197265625,
561.9149780273438,
385.4649963378906
] | \begin{table}
\caption{\label{table:classes} Protected classes defined under US fair lending laws such as the Fair Housing Act (FHA)~\cite{fha} and Equal Credit Opportunity Act (ECOA)~\cite{ecoa}.}
\begin{tabular}{|l|c|c|}
\hline
Law & FHA\cite{fha} & ECOA\cite{ecoa} \\
\hline\hline
age & & X \\
color & X & X \\
disability & X & \\
exercised rights under CCPA\cite{ccpa} & & X \\
familial status (household composition) & X & \\
gender identity & X & \\
marital status (single or married) & & X \\
national origin & X & X \\
race & X & X \\
recipient of public assistance & & X \\
religion & X & X \\
sex & X & X \\
\hline
\end{tabular}
\end{table} | [
[
"Law",
"FHA[51]",
"ECOA[54]"
],
[
"age\ncolor\ndisability\nexercised rights under CCPA[52]\nfamilial status (household composition)\ngender identity\nmarital status (single or married)\nnational origin\nrace\nrecipient of public assistance\nreligion\nsex",
"X\nX\nX\nX\nX\nX\nX\nX",
"X\nX\nX\nX\nX\nX\nX\nX\nX"
]
] | 0.697143 | null | null |
0 | 2205.00383v2 | 24 | [
158.36900329589844,
307.87701416015625,
453.6309814453125,
344.93798828125
] | \begin{table}[H]\small
\centering
\caption{Descriptive statistics of daily returns ($\sim$six significant digits)}
\label{tab:1}
\begin{tabular}{c|c|c|c|c}
\hline
Data set & mean & variance & skewness & excess kurtosis \\ \hline
S\&P500 & 0.000564705 & 0.00047912 & $-0.861012$ & 8.46843 \\ \hline
Bitcoin & 0.00384156 & 0.00160601 & $-4.07498$ & 50.8679 \\ \hline
\end{tabular}
\end{table} | [
[
"Data set",
"mean",
"variance",
"skewness",
"excess kurtosis"
],
[
"S&P500",
"0.000564705",
"0.00047912",
"−0.861012",
"8.46843"
],
[
"Bitcoin",
"0.00384156",
"0.00160601",
"−4.07498",
"50.8679"
]
] | 0.978873 | null | null |
1 | 2205.00383v2 | 43 | [
96.76899719238281,
343.5989990234375,
515.2319946289062,
477.8949890136719
] | \begin{table}[H]\small
\centering
\caption{Summary of properties of regulated stochastic clocks}
\label{tab:6}
\begin{tabular}{c|c|c|c}
\hline
Category & type I & type II & type III \\ \hline
induction nature & average of sample paths & average of log-LT & \tabincell{c}{quasi-average of \\ sample paths} \\ \hline
regulating kernel & incomplete gamma & inverse gamma & Riemann-Liouville \\ \hline
L\'{e}vy measure distortion & severe & moderate & mild \\ \hline
Skew/EKurt enlargement & faster than exponential & exponential & \tabincell{c}{slower than linear \\ or bounded} \\ \hline
\tabincell{c}{explicit formulae \\ (Poisson)} & \tabincell{c}{LT: $n=1$ only \\ LM: any $n>0$} & \tabincell{c}{LT: $n\in\mathbb{N}_{++}$ only \\ LM: any $n>0$} & LT and LM: any $n>0$ \\ \hline
\tabincell{c}{explicit formulae \\ (tempered stable)} & LT and LM : $n=1$ only & LT and LM: $n\in\mathbb{N}_{++}$ & LT and LM: any $n>0$ \\ \hline
\end{tabular}\\
LT: Laplace transform | LM: L\'{e}vy measure
\end{table} | [
[
"Category",
"type I",
"type II",
"type III"
],
[
"induction nature",
"average of sample paths",
"average of log-LT",
"quasi-average of\nsample paths"
],
[
"regulating kernel",
"incomplete gamma",
"inverse gamma",
"Riemann-Liouville"
],
[
"Lévy measure distortion",
"severe",
"moderate",
"mild"
],
[
"Skew/EKurt enlargement",
"faster than exponential",
"exponential",
"slower than linear\nor bounded"
],
[
"explicit formulae\n(Poisson)",
"LT: n = 1 only\nLM: any n > 0",
"LT: n ∈N only\n++\nLM: any n > 0",
"LT and LM: any n > 0"
],
[
"explicit formulae\n(tempered stable)",
"LT and LM : n = 1 only",
"LT and LM: n ∈N\n++",
"LT and LM: any n > 0"
]
] | 0.721461 | null | null |
0 | 2012.04863v2 | 14 | [
100.5199966430664,
91.06097412109375,
507.8429870605469,
220.677978515625
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{8cm}}
\hline
Active learners & Testee\\
\hline
Active learnable parameters & Network weights of the testee\\
\hline
Supporting learnable parameters & Architecture of the testee\\
\hline
Active training datasets & Training dataset of target-task $J_1$ performed by the testee \\
\hline
Active auxiliary datasets & -- \\
\hline
Training loss & Training loss of target-task $J_1$: $L(A, W, D_{ee}^{(\mathrm{tr})})$ \\
\hline
Interaction function & -- \\
\hline
Optimization problem & $W^{*}(A)=\min _{W} L(A, W, D_{ee}^{(\mathrm{tr})})$ \\
\hline
\end{tabular}
\caption{Learning Stage I in LPT}
\label{tb:lpt-s1}
\end{table} | [
[
"Active learners",
"Testee"
],
[
"Active learnable parameters",
"Network weights of the testee"
],
[
"Supporting learnable parameters",
"Architecture of the testee"
],
[
"Active training datasets",
"Training dataset of target-task J performed by\n1\nthe testee"
],
[
"Active auxiliary datasets",
"–"
],
[
"Training loss",
"(tr)\nTraining loss of target-task J 1: L(A, W, D )\nee"
],
[
"Interaction function",
"–"
],
[
"Optimization problem",
"(tr)\nW ∗(A) = min L(A, W, D )\nW ee"
]
] | 0.787363 | null | null |
1 | 2012.04863v2 | 14 | [
100.5199966430664,
253.68798828125,
507.8429870605469,
410.40301513671875
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{8cm}}
\hline
Active learners & Examiner\\
\hline
Active learnable parameters & 1) Data encoder of the tester; 2) Target-task executor of the tester. \\
\hline
Supporting learnable parameters & Test creator of the tester\\
\hline
Active training datasets & Training data of target-task $J_2$ performed by the tester\\
\hline
Active auxiliary datasets & Test bank\\
\hline
Training loss & $L(E, X, D_{er}^{(\mathrm{tr})}) +\gamma L(E, X, \sigma(C, E, D_{b}))$\\
\hline
Interaction function & -- \\
\hline
Optimization problem & $ E^{*}(C), X^{*}(C)=\min _{E, X} \;\; L(E, X, D_{er}^{(\mathrm{tr})}) +\gamma L(E, X, \sigma(C, E, D_{b})).$\\
\hline
\end{tabular}
\caption{Learning Stage II in LPT }
\label{tb:lpt-s2}
\end{table} | [
[
"Active learners",
"Examiner"
],
[
"Active learnable parameters",
"1) Data encoder of the tester; 2) Target-task\nexecutor of the tester."
],
[
"Supporting learnable parameters",
"Test creator of the tester"
],
[
"Active training datasets",
"Training data of target-task J performed by the\n2\ntester"
],
[
"Active auxiliary datasets",
"Test bank"
],
[
"Training loss",
"(tr)\nL(E, X, D ) + γL(E, X, σ(C, E, D b))\ner"
],
[
"Interaction function",
"–"
],
[
"Optimization problem",
"(tr)\nE∗(C), X∗(C) = min L(E, X, D ) +\nE,X er\nγL(E, X, σ(C, E, D )).\nb"
]
] | 0.831984 | null | null |
2 | 2012.04863v2 | 16 | [
90,
91.06097412109375,
525.33203125,
247.0369873046875
] | \begin{table}[t]
\centering
\begin{tabular}{p{4cm}|p{10.5cm}}
\hline
Active learners & Testee, tester\\
\hline
Remaining learnable parameters & 1) Architecture of the testee; 2) Test creator of the tester\\
\hline
Validation datasets& Validation dataset of the tester\\
\hline
Active auxiliary datasets & Test bank\\
\hline
Validation loss & $L(E^{*}(C), X^{*}(C), D_{er}^{(\mathrm{val})})$\\
\hline
Interaction function & Testee's prediction loss defined on the test created by the tester: $ L(A, W^{*}(A), \sigma(C, E^{*}(C), D_{b}))/|\sigma(C, E^{*}(C), D_{b})|$\\
\hline
Optimization problem & $\max_{C} \min _{A}\;\; L(A, W^{*}(A), \sigma(C, E^{*}(C), D_{b}))/|\sigma(C, E^{*}(C), D_{b})|-\lambda L(E^{*}(C), X^{*}(C), D_{er}^{(\mathrm{val})})$\\
\hline
\end{tabular}
\caption{Validation Stage in LPT}
\label{tb:lpt-vs}
\end{table} | [
[
"Active learners",
"Testee, tester"
],
[
"Remaining learnable\nparameters",
"1) Architecture of the testee; 2) Test creator of the tester"
],
[
"Validation datasets",
"Validation dataset of the tester"
],
[
"Active auxiliary\ndatasets",
"Test bank"
],
[
"Validation loss",
"(val)\nL(E∗(C), X∗(C), D )\ner"
],
[
"Interaction function",
"Testee’s prediction loss defined on the test created by the tester:\nL(A, W ∗(A), σ(C, E∗(C), D b))/ |σ(C, E∗(C), D b)\n|"
],
[
"Optimization problem",
"max min L(A, W ∗(A), σ(C, E∗(C), D b))/ |σ(C, E∗(C), D b)\nC A |−\n(val)\nλL(E∗(C), X∗(C), D )\ner"
]
] | 0.834897 | null | null |
3 | 2012.04863v2 | 17 | [
91.54199981689453,
91.06097412109375,
516.822021484375,
400.2030029296875
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{10.5cm}}
\hline
Skillearn & Learning by Passing Tests\\
\hline
Learners & 1) Testee; 2) Tester \\
\hline
Learnable parameters & 1) Architecture of testee; 2) Network weights of testee; 3) Data encoder of tester; 4) Target-task executor of tester; 5) Test creator of tester. \\
\hline
Interaction function & Testee's prediction loss defined on the test created by the tester: $ L(A, W^{*}(A), \sigma(C, E^{*}(C), D_{b}))/|\sigma(C, E^{*}(C), D_{b})|$ \\
\hline
Learning stages & Learning stage I: the testee learns its network weights on its training data: $W^{*}(A)=\min _{W} L(A, W, D_{ee}^{(\mathrm{tr})})$\newline
Learning stage II: the tester uses its test creator to select a subset of examples from the test bank, then it learns its data encoder and target-task executor on its training data and on the selected examples from the test bank: $E^{*}(C), X^{*}(C)=\min _{E, X} \;\; L(E, X, D_{er}^{(\mathrm{tr})}) +\gamma L(E, X, \sigma(C, E, D_{b})).$
\\
\hline
Validation stage & 1) The testee updates its architecture to minimize the prediction loss on the test created by the tester; 2) The tester updates its test creator to maximize the testee's prediction loss and minimize its own validation loss. $\max _{C} \min _{A}\;\; \frac{1}{|\sigma(C, E^{*}(C), D_{b})|} L(A, W^{*}(A), \sigma(C, E^{*}(C), D_{b}))-\lambda L(E^{*}(C), X^{*}(C), D_{er}^{(\mathrm{val})}).$\\
\hline
Datasets & 1) Training data of the testee; 2) Training data of the tester; 3) Validation data of the tester; 4) Test bank.\\
\hline
\end{tabular}
\caption{Instantiation of Skillearn to LPT}
\label{tb:sltolpt}
\end{table} | [
[
"Skillearn",
"Learning by Passing Tests"
],
[
"Learners",
"1) Testee; 2) Tester"
],
[
"Learnable parameters",
"1) Architecture of testee; 2) Network weights of testee; 3) Data\nencoder of tester; 4) Target-task executor of tester; 5) Test\ncreator of tester."
],
[
"Interaction function",
"Testee’s prediction loss defined on the test created by the tester:\nL(A, W ∗(A), σ(C, E∗(C), D b))/ |σ(C, E∗(C), D b)\n|"
],
[
"Learning stages",
"Learning stage I: the testee learns its network weights on its\n(tr)\ntraining data: W ∗(A) = min L(A, W, D )\nW ee\nLearning stage II: the tester uses its test creator to select a\nsubset of examples from the test bank, then it learns its data\nencoder and target-task executor on its training data and on\nthe selected examples from the test bank: E∗(C), X∗(C) =\n(tr)\nmin L(E, X, D ) + γL(E, X, σ(C, E, D b)).\nE,X er"
],
[
"Validation stage",
"1) The testee updates its architecture to minimize the\nprediction loss on the test created by the tester; 2)\nThe tester updates its test creator to maximize the tes-\ntee’s prediction loss and minimize its own validation loss.\nmax min |σ(C,E∗1 (C),Db)|L(A, W ∗(A), σ(C, E∗(C), D b))\nC A −\n(val)\nλL(E∗(C), X∗(C), D ).\ner"
],
[
"Datasets",
"1) Training data of the testee; 2) Training data of the tester;\n3) Validation data of the tester; 4) Test bank."
]
] | 0.650388 | null | null |
4 | 2012.04863v2 | 30 | [
100.5199966430664,
91.06097412109375,
507.8429870605469,
250.27099609375
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{8cm}}
\hline
Active learners & The first learner\\
\hline
Active learnable parameters & Weights of the data encoder and weights of the task-specific head in the first learner\\
\hline
Supporting learnable parameters & Encoder architecture shared by all learners \\
\hline
Active training datasets & Training dataset of the first learner\\
\hline
Active auxiliary datasets & -- \\
\hline
Training loss & The first learner trains the weights of its data encoder and the weights of its task-specific head on its training dataset: $L(A, W^{(1)}_1, H^{(1)}_1,D_1^{(\textrm{tr})})$. \\
\hline
Interaction function & -- \\
\hline
Optimization problem & $\widetilde{W}_1^{(1)}(A) =\textrm{min}_{W^{(1)}_1,H^{(1)}_1} \; L(A, W^{(1)}_1, H^{(1)}_1,D_1^{(\textrm{tr})})$ \\
\hline
\end{tabular}
\caption{Learning stage 1 in interleaving learning}
\label{tb:il-1}
\end{table} | [
[
"Active learners",
"The first learner"
],
[
"Active learnable parameters",
"Weights of the data encoder and weights of the\ntask-specific head in the first learner"
],
[
"Supporting learnable parameters",
"Encoder architecture shared by all learners"
],
[
"Active training datasets",
"Training dataset of the first learner"
],
[
"Active auxiliary datasets",
"–"
],
[
"Training loss",
"The first learner trains the weights of its data\nencoder and the weights of its task-specific head\n(1) (1) (tr)\non its training dataset: L(A, W , H , D ).\n1 1 1"
],
[
"Interaction function",
"–"
],
[
"Optimization problem",
"(1) (1) (1) (tr)\nW (A) = min L(A, W , H , D )\nf 1 W 1(1),H 1(1) 1 1 1"
]
] | 0.846715 | null | null |
5 | 2012.04863v2 | 31 | [
100.5199966430664,
91.06097412109375,
507.8429870605469,
296.239990234375
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{8cm}}
\hline
Active learners & The $k$-th learner \\
\hline
Active learnable parameters & Weights of the data encoder and weights of the task-specific head in the $k$-th learner\\
\hline
Supporting learnable parameters & Encoder architecture shared by all learners\\
\hline
Active training datasets & Training dataset of the $k$-th learner \\
\hline
Active auxiliary datasets & -- \\
\hline
Training loss & The $k$-th learner trains the weights of its data encoder and the weights of its task-specific head on its training dataset: $L(A, W^{(m)}_k, H^{(m)}_k,D_k^{(\textrm{tr})})$ \\
\hline
Interaction function & The learner encourages its encoder weights to be close to the optimal encoder weights $\widetilde{W}_{l-1}$ learned in the $l-1$ stage: $\|W^{(m)}_k-\widetilde{W}_{l-1}\|_2^2$ \\
\hline
Optimization problem & $\widetilde{W}_k^{(m)}=\textrm{min}_{W_k^{(m)},H_k^{(m)}} \; L(A, W_k^{(m)}, H_k^{(m)},D_k^{(\textrm{tr})})+\lambda\|W^{(m)}_k-\widetilde{W}_{l-1}(A)\|^2_{2}$ \\
\hline
\end{tabular}
\caption{Learning stage $l$ with the $k$-th learner at the $m$-th round, in interleaving learning}
\label{tb:il-k}
\end{table} | [
[
"Active learners",
"The k-th learner"
],
[
"Active learnable parameters",
"Weights of the data encoder and weights of the\ntask-specific head in the k-th learner"
],
[
"Supporting learnable parameters",
"Encoder architecture shared by all learners"
],
[
"Active training datasets",
"Training dataset of the k-th learner"
],
[
"Active auxiliary datasets",
"–"
],
[
"Training loss",
"The k-th learner trains the weights of its data\nencoder and the weights of its task-specific head\n(m) (m) (tr)\non its training dataset: L(A, W , H , D )\nk k k"
],
[
"Interaction function",
"The learner encourages its encoder weights to\nbe close to the optimal encoder weights W\nfl−1\nlearned in the l −1 stage: ∥W k(m) −W fl−1∥2\n2"
],
[
"Optimization problem",
"(m) (m) (m) (tr)\nW = min L(A, W , H , D )+\nf k W k(m),H k(m) k k k\nλ ∥W k(m) −W fl−1(A) ∥2\n2"
]
] | 0.663278 | null | null |
6 | 2012.04863v2 | 32 | [
101.5199966430664,
91.06097412109375,
506.8429870605469,
218.0360107421875
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{8cm}}
\hline
Active learners & All learners\\
\hline
Remaining learnable parameters & Encoder's architecture of all learners\\
\hline
Validation datasets& Validation datasets of all learners\\
\hline
Active auxiliary datasets & -- \\
\hline
Validation loss & The sum of every learner's validation loss on its validation dataset: $\sum_{k=1}^K L(A, \widetilde{W}_k^{(M)}(A), \widetilde{H}_k^{(M)}(A),D_k^{(\textrm{val})}) $ \\
\hline
Interaction function & -- \\
\hline
Optimization problem & $\textrm{min}_{A} \;
\sum_{k=1}^K L(A, \widetilde{W}_k^{(M)}(A), \widetilde{H}_k^{(M)}(A),D_k^{(\textrm{val})}) $ \\
\hline
\end{tabular}
\caption{Validation stage in interleaving learning}
\label{tb:il-val}
\end{table} | [
[
"Active learners",
"All learners"
],
[
"Remaining learnable parameters",
"Encoder’s architecture of all learners"
],
[
"Validation datasets",
"Validation datasets of all learners"
],
[
"Active auxiliary datasets",
"–"
],
[
"Validation loss",
"The sum of every learner’s valida-\ntion loss on its validation dataset:\nPK L(A, W k(M) (A), H ek(M) (A), D k(val) )\nk=1 f"
],
[
"Interaction function",
"–"
],
[
"Optimization problem",
"min PK L(A, W k(M) (A), H ek(M) (A), D k(val) )\nA k=1 f"
]
] | 0.710857 | null | null |
7 | 2012.04863v2 | 34 | [
91.54199981689453,
91.06097412109375,
516.822021484375,
390.77398681640625
] | \begin{table}[t]
\centering
\begin{tabular}{l|p{10.5cm}}
\hline
Skillearn & Interleaving Learning\\
\hline
Learners & $K$ learners \\
\hline
Learnable parameters & 1) Encoder architecture shared by all learners; 2) In each round, each learner has weight parameters for the data encoder and weight parameters for the task-specific head. \\
\hline
Interaction function & The encoder weights $W_l$ at learning stage $l$ are encouraged to be close to the optimal encoder weights $\widetilde{W}_{l-1}$ at stage $l-1$: $\|W_l-\widetilde{W}_{l-1}\|_2^2$.\\
\hline
Learning stages & 1) In the first learning stage (the first learner in the first round), the learner trains the weights of its data encoder and the weights of its task-specific head on its training dataset: $\widetilde{W}_1^{(1)}(A) =\textrm{min}_{W^{(1)}_1,H^{(1)}_1} \quad L(A, W^{(1)}_1, H^{(1)}_1,D_1^{(\textrm{tr})})$; 2) In other learning stages, the learner trains the weights of its data encoder and the weights of its task-specific head on its training dataset where the encoder weights are encouraged to be close to the optimal encoder weights trained in the previous stage: $\widetilde{W}_k^{(m)}(A) =\textrm{min}_{W_k^{(m)},H^{(m)}_k} \quad L(A, W^{(m)}_k, H^{(m)}_k,D_k^{(\textrm{tr})})+\lambda\|W^{(m)}_k-\widetilde{W}_{k-1}^{(m)}(A)\|^2_{2}$.
\\
\hline
Validation stage & Each learner validates its optimal data encoder and task-specific head learned in the last round on its validation dataset.\\
\hline
Datasets & Each learner has a training dataset and a validation dataset.\\
\hline
\end{tabular}
\caption{Mapping from Skillearn to Interleaving Learning}
\label{tb:sk-il}
\end{table} | [
[
"Skillearn",
"Interleaving Learning"
],
[
"Learners",
"K learners"
],
[
"Learnable parameters",
"1) Encoder architecture shared by all learners; 2) In each round,\neach learner has weight parameters for the data encoder and\nweight parameters for the task-specific head."
],
[
"Interaction function",
"The encoder weights W at learning stage l are encouraged to\nl\nbe close to the optimal encoder weights W at stage l 1:\nfl−1 −\nW W 2.\n∥ l −fl−1∥2"
],
[
"Learning stages",
"1) In the first learning stage (the first learner in the first\nround), the learner trains the weights of its data encoder and\nthe weights of its task-specific head on its training dataset:\n(1) (1) (1) (tr)\nW (A) = min L(A, W , H , D ); 2) In other\nf 1 W 1(1),H 1(1) 1 1 1\nlearning stages, the learner trains the weights of its data en-\ncoder and the weights of its task-specific head on its train-\ning dataset where the encoder weights are encouraged to be\nclose to the optimal encoder weights trained in the previous\n(m) (m) (m) (tr)\nstage: W (A) = min L(A, W , H , D ) +\nf k W k(m),H k(m) k k k\nλ ∥W k(m) −W k( −m 1) (A) ∥2 2.\nf"
],
[
"Validation stage",
"Each learner validates its optimal data encoder and task-\nspecific head learned in the last round on its validation dataset."
],
[
"Datasets",
"Each learner has a training dataset and a validation dataset."
]
] | 0.493905 | null | null |
0 | 2305.00798v1 | 6 | [
212.18111610412598,
424.9330139160156,
402.91417541503904,
453.02801513671875
] | \begin{table}[!ht]
\centering
\label{tbl:CNNtrain}
\caption{Accuracy, time. and energy of training a CNN using CPU vs. GPU on CIFAT-10}
\begin{tabular}{|l|l|l|l|}
\hline
Device & Accuracy (\%) & Time (s) & Energy (J) \\ \hline
CPU & 47 & 27978.98796 & 3497373.495 \\ \hline
GPU & 48 & 327.3535366 & 130941.4146 \\ \hline
\end{tabular}
\end{table} | [
[
"Device",
"Accuracy (%)",
"Time (s)",
"Energy (J)"
],
[
"CPU",
"47",
"27978.98796",
"3497373.495"
],
[
"GPU",
"48",
"327.3535366",
"130941.4146"
]
] | 0.995025 | null | null |
1 | 2305.00798v1 | 6 | [
123.01799774169922,
713.6220092773438,
489.001953125,
732.3510131835938
] | \begin{table}[!ht]
\centering
\label{tbl:sync_loss}
\caption{Final Loss results after 250 epochs for synchronous training}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline
Test & MP1 & MP2 & MP4 & MP8 & MP16 & MPI1 & MPI2 & MPI4 & MPI8 & MPI16 \\ \hline
Loss & 0.0183 & 0.0182 & 0.0183 & 0.0183 & 0.0182 & 0.0182 & 0.0185 & 0.0182 & 0.0177 & 0.0188 \\ \hline
\end{tabular}
\end{table} | [
[
"Test",
"MP1",
"MP2",
"MP4",
"MP8",
"MP16",
"MPI1",
"MPI2",
"MPI4",
"MPI8",
"MPI16"
],
[
"Loss",
"0.0183",
"0.0182",
"0.0183",
"0.0183",
"0.0182",
"0.0182",
"0.0185",
"0.0182",
"0.0177",
"0.0188"
]
] | 1 | null | null |
2 | 2305.00798v1 | 7 | [
114.86100006103516,
283.6969909667969,
497.1390075683594,
302.427001953125
] | \begin{table}[!ht]
\centering
\label{tbl:async_loss}
\caption{Final Loss results after 250 epochs for asynchronous training}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline
Test & MPA1 & MPA2 & MPA4 & MPA8 & MPA16 & MPIA1 & MPIA2 & MPIA4 & MPIA8 & MPIA16 \\ \hline
Loss & 0.0182 & 0.0194 & 0.0212 & 0.0219 & 0.0242 & 0.0182 & 0.0194 & 0.0212 & 0.0219 & 0.0242 \\ \hline
\end{tabular}
\end{table} | [
[
"Test",
"MPA1",
"MPA2",
"MPA4",
"MPA8",
"MPA16",
"MPIA1",
"MPIA2",
"MPIA4",
"MPIA8",
"MPIA16"
],
[
"Loss",
"0.018",
"2 0.0194",
"0.0212",
"0.0219",
"0.0242",
"0.0182",
"0.0194",
"0.0212",
"0.0219",
"0.0242"
]
] | 0.996337 | null | null |
0 | 1308.6198v3 | 10 | [
54.10900115966797,
87.93434651692708,
295.9150085449219,
121.67466227213542
] | \begin{table}[h]\small
\centering
\caption{Comparison with \cite{nikolaenko2013privacy}}\label{table:linear_compare}\vspace{-10pt}
\begin{tabular}{c|c|c|c}\hline\hline
Ridge Regression & Insurance & Red wine & White wine\\\hline
\cite{nikolaenko2013privacy} & 55s & 39s & 45s\\\hline
Ours & 74s & 12s & 33s \\\hline\hline
\end{tabular}
\end{table} | [
[
"Ridge Regression",
"Insurance",
"Red wine",
"White wine"
],
[
"[50]",
"55s",
"39s",
"45s"
],
[
"Ours",
"74s",
"12s",
"33s"
]
] | 0.870056 | null | null |
1 | 1308.6198v3 | 10 | [
77.35299682617188,
166.3973185221354,
272.66998291015625,
201.7316691080729
] | \begin{table}[h]\small
\centering\caption{SMO on Datasets}\label{table:smo_data}\vspace{-10pt}
\begin{tabular}{c|c|c|c}\hline\hline
Datasets & Records \# & Features \# & Time \\\hline\hline
Adult \cite{kohavi1996scaling} & 1,605 & 14 & 2.75h \\
Web \cite{breese1998empirical} & 2,477 & 17 & 49.75h\\
\hline\hline
\end{tabular}
\end{table} | [
[
"Datasets",
"Records #",
"Features #",
"Time"
],
[
"Adult [42]\nWeb [11]",
"1,605\n2,477",
"14\n17",
"2.75h\n49.75h"
]
] | 0.646465 | null | null |
0 | 1806.02322v1 | 7 | [
324.03566487630206,
411.18701171875,
524.8446858723959,
432.59600830078125
] | \begin{table} [h]
\caption{Error rate for SDR ($U=20, I=40$). } \label{tab:SDRerr}
\small
\begin{center}
\begin{tabular}{ |c|c|c|c|}
\hline
& $ D=4 $ & $D=8 $ & $ D=10 $
\cr \hline
SDR Accur. $\times 10^{-3}$ & $ 7.5 $ & $4.4 $ & $ 4.0 $
\cr \hline
\end{tabular}
\end{center}
\normalsize
\end{table} | [
[
"",
"D = 4",
"D = 8",
"D = 10"
],
[
"SDR Accur. ×10−3",
"7.5",
"4.4",
"4.0"
]
] | 0.709091 | null | null |
0 | 1912.05467v1 | 7 | [
71.34266408284505,
141.072998046875,
275.15733846028644,
161.7960205078125
] | \begin{table}[ht!]
\small
\centering
\begin{tabular}{|l|l|l|}\hline
Transformer & Transformer + Fine Tune & MetaMT \\ \hline
36.38 & 40.61 & 42.20\\ \hline
\end{tabular}
\caption{Performance Comparison (BLEU-4) on Electronic Health Record Dataset} \label{tab:re_ehr}
\end{table} | [
[
"Transformer",
"Transformer + Fine Tune",
"MetaMT"
],
[
"36.38",
"40.61",
"42.20"
]
] | 0.606061 | null | null |
0 | 1905.08635v1 | 6 | [
221.4290008544922,
380.0440368652344,
388.24322509765625,
502.283447265625
] | \begin{table}[h]
\centering
\caption{Statistics of the four sub-datasets and the accordingly generated network layers from the Facebook dataset.}
\vspace{-0.4cm}
\label{tbl:simple_statistics}
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{2}{|l|}{Dataset and Layers} & \#\_of\_users & \#\_of\_edges \\ \hline
\multicolumn{2}{|l|}{\textbf{Demographic Info}} & 2,676 & \\ \hline
\multirow{4}{*}{} & L1: Age & & 1,228,223 \\ \cline{2-4}
& L2: Gender & & 1,813,638 \\ \cline{2-4}
& L3: Relationship Status & & 1,119,592 \\ \cline{2-4}
& L5: Locale & & 2,799,160 \\ \hline
\multicolumn{2}{|l|}{\textbf{User's Political Views}} & 2,695 & \\ \hline
& L4: Political Views & & 494,974 \\ \hline
\multicolumn{2}{|l|}{\textbf{ Personality}} & 2,485 & \\ \hline
\multirow{5}{*}{} & L6: OPN & & 1,020,306 \\ \cline{2-4}
& L7: CON & & 840,456 \\ \cline{2-4}
& L8: EXT & & 795,691 \\ \cline{2-4}
& L9: AGR & & 718,201 \\ \cline{2-4}
& L10: NEU & & 627,760 \\ \hline
\multicolumn{2}{|l|}{\textbf{Facebook Status Updates}} & 1,645 & \\ \hline
& L11: Privacy Concern & & 2,191,659 \\ \hline
\end{tabular}
\end{table} | [
[
"Layer",
"From\ndataset",
"# edges"
],
[
"L1: Age\nL2: Gender\nL3: Relationship Status\nL4: Political Views\nL5: Locale\nL6: OPN\nL7: CON\nL8: EXT\nL9: AGR\nL10: NEU\nL11: Privacy Concern",
"D1\nD1\nD1\nD2\nD1\nD3\nD3\nD3\nD3\nD3\nD3, D4",
"1,228,223\n1,813,638\n1,119,592\n494,974\n2,799,160\n1,020,306\n840,456\n795,691\n718,201\n627,760\n2,191,659"
]
] | 0.363636 | null | null |
1 | 1905.08635v1 | 4 | [
311.24700927734375,
212.0999755859375,
480.47900390625,
273.1710205078125
] | \begin{table}[h!t]
\centering
\caption{Statistics of the four datasets and the accordingly generated network layers from the Facebook dataset.}
\vspace{-0.4cm}
\scalebox{0.9}{
\begin{tabular}{m{4.3cm}|m{2.5cm}|m{1.5cm}}
\hline
\textbf{Dataset} & \multicolumn{2}{l}{ \#\_of\_users} \\ \hline
Demographic Info (D1) & \multicolumn{2}{l}{2,676} \\
User's political views (D2) & \multicolumn{2}{l}{2,695} \\
Facebook personality (D3) & \multicolumn{2}{l}{2,485} \\
Facebook Status Updates (D4) & \multicolumn{2}{l}{1,645} \\
\hline
\hline
\textbf{Layer} & From dataset & \#\_of\_edges \\ \hline
L1: Age & D1 & 1,228,223 \\
L2: Gender & D1 & 1,813,638 \\
L3: Relationship Status & D1 & 1,119,592 \\
L4: Political view & D2 & 494,974 \\
L5: Locale & D1 & 2,799,160 \\
L6: OPN & D3 & 1,020,306 \\
L7: CON & D3 & 840,456 \\
L8: EXT & D3 & 795,691 \\
L9: AGR & D3 & 718,201 \\
L10: NEU & D3 & 627,760 \\
L11: Privacy Concern & D3 \& D4 & 2,191,659 \\
\hline
\end{tabular}
}
\label{tbl:simple_statistics}
\end{table} | [
[
"Datasets",
"#users"
],
[
"Demographic Info (D1)\nUser’s Political Views (D2)\nPersonality (D3)\nFacebook Status Updates (D4)",
"2,676\n2,695\n2,485\n1,645"
]
] | 0.369885 | null | null |
2 | 1905.08635v1 | 8 | [
201.21211477426382,
137.932373046875,
411.07286189152643,
338.4200134277344
] | \begin{table}
%\begin{wraptable}{l}{0.65\textwidth}
\centering
% \vspace{-20pt}
\caption{\textit{AND}-Compositions needed for analytical queries shown in Section \ref{subsec:query}}
% \vspace{-10pt}
% \vspace{-0.2cm}
\scalebox{0.9}{
\begin{tabular}{|m{0.8cm}|m{7.2cm}|}
\hline
\textbf{Ana-lysis} & \textbf{Required \textit{AND}-Compositions of Layers} \\
\hline
\hline
\multicolumn{2}{|l|}{\textit{Dominant Political Views}} \\
\hline
\textbf{Q1} & L1 (Age), L4 (Political View), L5 (Locale)\\
\hline
\hline
\multicolumn{2}{|l|}{\textit{Relationship Status Correlation}} \\
\hline
\textbf{Q2a} & L1 (Age), L3 (Relationship Status), L5 (Locale)\\
\hline
\textbf{Q2b} & Five 3-layer compositions: [L2 (Gender) AND L3 (Relationship Status)] with each of L6 (OPN), L7 (CON), L8 (EXT), L9 (AGR), L10 (NEU)\\
\hline
\hline
\multicolumn{2}{|l|}{\textit{Personality Traits Analysis}} \\
\hline
\textbf{Q3a} & L6 (OPN), L10 (NEU)\\
\hline
\textbf{Q3b} & Five 2-layer compositions: Each of L6 (OPN), L7 (CON), L8 (EXT), L9 (AGR), L10 (NEU) with L1 (Age)\\
\hline
\hline
\multicolumn{2}{|l|}{\textit{Privacy Concern Correlation}} \\
\hline
%\textbf{Q4a} & L1 (Age), L10 (NEU)\\
% \hline
\textbf{Q4a} & L1 (Age), L11 (Privacy Concern)\\
\hline
\textbf{Q4b} & Five 3-layer compositions: [L2 (Gender) AND L11 (Privacy Concern)] with each of L6 (OPN), L7 (CON), L8 (EXT), L9 (AGR), L10 (NEU)\\
\hline
\end{tabular}
}
\label{tab:computationLayers}
% \vspace{-20pt}
\vspace{-10pt}
% \end{wraptable}
\end{table} | [
[
"Ana-\nlysis",
"Required AND-Compositions of Layers"
],
[
"Dominant Political Views",
null
],
[
"Q1",
"L1 (Age), L4 (Political View), L5 (Locale)"
],
[
"Relationship Status Correlation",
null
],
[
"Q2a",
"L1 (Age), L3 (Relationship Status), L5 (Locale)"
],
[
"Q2b",
"Five 3-layer compositions: [L2 (Gender) AND L3\n(Relationship Status)] with each of L6 (OPN), L7\n(CON), L8 (EXT), L9 (AGR), L10 (NEU)"
],
[
"Personality Traits Analysis",
null
],
[
"Q3a",
"L6 (OPN), L10 (NEU)"
],
[
"Q3b",
"Five 2-layer compositions: Each of L6 (OPN), L7\n(CON), L8 (EXT), L9 (AGR), L10 (NEU) with L1\n(Age)"
],
[
"Privacy Concern Correlation",
null
],
[
"Q4a",
"L1 (Age), L11 (Privacy Concern)"
],
[
"Q4b",
"Five 3-layer compositions: [L2 (Gender) AND L11\n(Privacy Concern)] with each of L6 (OPN), L7\n(CON), L8 (EXT), L9 (AGR), L10 (NEU)"
]
] | 0.933153 | null | null |
3 | 1905.08635v1 | 13 | [
184.34579467773438,
609.7251586914062,
427.9397888183594,
659.9820556640625
] | \begin{table}[h!t]
%\vspace{-25pt}
\centering
\caption{Dominant personality traits of male and females preferring different levels of privacy-concern}
\vspace{-0.05cm}
\scalebox{0.9}{
\begin{tabular}{m{1.6cm}|m{1.8cm}|m{1.9cm}|m{1.8cm}|m{1.9cm}}
\hline
\multirow{2}{*}{\textbf{Privacy}} & \multicolumn{2}{c|}{\textbf{Extraversion(100\%)}} & \multicolumn{2}{c}{\textbf{Neuroticism(100\%)}}\\
\cline{2-5}
& \textbf{Males(\%)} & \textbf{Females(\%)} & \textbf{Males(\%)} & \textbf{Females(\%)}\\ \hline
HiPC & 0 & 0 & 09.90 & \textbf{09.99} \\
MePC & 39.89 & \textbf{45.36} & 30.15 & \textbf{49.96} \\
LoPC & 07.45 & 07.30 & 0 & 0 \\
\hline
\end{tabular}
}
\label{tab:Q3b}
\vspace{-20pt}
\end{table} | [
[
"Privacy",
"Extraversion(100%)",
null,
"Neuroticism(100%)",
null
],
[
null,
"Males(%)",
"Females(%)",
"Males(%)",
"Females(%)"
],
[
"HiPC\nMePC\nLoPC",
"0\n39.89\n07.45",
"0\n45.36\n07.30",
"09.90\n30.15\n0",
"09.99\n49.96\n0"
]
] | 0.627907 | null | null |
0 | 2403.13076v1 | 13 | [
113.06800079345703,
245.99200439453125,
498.9320068359375,
295.4070129394531
] | \begin{table}[h!]
\centering
\caption{Performance measures on the test set comparing $\mu^*$ and the estimated $\hat \mu$ (computed with the parameters estimated with $n=1000$). The results are displayed as mean on the 100 iterations (standard deviation).}
\label{table:scores_test_synthetic}
\begin{tabular}{|c|l|c|c|c|c|}
\hline
& \textbf{Model} & $\boldsymbol{R^2}$ & \textbf{RMSE} & \textbf{Cross-entropy} & \textbf{Cos similarity} \\
\hline
\multirow{2}{*}{$\rho=0.1$} & Not spatial & 0.9309 ($<10^{-4}$) & 0.0739 ($<10^{-4}$) & 0.6660 (0.0001) & 0.9855 ($<10^{-4}$) \\
& Spatial & 0.9335 ($<10^{-4}$) & 0.0723 ($<10^{-4}$) & 0.6648 (0.0001) & 0.9862 ($<10^{-4}$) \\ \hline
\multirow{2}{*}{$\rho=0.5$} & Not spatial & 0.8311 (0.0001) & 0.1249 ($<10^{-4}$) & 0.6845 (0.0001) & 0.9610 ($<10^{-4}$)\\
& Spatial & 0.9408 ($<10^{-4}$) & 0.0705 ($<10^{-4}$) & 0.6275 (0.0002) & 0.9872 ($<10^{-4}$) \\ \hline
\multirow{2}{*}{$\rho=0.9$} & Not spatial & 0.2073 (0.0025) & 0.3257 (0.0001) & 0.9033 (0.0005) & 0.7764 (0.0001) \\
& Spatial & 0.9011 (0.0026) & 0.1097 (0.0008) & 0.4414 (0.0026) & 0.9776 (0.0001) \\
\hline
\end{tabular}
\end{table} | [
[
"Model",
"R2",
"RMSE",
"Cross-entropy",
"AIC",
"Cos similarity"
],
[
"No spatial",
"0.487",
"0.080",
"1.048",
"-862.1",
"0.975"
],
[
"Spatial (contiguity)",
"0.582",
"0.072",
"1.042",
"-947.4",
"0.979"
],
[
"Spatial (distance)",
"0.602",
"0.070",
"1.041",
"-965.1",
"0.980"
]
] | 0.36259 | null | null |
1 | 2403.13076v1 | 12 | [
123.61199951171875,
92.01397705078125,
488.38800048828125,
129.07501220703125
] | \begin{table}[h]
\centering
\caption{Performance measures for the Dirichlet models on Maupiti dataset.}
\label{table:scores_maupiti}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
\textbf{Model} & $\boldsymbol{R^2}$ & \textbf{RMSE} & \textbf{Cross-entropy} & \textbf{AIC} & \textbf{Cos similarity} \\
\hline
Without spatial & 0.265 & 0.297 & 0.815 & -73873 & 0.786 \\ \hline
With spatial & 0.441 & 0.261 & 0.675 & -74170 & 0.848 \\ \hline
\end{tabular}
\end{table} | [
[
"Model",
"R2",
"RMSE",
"Cross-entropy",
"AIC",
"Cos similarity"
],
[
"Without spatial",
"0.265",
"0.297",
"0.815",
"-73873",
"0.786"
],
[
"With spatial",
"0.441",
"0.261",
"0.675",
"-74170",
"0.848"
]
] | 1 | null | null |
2 | 2403.13076v1 | 12 | [
143.7030029296875,
239.666015625,
468.2969970703125,
276.72698974609375
] | \begin{table}[h]
\centering
\caption{Performance measures for the mutinomial regression models on Maupiti dataset using the cross-entropy loss}
\label{table:scores_maupiti_crossentropy}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
\textbf{Model} & $\boldsymbol{R^2}$ & \textbf{RMSE} & \textbf{Cross-entropy} & \textbf{Cos similarity} \\
\hline
Without spatial & 0.636 & 0.221 & 0.455 & 0.868 \\ \hline
With spatial & 0.820 & 0.160 & 0.307 & 0.925 \\ \hline
\end{tabular}
\end{table} | [
[
"Model",
"R2",
"RMSE",
"Cross-entropy",
"Cos similarity"
],
[
"Without spatial",
"0.636",
"0.221",
"0.455",
"0.868"
],
[
"With spatial",
"0.820",
"0.160",
"0.307",
"0.925"
]
] | 1 | null | null |
0 | 1908.02947v1 | 17 | [
142.7969110662287,
462.13299560546875,
468.45119406960225,
583.2780151367188
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|r|r|c|}
\hline
\multicolumn{2}{|r|}{\textbf{Biasing Strategy}} & \textbf{CBOW $200$ $(\%)$} \\
\hline
\multicolumn{2}{|r|}{Uniform} & $68.64$ \\
\hline
\multirow{4}{*}{Domain-independent} &
Predicate Frequency & $54.03$ \\
& Inverse Predicate Frequency & $71.33$ \\
& Object Frequency & $77.42$ \\
& Inverse Object Frequency & $50.56$ \\
\hline
\multirow{4}{*}{Domain-specific} &
AIFB-Weight-Function-1 & $88.28$ \\
& AIFB-Weight-Function-2 & $89.94$ \\
& AIFB-Weight-Function-3 & $91.56$ \\
& AIFB-Weight-Function-4 & $99.86$ \\
\hline
\end{tabular}
\caption{$k$-Nearest Neighbor classification ($k=4$) accuracy for the AIFB dataset.}
\label{tbl:AIFB}
\end{center}
\end{table} | [
[
"Biasing Strategy",
null,
"CBOW 200 (%)"
],
[
"Uniform",
null,
"68.64"
],
[
"Domain-independent",
"Predicate Frequency\nInverse Predicate Frequency\nObject Frequency\nInverse Object Frequency",
"54.03\n71.33\n77.42\n50.56"
],
[
"Domain-specific",
"AIFB-Weight-Function-1\nAIFB-Weight-Function-2\nAIFB-Weight-Function-3\nAIFB-Weight-Function-4",
"88.28\n89.94\n91.56\n99.86"
]
] | 0.610879 | null | null |
1 | 1908.02947v1 | 18 | [
171.0078328450521,
158.8079833984375,
440.24016825358075,
220.57598876953125
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|}
\hline
{\bf Algorithm} & {\bf Hyperparameters} \\ \hline
AIFB-Weight-Function-1 &
$ \hp{w}{low} = 0.1, \hp{w}{high} = 10 $ \\ \hline
AIFB-Weight-Function-2 &
$ \hp{w}{low} = 0.1, \hp{w}{high} = 10 $\\ \hline
AIFB-Weight-Function-3 &
$ \hp{w}{low} = 0.1, \hp{w}{high} = 10 $\\ \hline
AIFB-Weight-Function-4 &
$ \hp{w}{low} = 0.1, w = 10, \hp{w}{high} = 100 $ \\ \hline
\end{tabular}
\end{center}
\caption{Hyperparameter values used in the domain-specific biasing strategies for the AIFB dataset.}
\label{tbl:AIFBHyperparameters}
\end{table} | [
[
"Algorithm",
"Hyperparameters"
],
[
"AIFB-Weight-Function-1",
"w = 0.1, w = 10\nlow high"
],
[
"AIFB-Weight-Function-2",
"w = 0.1, w = 10\nlow high"
],
[
"AIFB-Weight-Function-3",
"w = 0.1, w = 10\nlow high"
],
[
"AIFB-Weight-Function-4",
"w = 0.1, w = 10, w = 100\nlow high"
]
] | 0.442478 | null | null |
2 | 1908.02947v1 | 19 | [
173.11783345540366,
125.0009765625,
438.1301523844401,
186.77001953125
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|}
\hline
{\bf Algorithm} & {\bf Hyperparameters} \\ \hline
BGS-Weight-Function-1 &
$ \hp{w}{low} = 0.1, \hp{w}{high} = 10 $ \\ \hline
BGS-Weight-Function-2 &
$ \hp{w}{low} = 0.001, \hp{w}{high} = 1 $\\ \hline
BGS-Weight-Function-3 &
$ \hp{w}{low} = 0.1, w = 10, \hp{w}{high} = 100 $\\ \hline
BGS-Weight-Function-4 &
$ \hp{w}{low} = 0.1, \hp{w}{high} = 1 $ \\ \hline
\end{tabular}
\end{center}
\caption{Hyperparameter values used in the domain-specific biasing strategies for the BGS dataset.}
\label{tbl:BGSHyperparameters}
\end{table} | [
[
"Algorithm",
"Hyperparameters"
],
[
"BGS-Weight-Function-1",
"w = 0.1, w = 10\nlow high"
],
[
"BGS-Weight-Function-2",
"w = 0.001, w = 1\nlow high"
],
[
"BGS-Weight-Function-3",
"w = 0.1, w = 10, w = 100\nlow high"
],
[
"BGS-Weight-Function-4",
"w = 0.1, w = 1\nlow high"
]
] | 0.436036 | null | null |
0 | 2102.11447v1 | 9 | [
165.72704060872397,
421.37701416015625,
446.2715318467882,
505.8559265136719
] | \begin{table}[h]
\centering
\resizebox{0.6\columnwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Year} & \textbf{Using Public Dataset} & \textbf{Not Using Public Dataset} & \textbf{Public Ratio} \\ \hline
\textit{2015} & 15 & 7 & 68.18\% \\
\textit{2016} & 19 & 3 & 86.36\% \\
\textit{2017} & 34 & 10 & 77.27\% \\
\textit{2018} & 124 & 33 & 78.98\% \\
\textit{2019} & 170 & 66 & 72.03\% \\
\textit{2020} & 209 & 47 & 81.64\% \\\hline
\textit{Total} & 571 & 166 & 77.48\% \\ \hline
\end{tabular}%
}
\caption{The count of publications using public/non-public dataset (Facebook).}
\label{tab:facebook}
\end{table} | [
[
"Year",
"Using Public Dataset",
"Not Using Public Dataset",
"Public Ratio"
],
[
"2015\n2016\n2017\n2018\n2019\n2020",
"15\n19\n34\n124\n170\n209",
"7\n3\n10\n33\n66\n47",
"68.18%\n86.36%\n77.27%\n78.98%\n72.03%\n81.64%"
],
[
"Total",
"571",
"166",
"77.48%"
]
] | 0.558442 | null | null |
1 | 2102.11447v1 | 10 | [
165.7248992919922,
183.23477172851562,
446.2736625671387,
267.712890625
] | \begin{table}[h]
\centering
\resizebox{0.6\columnwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Year} & \textbf{Using Public Dataset} & \textbf{Not Using Public Dataset} & \textbf{Public Ratio} \\ \hline
\textit{2015} & 23 & 4 & 85.19\% \\
\textit{2016} & 30 & 12 & 71.43\% \\
\textit{2017} & 87 & 26 & 76.99\% \\
\textit{2018} & 93 & 27 & 77.50\% \\
\textit{2019} & 101 & 29 & 77.69\% \\
\textit{2020} & 157 & 43 & 78.50\% \\\hline
\textit{Total} & 468 & 137 & 77.36\% \\ \hline
\end{tabular}%
}
\caption{The count of publications using public/non-public dataset (Google).}
\label{tab:google}
\end{table} | [
[
"Year",
"Using Public Dataset",
"Not Using Public Dataset",
"Public Ratio"
],
[
"2015\n2016\n2017\n2018\n2019\n2020",
"23\n30\n87\n93\n101\n157",
"4\n12\n26\n27\n29\n43",
"85.19%\n71.43%\n76.99%\n77.50%\n77.69%\n78.50%"
],
[
"Total",
"468",
"137",
"77.36%"
]
] | 0.550218 | null | null |
2 | 2102.11447v1 | 10 | [
165.7248992919922,
521.6643676757812,
446.2736625671387,
585.25341796875
] | \begin{table}[h]
\centering
\resizebox{0.6\columnwidth}{!}{%
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Year} & \textbf{Using Public Dataset} & \textbf{Not Using Public Dataset} & \textbf{Public Ratio} \\ \hline
\textit{2017} & 98 & 38 & 72.06\% \\
\textit{2018} & 85 & 26 & 76.58\% \\
\textit{2019} & 137 & 33 & 80.59\% \\
\textit{2020} & 189 & 29 & 86.70\% \\\hline
\textit{Total} & 509 & 126 & 80.16\% \\ \hline
\end{tabular}%
}
\caption{The count of publications using public/non-public dataset (Microsoft).}
\label{tab:microsoft}
\end{table} | [
[
"Year",
"Using Public Dataset",
"Not Using Public Dataset",
"Public Ratio"
],
[
"2017\n2018\n2019\n2020",
"98\n85\n137\n189",
"38\n26\n33\n29",
"72.06%\n76.58%\n80.59%\n86.70%"
],
[
"Total",
"509",
"126",
"80.16%"
]
] | 0.590909 | null | null |
0 | 1808.04439v1 | 7 | [
146.74732971191406,
116.03497314453125,
468.60833740234375,
138.75
] | \begin{table}[h]
\centering
\begin{tabular}{|p{1.6cm}|p{2.8cm}|p{2.3cm}|p{4.2cm}|}
\hline
{} & Logistic Regression & Maximum MI & Optimized LDDMM-kernel\\ \hline
ROC AUC &0.36$\pm$0.02 & 0.72 $\pm$ 0.06 & 0.75 $\pm$ 0.06 \\\hline
\end{tabular}
\caption{ROC AUC scores for three models}
\label{tb:result}
\end{table} | [
[
"",
"Logistic Regression",
"Maximum MI",
"Optimized LDDMM-kernel"
],
[
"ROC AUC",
"0.36±0.02",
"0.72 ± 0.06",
"0.75 ± 0.06"
]
] | 0.782979 | null | null |
0 | 2109.05087v1 | 3 | [
71.97957393101284,
72.198974609375,
536.6995936802456,
277.8280029296875
] | \begin{table}[h]
\centering
\begin{tabular}{|l| p{12cm}|}
\hline
\textbf{Patient Information} & \textbf{Features} \\
\hline
Basic Information& Age, Gender, Race/Ethnicity, BMI, Medical History, Prior medications, co-morbidities, \\
\hline
Presenting Symptoms & Duration of GI Symptoms prior to admission, Co-infections, GI bleed\\
\hline
Method of Diagnosis & RT-PCR, Qualitative, Isothermal, Non-PCR, Serological Test, Chest computed tomography\\
\hline
Laboratory/Imaging & WBC, Hgb, Hct, MCV, Platelet, count initial, Neutrophil Abs initial, Lymphocyte Abs initial, Fibrinogen, Initial, D-Dimer, Glucose Initial, BUN initial, Cr initial, K initial, GFR initial, AKI, Na initial, Bicarb initial, Alb initial-worst-day5, Tbili initial, EGD, Initial EKG, Alk Phos-initial-worst-day5, CT chest, ALT initial-worst-day5, CXR, AST initial-worst-day5, LDH inital, CPK initial, Troponin initial, Ferritin Initial, ProBNP, CRP initial, HBa1c, TSH, T4 Free, Lipase initial, ABG, VBG, Urine Blood, Stool studies, IL-6, Autoimmune markers, T-spot, Colonoscopy, Liver biopsy, Abd ultrasound \\
\hline
Treatment & Mechanical ventilation, SpO2, Duration of GI symptoms after admission, Admitted to ICU, Length of stay in ICU,Died in hospital, Severe Outcomes, Readmission within 30 days\\
\hline
\end{tabular}
\label{tab:info}
\caption{Initial Features in the Dataset}
\end{table} | [
[
"Patient Information",
"Features"
],
[
"Basic Information",
"Age, Gender, Race/Ethnicity, BMI, Medical History, Prior medications, co-\nmorbidities,"
],
[
"Presenting Symptoms",
"Duration of GI Symptoms prior to admission, Co-infections, GI bleed"
],
[
"Method of Diagnosis",
"RT-PCR, Qualitative, Isothermal, Non-PCR, Serological Test, Chest computed\ntomography"
],
[
"Laboratory/Imaging",
"WBC, Hgb, Hct, MCV, Platelet, count initial, Neutrophil Abs initial, Lym-\nphocyte Abs initial, Fibrinogen, Initial, D-Dimer, Glucose Initial, BUN initial,\nCr initial, K initial, GFR initial, AKI, Na initial, Bicarb initial, Alb initial-\nworst-day5, Tbili initial, EGD, Initial EKG, Alk Phos-initial-worst-day5, CT\nchest, ALT initial-worst-day5, CXR, AST initial-worst-day5, LDH inital, CPK\ninitial, Troponin initial, Ferritin Initial, ProBNP, CRP initial, HBa1c, TSH, T4\nFree, Lipase initial, ABG, VBG, Urine Blood, Stool studies, IL-6, Autoimmune\nmarkers, T-spot, Colonoscopy, Liver biopsy, Abd ultrasound"
],
[
"Treatment",
"Mechanical ventilation, SpO2, Duration of GI symptoms after admission, Ad-\nmitted to ICU, Length of stay in ICU,Died in hospital, Severe Outcomes, Read-\nmission within 30 days"
]
] | 0.978797 | null | null |
1 | 2109.05087v1 | 5 | [
63.19034908128821,
72.198974609375,
545.5547140370245,
349.1610107421875
] | \begin{table}[t]
\begin{table}[h]
\centering
\begin{tabular}{|p{8cm}|l|l|}
\hline
\textbf{Variable Name} & \textbf{Medical Meaning} & \textbf{Description} \\
\hline
AKI (any time during the hospitalization) & Acute kidney injury & Laboratory/Imaging \\
ALB{\_}I or Alb initial (3.5 - 5.5 g/dL) & Albumin & Laboratory/Imaging \\
ALK{\_}I or Alk Phos inItial (45- 115 IU/L) & Alkaline phosphatase & Laboratory/Imaging\\
AST{\_}I or AST intial (10-55 IU/L) & Aspartate aminotransferase & Laboratory/Imaging \\
BUN initial (6-23mg/dL) & Blood urea nitrogen & Laboratory/Imaging \\
CR or Cr initial (.5-1.2mg/dL) & Creatinine & Laboratory/Imaging \\
CXR2 & bilateral opacities/infiltrates & Laboratory/Imaging \\
DIMER or D-Dimer initial (0-500 ng/mL) & - & Laboratory/Imaging \\
EKG or Initial EKG QTc interval number (esp if received Hydroxychloroquine & & \\
or Azythromycin) & Electrocardiogram & Laboratory/Imaging\\
GFR initial ($>$60mL/min/1.73M*M) & Glomerular filtration rate & Laboratory/Imaging \\
Glucose initial (70-100mg/dL) & - & Laboratory/Imaging \\
Hct initial (36.7-44.7{\%}) & Hematocrit & Laboratory/Imaging \\
MCV initial (78.0-99.0fL) & Mean corpuscular volume & Laboratory/Imaging \\
NA{\_}I or Na initial (136-145mmol/L) & Sodium & Laboratory/Imaging \\
TBILI or Tbili initial (0.1 - 1.2 mg/dL) & Total Bilirubin & Laboratory/Imaging \\
WBC initial (4.9 – 10.0 Thousand/ul) & White blood cells & Laboratory/Imaging \\
\hline
RACE{\_}E & Race and Ethnicity & Personal Information \\
Age & - & Personal Information \\
\hline
Prior Cmorbidities(HTN) & Hypertension & Co-morbidities \\
\hline
SYMP20 or AMS & Altered mental status & Presenting Symptoms \\
\hline
\end{tabular}
\label{tab:medical}
\caption{Features Selected and their medical meaning}
\end{table} | [
[
"Variable Name",
"Medical Meaning",
"Description"
],
[
"AKI (any time during the hospitalization)\nALB I or Alb initial (3.5 - 5.5 g/dL)\nALK I or Alk Phos inItial (45- 115 IU/L)\nAST I or AST intial (10-55 IU/L)\nBUN initial (6-23mg/dL)\nCR or Cr initial (.5-1.2mg/dL)\nCXR2\nDIMER or D-Dimer initial (0-500 ng/mL)\nEKG or Initial EKG QTc interval number (esp if\nreceived Hydroxychloroquine\nor Azythromycin)\nGFR initial (>60mL/min/1.73M*M)\nGlucose initial (70-100mg/dL)\nHct initial (36.7-44.7%)\nMCV initial (78.0-99.0fL)\nNA I or Na initial (136-145mmol/L)\nTBILI or Tbili initial (0.1 - 1.2 mg/dL)\nWBC initial (4.9 – 10.0 Thousand/ul)",
"Acute kidney injury\nAlbumin\nAlkaline phosphatase\nAspartate aminotransferase\nBlood urea nitrogen\nCreatinine\nbilateral opacities/infiltrates\n-\nElectrocardiogram\nGlomerular filtration rate\n-\nHematocrit\nMean corpuscular volume\nSodium\nTotal Bilirubin\nWhite blood cells",
"Laboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging\nLaboratory/Imaging"
],
[
"RACE E\nAge",
"Race and Ethnicity\n-",
"Personal Information\nPersonal Information"
],
[
"Prior Cmorbidities(HTN)",
"Hypertension",
"Co-morbidities"
],
[
"SYMP20 or AMS",
"Altered mental status",
"Presenting Symptoms"
]
] | 0.589762 | null | null |
2 | 2109.05087v1 | 6 | [
110.98420104980468,
356.4530029296875,
497.6947998046875,
405.8680114746094
] | \begin{table}[h]
\centering
\begin{tabular}{|l|l|p{9cm}|}
\hline
\textbf{Model} & \textbf{AUC} & \textbf{Important Features(descending order)} \\
\hline
Random Forest & 0.8285 & 'AKI', 'WBC', 'ALB{\_}I', 'BUN', 'AST{\_}I' \\
\hline
LightGBM & 0.8333 & 'AKI', 'MCV', 'EKG', 'ALB{\_}I', 'CR', \\
\hline
XGBoost & 0.8196 & 'AKI', 'CXR2', 'Hct', 'AST{\_}I', 'Prior{\_}Co1'\\
\hline
\end{tabular}
\label{tab:features}
\caption{Important features identified by individual methods}
\end{table} | [
[
"Model",
"AUC",
"Important Features(descending order)"
],
[
"Random Forest",
"0.8285",
"’AKI’, ’WBC’, ’ALB I’, ’BUN’, ’AST I’"
],
[
"LightGBM",
"0.8333",
"’AKI’, ’MCV’, ’EKG’, ’ALB I’, ’CR’,"
],
[
"XGBoost",
"0.8196",
"’AKI’, ’CXR2’, ’Hct’, ’AST I’, ’Prior Co1’"
]
] | 0.583673 | null | null |
0 | 2407.01154v1 | 6 | [
52.194000244140625,
208.4740193684896,
173.24609652432528,
273.60498046875
] | \begin{table}[h!]
\centering
\caption{Parameters of the wind models for the classification of strong shear wind vs light constant wind environments.}
\subfigure[Shear wind. $\alpha =0.143$, $\rho$ = 1.225 Wind speed for different axes.]{
%\begin{tabular}{| c | c | c |}
\begin{tabular}{|p{1cm}|p{1cm}|p{1cm}|}
\hline
x axis (m/s) & y axis (m/s) & z axis (m/s) \\
\hline \hline
2.1 & 10.1 & 0 \\
2.2 & 10.2 & 0 \\
2.3 & 10.3 & 0 \\
2.4 & 10.4 & 0 \\
2.5 & 10.5 & 0 \\
\hline
\end{tabular}}
\subfigure[Constant wind. $\rho$ = 1.225 ~~~~~~~~Wind speed for different axes.]{
%\begin{tabular}{| c | c | c |}
\begin{tabular}{|p{1cm}|p{1cm}|p{1cm}|}
\hline
x axis (m/s) & y axis (m/s) & z axis (m/s) \\
\hline \hline
1.1 & 1.1 & 0 \\
1.2 & 1.2 & 0 \\
1.3 & 1.3 & 0 \\
1.4 & 1.4 & 0 \\
1.5 & 1.5 & 0 \\
\hline
\end{tabular}}
\label{tab:sim_env_input}
\end{table} | [
[
"x axis\n(m/s)",
"y axis\n(m/s)",
"z axis\n(m/s)"
],
[
"2.1\n2.2\n2.3\n2.4\n2.5",
"10.1\n10.2\n10.3\n10.4\n10.5",
"0\n0\n0\n0\n0"
]
] | 0.467391 | null | null |
1 | 2407.01154v1 | 6 | [
83.1564432779948,
550.2269897460938,
267.0695495605469,
586.490966796875
] | \begin{table}[h!]
\centering
\caption{Simulation and UAV parameters.}
\subfigure[UAV properties]{
\begin{tabular}{|c|c|}
\hline
UAV mass (Kg) & 2 \\
$C_D$ & 0.1 \\
$S$ ($m^2$) & 0.01 \\
\hline
\end{tabular}}
\subfigure[simulation properties]{
\begin{tabular}{|c|c|}
\hline
Time step (s) & 0.1 \\
Total time (s) & 12 \\
Number of loops & 50 \\
\hline
\end{tabular}}
\subfigure[UAV thrust action properties ]{
\begin{tabular}{|c|c|}
\hline
$F_{thrust}$ magnitude (N) & Randomly selected\\
& in the range [0-50]\\
$F_{thrust}$ directions [x y z] & Randomly selected\\
$F_{thrust}$ application times (s) & Randomly selected \\
\hline
\end{tabular}}
\label{tab:sim_sys_input}
\end{table} | [
[
"Fthrust magnitude (N)\nFthrust directions [x y z]\nFthrust application times (s)",
"Randomly selected\nin the range [0-50]\nRandomly selected\nRandomly selected"
]
] | 0.413223 | null | null |
2 | 2407.01154v1 | 6 | [
344.3399963378906,
208.4740193684896,
527.8839721679688,
263.5159912109375
] | \begin{table}[h!]
\centering
\caption{Simulation parameters and outputs after one simulation loop.}
\begin{tabular}{|c|c|}
\hline
Silhouette score & 94.55 \\
Observations1 & [1 1 1 1 1] \\
Observations2 & [0 0 0 0 0] \\
Thrust change times (s) & [ 0 4 10] \\
Thrust magnitude (N) & [40 15 45] \\
Thrust directions [x y z] & [[0 0 1] [1 0 0] [0 1 0]] \\
\hline
\end{tabular}
\label{tab:sim_output}
\end{table} | [
[
"Silhouette score\nObservations1\nObservations2\nThrust change times (s)\nThrust magnitude (N)\nThrust directions [x y z]",
"94.55\n[1 1 1 1 1]\n[0 0 0 0 0]\n[ 0 4 10]\n[40 15 45]\n[[0 0 1] [1 0 0] [0 1 0]]"
]
] | 0.708543 | null | null |
3 | 2407.01154v1 | 8 | [
54.76599884033203,
532.656005859375,
291.42999267578125,
587.6500244140625
] | \begin{table}[!ht]
\centering
\caption{Maximum and mean Silhouette scores for all wind conditions scenarios in the range similarity experiments.}
\begin{tabular}{|c|c|c|c|c|}
\hline
& \multicolumn{2}{ c| }{Maximum} &\multicolumn{2}{ c |}{Mean}\\
\hline
Scenario & 6 env & 20 env & 6 env & 20 env\\
\hline
Light const. vs light const. & 95.05 & 81.19 & 94.45 & 79.50\\
Light const. vs strong const. & 96.30 & 95.90 & 95.75 & 95.30 \\
Strong const. vs strong const. & 97.47 & 93.96 & 97.25 & 92.61 \\
Light shear vs light shear & 93.49 & 77.42 & 92.49 & 72.44 \\
\hline
\end{tabular}
\label{tab:Range length_output}
\end{table} | [
[
"",
"Maximum",
null,
"Mean",
null
],
[
"Scenario",
"6 env",
"20 env",
"6 env",
"20 env"
],
[
"Light const. vs light const.\nLight const. vs strong const.\nStrong const. vs strong const.\nLight shear vs light shear",
"68.80\n94.42\n90.91\n64.41",
"81.19\n96.48\n93.96\n77.42",
"66.46\n93.33\n88.10\n55.58",
"79.50\n95.89\n92.61\n72.44"
]
] | 0.586146 | null | null |
4 | 2407.01154v1 | 8 | [
319.4859924316406,
340.0679931640625,
552.7381243024554,
395.0610046386719
] | \begin{table}[h!]
\centering
\caption{Maximum and mean Silhouette scores for all wind conditions scenarios in thrust changes experiments. 0 and 12 changes.}
\begin{tabular}{|c|c|c|c|c|}
\hline
& \multicolumn{2}{ c| }{Maximum} &\multicolumn{2}{ |c |}{Mean}\\
\hline
Scenario & 0 ch. & 12 ch. & 0 ch. & 12 ch.\\
\hline
Light const. vs light const. & 81.19 & 81.19 & 80.11 & 80.61\\
Light const. vs strong const. & 96.55 & 96.21 & 95.51 & 96.09 \\
Strong const. vs strong const. & 95.52 & 93.67 & 92.03 & 92.81 \\
Light shear vs light shear & 76.17 & 74.70 & 70.26 & 73.88 \\
\hline
\end{tabular}
\label{tab:thrust changes}
\end{table} | [
[
"",
"Maximum",
null,
"Mean",
null
],
[
"Scenario",
"0 ch.",
"12 ch.",
"0 ch.",
"12 ch."
],
[
"Light const. vs light const.\nLight const. vs strong const.\nStrong const. vs strong const.\nLight shear vs light shear",
"81.19\n96.55\n95.52\n76.17",
"81.19\n96.21\n93.67\n74.70",
"80.11\n95.51\n92.03\n70.26",
"80.61\n96.09\n92.81\n73.88"
]
] | 0.560714 | null | null |
5 | 2407.01154v1 | 9 | [
53.41999816894531,
87.60302734375,
292.7770080566406,
115.29901123046875
] | \begin{table}[h!]
\centering
\caption{Maximum and mean Silhouette scores for all wind conditions scenarios in wind direction experiments.}
\begin{tabular}{|c|c|c|}
\hline
Scenario & Maximum & Mean\\
\hline
Light const. vs light shear - similar direction & 71.18 & 21.58 \\
Light const. vs light shear - opposite direction & 92.16 & 90.33 \\
\hline
\end{tabular}
\label{tab:wind direction_output}
\end{table} | [
[
"Scenario",
"Maximum",
"Mean"
],
[
"Light const. vs light shear - similar direction\nLight const. vs light shear - opposite direction",
"71.18\n92.16",
"21.58\n90.33"
]
] | 0.841424 | null | null |
0 | 1609.08391v1 | 34 | [
174.55683135986328,
607.7210083007812,
419.7541758219401,
677.458984375
] | \begin{table}[b]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
$A$ & $B$ & $\lnot A$ & $A\land B$ & $A\lor B$ & $A\imply B$ & $A\bimply B$ \\ \hline
T & T & F & T & T & T & T \\ \hline
T & F & F & F & T & F & F \\ \hline
F & T & T & F & T & F & F \\ \hline
F & F & T & F & F & F & T \\ \hline
\end{tabular}
\myCaption{Logical connectives truth table}{}
\label{tab:truth}
\end{table} | [
[
"A",
"B",
"A\n¬",
"A B\n∧",
"A B\n∨",
"A B\n⇒",
"A B\n⇔"
],
[
"T",
"T",
"F",
"T",
"T",
"T",
"T"
],
[
"T",
"F",
"F",
"F",
"T",
"F",
"F"
],
[
"F",
"T",
"T",
"F",
"T",
"F",
"F"
],
[
"F",
"F",
"T",
"F",
"F",
"F",
"T"
]
] | 0.655022 | null | null |
0 | 2105.06060v1 | 3 | [
149.37899780273438,
224.95001220703125,
460.1300048828125,
247.56500244140625
] | \begin{table}{}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Train Set Size & Validation Set Size&Test Set Size&Number of Features \\
\hline
48,548&2,698&2,698&40\\
\hline
\end{tabular}
\vspace{6px}
\caption{Train/validation/test size of the dataset}
\label{table:dataset}
\end{table} | [
[
"Train Set Size",
"Validation Set Size",
"Test Set Size",
"Number of Features"
],
[
"48,548",
"2,698",
"2,698",
"40"
]
] | 0.747899 | null | null |
1 | 2105.06060v1 | 4 | [
108,
72.198974609375,
506.27301025390625,
129.21002197265625
] | \begin{table}{}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Model& Train $R^2$ & Dev $R^2$& Test $R^2$& Train MSE& Dev MSE& Test MSE\\
\hline
Extra Tree (baseline) &
0.99
&0.86&
0.71&
0.000&
0.112&
0.002\\
\hline
Neural Net F (baseline) &
0.96
& 0.84
&0.85
& 0.037
& 0.136
& 0.001\\
\hline
Neural Net I &
$0.000$&-0.0001&-0.038&
1.062
& 0.859
& 0.010\\
\hline
Neural Net F+I &
0.98
& 0.94
& 0.93
& 0.011
& 0.044
& 0.001
\\
\hline
\end{tabular}
\vspace{0.6em}
\caption{Summary of results. MSE (mean-square error) is calculated using normalized labels. F is features, I is satellite images.}
\label{table:results}
\end{table} | [
[
"Model",
"Train R2",
"Dev R2",
"Test R2",
"Train MSE",
"Dev MSE",
"Test MSE"
],
[
"Extra Tree (baseline)",
"0.99",
"0.86",
"0.71",
"0.000",
"0.112",
"0.002"
],
[
"Neural Net F (baseline)",
"0.96",
"0.84",
"0.85",
"0.037",
"0.136",
"0.001"
],
[
"Neural Net I",
"0.000",
"-0.0001",
"-0.038",
"1.062",
"0.859",
"0.010"
],
[
"Neural Net F+I",
"0.98",
"0.94",
"0.93",
"0.011",
"0.044",
"0.001"
]
] | 0.791728 | null | null |
2 | 2105.06060v1 | 5 | [
125.76000213623047,
159.4310302734375,
483.75,
249.89202880859375
] | \begin{table}{}
\centering
\begin{tabular}{|c|c|}
\hline
L2 Regularization Parameter & $0.1$\\
\hline
First Dropout (drop probability)&$0.3$ \\
\hline
First Dropout (drop probability)&$0.2$ \\
\hline
Activation Function & ReLU\\
\hline
Batch Size& $1024$ \\
\hline
Optimizer& Adam(learning rate=$0.0005$, $\beta_1=0.9$, $\beta_2=0.999$)\\
\hline
Epochs& $200$\\
\hline
Learning Rate Decay &$\alpha=0.0001$ \\
\hline
\end{tabular}
\vspace{0.6em}
\caption{Hyperparameters for F+I model}
\label{table:hyperparameters}
\end{table} | [
[
"L2 Regularization Parameter",
"0.1"
],
[
"First Dropout (drop probability)",
"0.3"
],
[
"First Dropout (drop probability)",
"0.2"
],
[
"Activation Function",
"ReLU"
],
[
"Batch Size",
"1024"
],
[
"Optimizer",
"Adam(learning rate=0.0005, β = 0.9, β = 0.999)\n1 2"
],
[
"Epochs",
"200"
],
[
"Learning Rate Decay",
"α = 0.0001"
]
] | 0.81362 | null | null |
0 | 2309.12330v3 | 17 | [
116.0469970703125,
45.55401611328125,
479.22900390625,
118.58001708984375
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c| }
\hline
$i_{AA^{\prime}}$ (Interaction Type) & $A$ (Agent Category) & $A^{\prime}$ (Agent Category) \\
\hline
Good A & Consumer & Producer \\
Good B & Consumer & Producer \\
Maintenance Fee & Producer & Control Mechanism \\
Incentive & Control Mechanism & Consumer \\
\hline
\end{tabular}
\caption{Interactions taxonomy.}
\label{InteractionsTaxonomy}
\end{table} | [
[
"i (Interaction Type)\nAA′",
"A (Agent Category)",
"A′ (Agent Category)"
],
[
"Good A\nGood B\nMaintenance Fee\nIncentive",
"Consumer\nConsumer\nProducer\nControl Mechanism",
"Producer\nProducer\nControl Mechanism\nConsumer"
]
] | 0.668192 | null | null |
1 | 2309.12330v3 | 17 | [
135.44000244140625,
346.7430114746094,
459.8349914550781,
391.2760009765625
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c| }
\hline
& Consumer & Control Mechanism & Producer \\
\hline
Initial Wealth & 1,500 & 98,000 & 500 \\
\hline
Desired Wealth & 50,000 & 10,000 & 40,000 \\
\hline
\end{tabular}
\caption{Initial and desired wealth distributions.}
\label{InitialDesiredWealthDistribution}
\end{table} | [
[
"",
"Consumer",
"Control Mechanism",
"Producer"
],
[
"Initial Wealth",
"1,500",
"98,000",
"500"
],
[
"Desired Wealth",
"50,000",
"10,000",
"40,000"
]
] | 0.733096 | null | null |
2 | 2309.12330v3 | 19 | [
173.6060028076172,
117.73199462890625,
421.6700134277344,
162.2640380859375
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c| }
\hline
& $\beta_{PC}$ & $\beta_{PB}$ & $\beta_{CB}$ & $\gamma_{P}$ & $\gamma_{C}$\\
\hline
No Interactions & 0 & 0 & 0 & 0.2 & 0.05 \\
\hline
No Rotations & 0.3 & 0.2 & 0.35 & 0 & 0 \\
\hline
\end{tabular}
\caption{Parameters for extreme case simulations.}
\label{ExtremeCasesParameters}
\end{table} | [
[
"",
"β\nPC",
"β\nPB",
"β\nCB",
"γ\nP",
"γ\nC"
],
[
"No Interactions",
"0",
"0",
"0",
"0.2",
"0.05"
],
[
"No Rotations",
"0.3",
"0.2",
"0.35",
"0",
"0"
]
] | 0.603306 | null | null |
3 | 2309.12330v3 | 20 | [
219.09300231933594,
438.00701904296875,
376.183349609375,
467.69500732421875
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c| }
\hline
$\beta_{PC}$ & $\beta_{PB}$ & $\beta_{CB}$ & $\gamma_{P}$ & $\gamma_{C}$\\
\hline
0.2 & 0.25 & 0.2 & 0.1 & 0.01 \\
\hline
\end{tabular}
\caption{Arbitrary values of forward propagation parameters.}
\label{ForwardPropagationParameters}
\end{table} | [
[
"β\nPC",
"β\nPB",
"β\nCB",
"γ\nP",
"γ\nC"
],
[
"0.2",
"0.25",
"0.2",
"0.1",
"0.01"
]
] | 0.375691 | null | null |
4 | 2309.12330v3 | 20 | [
180.71099853515625,
563.5660400390625,
414.5639953613281,
593.2540283203125
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c| }
\hline
Consumer & Control Mechanism & Producer \\
\hline
51,923 & 6,538 & 41,538 \\
\hline
\end{tabular}
\caption{Wealth distribution at time $t_{m}$ using parameters from Table \ref{ForwardPropagationParameters}.}
\label{ForwardPropagationFinalWealth}
\end{table} | [
[
"Consumer",
"Control Mechanism",
"Producer"
],
[
"51,923",
"6,538",
"41,538"
]
] | 0.480349 | null | null |
5 | 2309.12330v3 | 22 | [
171.8260040283203,
102.67303466796875,
423.45001220703125,
132.36199951171875
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c| }
\hline
$\beta_{PC}$ & $\beta_{PB}$ & $\beta_{CB}$ & $\gamma_{P}$ & $\gamma_{C}$\\
\hline
0.44265 & 0.56809 & 0.45447 & 0.63014 & 0.37250 \\
\hline
\end{tabular}
\caption{Solution of the inverse propagation.}
\label{InversePropagationParameters}
\end{table} | [
[
"β\nPC",
"β\nPB",
"β\nCB",
"γ\nP",
"γ\nC"
],
[
"0.44265",
"0.56809",
"0.45447",
"0.63014",
"0.37250"
]
] | 0.514851 | null | null |
6 | 2309.12330v3 | 23 | [
180.71099853515625,
386.62701416015625,
414.5639953613281,
416.3160095214844
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c| }
\hline
Consumer & Control Mechanism & Producer \\
\hline
49,053 & 14,309 & 36,638 \\
\hline
\end{tabular}
\caption{Wealths of agent categories at timestep $t=50$ using parameters from Table \ref{InversePropagationParameters}.}
\label{PricingExampleWealths}
\end{table} | [
[
"Consumer",
"Control Mechanism",
"Producer"
],
[
"49,053",
"14,309",
"36,638"
]
] | 0.466667 | null | null |
0 | 2010.01040v1 | 4 | [
135.01699829101562,
159.87103271484375,
454.97698974609375,
199.85504150390625
] | \begin{table}[ht]
\caption{Possible implementations of the compatibility function. \texttt{act} is any element wise activation function, such as \texttt{tanh} or \texttt{sigmoid}.}
\centering
\begin{tabular}{|l|l|c|r|}
\hline
Form & Parameters & Expression & Reference \\
\hline \hline
Multiplicative & None & $\mathbf{q}^\intercal\mathbf{k}/\sqrt{d}$ & \citep{vaswani2017attention} \\\hline
Additive & $\mathbf{w} \in \mathbb{R}^H$ & $\texttt{act}(\mathbf{q} + \mathbf{k})^\intercal \mathbf{w}$ & \citep{DBLP:journals/corr/BahdanauCB14} \\\hline
\end{tabular}
\label{compats}
\end{table} | [
[
"Form",
"Parameters",
"Expression",
"Reference"
],
[
"Multiplicative",
"None",
"√\nq⊺k/ d",
"[Vaswani et al., 2017]"
],
[
"Additive",
"w ∈RH",
"act(q + k)⊺w",
"[Bahdanau et al., 2015]"
]
] | 0.701299 | null | null |
1 | 2010.01040v1 | 10 | [
192.1739959716797,
171.82598876953125,
401.1409912109375,
222.43603515625
] | \begin{table}
\centering
\caption{ABC results on the three tasks outlined in this section. The scores displayed are the means over the 20 testing alphabets. The per-alphabet split can be found in Appendix~\ref{sec:appendix_omniglot_details}.}
\label{tab:ABC_results}
\begin{tabular}{|l|c|}
\hline
Task & NMI \\
\hline
\hline
Variable unknown number of clusters & 0.874\\
Variable known number of clusters & 0.893\\
Fixed number of clusters ($k=20$) & 0.884\\
\hline
\end{tabular}
\end{table} | [
[
"Task",
"NMI"
],
[
"Variable unknown number of clusters\nVariable known number of clusters\nFixed number of clusters (k = 20)",
"0.874\n0.893\n0.884"
]
] | 0.899225 | null | null |
0 | 1910.10482v1 | 3 | [
156.2120361328125,
251.7287139892578,
400.9725341796875,
325.30438232421875
] | \begin{table}[ht]
%\centering
\resizebox{\textwidth}{!}{
%\begin{minipage}{21.5cm}
\begin{minipage}{15cm}
\centering
\begin{tabular}{|l|l|}
\hline
CCD camera:&SBIG ST-7XME\\
\hline
Telescope:&Celestron 14" f/11\\
\hline
Reducer:&0.63xReducer\\
\hline
Pixel Binning:&1x1\\
\hline
Image scale:&0.75 arsec/pixel\\
\hline
Focal length:&2463mm\\
\hline
Focal ratio:&76.93\\
\hline
field of view of CCD camera:&9.6' x 6.4'(arcmin, width x height)\\
\hline
\end{tabular}
\end{minipage}}
\caption{\textbf{Technical details of MKBU Telescope system with focal reducer}}
\end{table} | [
[
"CCD camera:",
"SBIG ST-7XME"
],
[
"Telescope:",
"Celestron 14” f/11"
],
[
"Reducer:",
"0.63xReducer"
],
[
"Pixel Binning:",
"1x1"
],
[
"Image scale:",
"0.75 arsec/pixel"
],
[
"Focal length:",
"2463mm"
],
[
"Focal ratio:",
"76.93"
],
[
"field of view of CCD camera:",
"9.6’ x 6.4’(arcmin, width x height)"
]
] | 0.859848 | null | null |
1 | 1910.10482v1 | 5 | [
90.02658081054688,
370.4403381347656,
466.5355878557478,
412.0075378417969
] | \begin{table}[ht]
%\centering
\resizebox{\textwidth}{!}{
%\begin{minipage}{21.5cm}
\begin{minipage}{21 cm}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Star type}& \textbf{AUID}&
\multicolumn{2}{|c|}{\textbf{J2000.0}}&
\multicolumn{5}{c|}{\textbf{Magnitudes}}\\
&&($RA$)&($DEC$)&($B$)&($V$)&($B-V$)&($Rc$)&($Ic$)\\
\hline
Object Star&000-BCS-770&21:13:01.24&18:56:29.20&-&11.31-?&-&-&-\\
\hline
Check Star&000-BCS-776&21:13:11.29&18:57:12.1&11.665(0.155)\^*&11.386(0.026)\^@&0.279(0.157)&-&10.833(0.143)\^\$\\
\hline
Comparison Star-1&000-BCS-777&21:13:13.29&18:58:03.7&-&11.875(0.137)\^\$&-&-&11.144(0.217)\^\$\\
\hline
Comparison Star-2&000-BCS-764&21:12:37.32&19:02:54.9&12.478(0.257)\^*&11.044(0.023)\^@&1.434(0.258)&-&9.667(0.126)\^\$\\
\hline
\end{tabular}
\begin{flushleft}
Here, * = Tycho-2 , \$ = TASS , @ = ASAS3
\end{flushleft}
\end{minipage}}
\caption{\textbf{Object, check and comparison star table:(NSV 13601)}}
\end{table} | [
[
"Star type",
"AUID",
"J2000.0\n(RA) (DEC)",
null,
"Magnitudes\n(B) (V ) (B −V ) (Rc) (Ic)",
null,
null,
null,
null
],
[
"Object Star",
"000-BCS-770",
"21:13:01.24",
"18:56:29.20",
"-",
"11.31-?",
"-",
"-",
"-"
],
[
"Check Star",
"000-BCS-776",
"21:13:11.29",
"18:57:12.1",
"11.665(0.155)*ˆ",
"11.386(0.026) @ˆ",
"0.279(0.157)",
"-",
"10.833(0.143)ˆ$"
],
[
"Comparison Star-1",
"000-BCS-777",
"21:13:13.29",
"18:58:03.7",
"-",
"11.875(0.137)ˆ$",
"-",
"-",
"11.144(0.217)ˆ$"
],
[
"Comparison Star-2",
"000-BCS-764",
"21:12:37.32",
"19:02:54.9",
"12.478(0.257)*ˆ",
"11.044(0.023) @ˆ",
"1.434(0.258)",
"-",
"9.667(0.126)ˆ$"
]
] | 0.615984 | null | null |
2 | 1910.10482v1 | 10 | [
170.7371826171875,
191.05593872070312,
386.61676025390625,
230.04779052734375
] | \begin{table}[ht]
%\centering
\resizebox{\textwidth}{!}{
\begin{minipage}{14cm}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Star Name}&\textbf{MKBU Data(V)}&\textbf{MKBU Data(Ic)}\\
%\multicolumn{2}{|c|}{\textbf{MKBU Data}}&
% \multicolumn{2}{c|}{\textbf{MKBU Data}}\\
($NSV 13601$)&($d$)&($d$)\\
\hline
VStar&77.784&77.632\\
\hline
Period04&77.058&49.560\\
\hline
\end{tabular}
\end{minipage}}
\caption{\textbf{Time-series analysis results of NSV 13601}}
\end{table} | [
[
"Star Name\n(NSV 13601)",
"MKBU Data(V)\n(d)",
"MKBU Data(Ic)\n(d)"
],
[
"VStar",
"77.784",
"77.632"
],
[
"Period04",
"77.058",
"49.560"
]
] | 0.608059 | null | null |
0 | 1907.04666v1 | 10 | [
134.91425323486328,
274.9990234375,
478.4885025024414,
320.030029296875
] | \begin{table}
\begin{subtable}{.5\textwidth}
\centering
\begin{tabular}{| c | c | c |}
\hline
\backslashbox{MeL}{RL} & \textbf{CRL} & \textbf{MSE}\\ \hline
\textbf{Cosine} & \textbf{0.714}* $\pm$ 0.048&0.666 $\pm$ 0.066 \\ \hline
\textbf{Euclidean} & 0.609 $\pm$ 0.042& 0.635 $\pm$ 0.064\\ \hline
\end{tabular}
\caption{Completeness}
\end{subtable}%
\begin{subtable}{.5\textwidth}
\centering
\begin{tabular}{| c | c | c |}
\hline
\backslashbox{MeL}{RL} & \textbf{CRL} & \textbf{MSE}\\ \hline
\textbf{Cosine} & 0.618 $\pm$ 0.105 &\textbf{0.667} $\pm$ 0.144\\ \hline
\textbf{Euclidean} & 0.402 $\pm$ 0.05&0.408 $\pm$ 0.042\\ \hline
\end{tabular}
\caption{Silhouette}
\end{subtable}%
\begin{subtable}{.5\textwidth}
\centering
\begin{tabular}{| c | c | c |}
\hline
\backslashbox{MeL}{RL} & \textbf{CRL} & \textbf{MSE}\\ \hline
\textbf{Cosine} & \textbf{0.449}* $\pm$ 0.032&0.397 $\pm$ 0.040 \\ \hline
\textbf{Euclidean} & 0.419 $\pm$ 0.033& 0.434 $\pm$ 0.047 \\ \hline
\end{tabular}
\caption{NMI}
\end{subtable}%
\begin{subtable}{.5\textwidth}
\centering
\begin{tabular}{| c | c | c |}
\hline
\backslashbox{MeL}{RL} & \textbf{CRL} & \textbf{MSE}\\ \hline
\textbf{Cosine} & \textbf{0.253}* $\pm$ 0.03&0.205 $\pm$ 0.033\\ \hline
\textbf{Euclidean} & 0.255 $\pm$ 0.027&0.264 $\pm$ 0.038\\ \hline
\end{tabular}
\caption{AMI}
\end{subtable}%
\caption{Evaluations of CRL and MSE on LTMM dataset.}
\label{exp_crl}
\end{table} | [
[
"RL\nMeL",
"CRL",
"MSE",
"RL\nMeL",
"CRL",
"MSE"
],
[
"Cosine",
"0.714* ± 0.048",
"0.666 ± 0.066",
"Cosine",
"0.618 ± 0.105",
"0.667 ± 0.144"
],
[
"Euclidean",
"0.609 ± 0.042",
"0.635 ± 0.064",
"Euclidean",
"0.402 ± 0.05",
"0.408 ± 0.042"
]
] | 0.450161 | null | null |
1 | 1907.04666v1 | 11 | [
137.7567762895064,
494.666015625,
480.43198464133525,
599.1257934570312
] | \begin{table}
\centering
\resizebox{\textwidth}{!}{
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{Metric} & \textbf{Model} & \textbf{Joint} & \textbf{Completeness} & \textbf{Silhouette} & \textbf{NMI} & \textbf{AMI} \\
\hline
DTW \cite{salvador2007toward} & x & x & 0.804 & -0.93 & 0.528 & 0.32 \\
\hline
Euclidean & SLSTM& x& 0.616 $\pm$ 0.032 & 0.427 $\pm$ 0.053& 0.414 $\pm$ 0.022 & 0.246 $\pm$ 0.019\\
\hline
Cosine& SLSTM& x& 0.617 $\pm$ 0.06 & 0.572 $\pm$ 0.143& 0.372 $\pm$ 0.052 & 0.192 $\pm$ 0.046\\
\hline
Euclidean & SS2S & no &0.674 $\pm$ 0.04 & 0.528 $\pm$ 0.07& 0.458 $\pm$ 0.03 & 0.28 $\pm$ 0.027\\
\hline
Euclidean& SS2S & yes & 0.635 $\pm$ 0.064 & 0.408 $\pm$ 0.042 & 0.434 $\pm$ 0.047 &0.264 $\pm$ 0.038 \\
\hline
Cosine& SS2S & no &0.71 $\pm$ 0.05& \textbf{0.756*} $\pm$ 0.089& 0.467 $\pm$ 0.028& 0.275 $\pm$ 0.024\\
\hline
Cosine& SS2S & yes & 0.714 $\pm$ 0.048 & 0.618 $\pm$ 0.105 & 0.449 $\pm$ 0.032 & 0.253 $\pm$ 0.03 \\
\hline
KISSME & SS2S & no & \textbf{0.983*} $\pm$ 0.016& 0.439 $\pm$ 0.077& \textbf{0.619*} $\pm$ 0.035& \textbf{0.363*} $\pm$ 0.046\\
\hline
KISSME & SS2S & yes & 0.667 $\pm$ 0.021& 0.316 $\pm$ 0.039& 0.446 $\pm$ 0.012& 0.266 $\pm$ 0.012 \\
\hline
\end{tabular}}
\caption{Evaluations on LTMM dataset of the SS2S architecture (x means non applicable).}
\label{v1}
\end{table} | [
[
"Metric",
"Model",
"Joint",
"Completeness",
"Silhouette",
"NMI",
"AMI"
],
[
"DTW [26]",
"x",
"x",
"0.804",
"-0.93",
"0.528",
"0.32"
],
[
"Euclidean",
"SLSTM",
"x",
"0.616 ± 0.032",
"0.427 ± 0.053",
"0.414 ± 0.022",
"0.246 ± 0.019"
],
[
"Cosine",
"SLSTM",
"x",
"0.617 ± 0.06",
"0.572 ± 0.143",
"0.372 ± 0.052",
"0.192 ± 0.046"
],
[
"Euclidean",
"SS2S",
"no",
"0.674 ± 0.04",
"0.528 ± 0.07",
"0.458 ± 0.03",
"0.28 ± 0.027"
],
[
"Euclidean",
"SS2S",
"yes",
"0.635 ± 0.064",
"0.408 ± 0.042",
"0.434 ± 0.047",
"0.264 ± 0.038"
],
[
"Cosine",
"SS2S",
"no",
"0.71 ± 0.05",
"0.756* ± 0.089",
"0.467 ± 0.028",
"0.275 ± 0.024"
],
[
"Cosine",
"SS2S",
"yes",
"0.714 ± 0.048",
"0.618 ± 0.105",
"0.449 ± 0.032",
"0.253 ± 0.03"
],
[
"KISSME",
"SS2S",
"no",
"0.983* ± 0.016",
"0.439 ± 0.077",
"0.619* ± 0.035",
"0.363* ± 0.046"
],
[
"KISSME",
"SS2S",
"yes",
"0.667 ± 0.021",
"0.316 ± 0.039",
"0.446 ± 0.012",
"0.266 ± 0.012"
]
] | 0.484848 | null | null |
2 | 1907.04666v1 | 12 | [
169.331201171875,
117.031005859375,
273.1108093261719,
162.46099853515625
] | \begin{table}
\centering
\begin{subtable}[b]{.5\textwidth}
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Metric} & \textbf{REV} \\
\hline
Euclidean & 0.707 $\pm$ 0.112\\
\hline
KISSME & 0.736 $\pm$ 0.099\\
\hline
Disjoint & \textbf{0.55}* $\pm$ 0.083\\
\hline
\end{tabular}
\caption{MSE}
\end{subtable}%
\begin{subtable}[b]{.5\textwidth}
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Metric} & \textbf{REV} \\
\hline
Cosine & 0.339 $\pm$ 0.036\\
\hline
Disjoint & \textbf{0.298}* $\pm$ 0.03\\
\hline
\end{tabular}
\caption{CRL}
\end{subtable}
\caption{Average reconstruction errors on the validation set of LTMM.}
\label{vre}
\end{table} | [
[
"Metric",
"REV"
],
[
"Euclidean",
"0.707 ± 0.112"
],
[
"KISSME",
"0.736 ± 0.099"
],
[
"Disjoint",
"0.55* ± 0.083"
]
] | 0.519031 | null | null |
0 | 1701.07274v6 | 13 | [
120.47583516438802,
81.96147918701172,
479.5608825683594,
217.09698486328125
] | \begin{table}[h]
\centering
\begin{tabular}{cc|c|c|c|c|c|c|l}
\cline{3-8}
& & \multicolumn{6}{ c| }{algorithm} \\ \cline{3-8}
& & \shortstack{TD($\lambda$)\\ SARSA($\lambda$)} & \shortstack{ADP} & \shortstack{LSTD($\lambda$)\\ LSPE($\lambda$)} & Fitted-Q & \shortstack{Residual\\ Gradient} & \shortstack{GTD($\lambda$)\\ GQ($\lambda$)}\\ \cline{1-8}
\multicolumn{1}{ |c }{ } &
\multicolumn{1}{ |c| }{\shortstack{linear\\ computation}} & $\checkmark$ & $\checkmark$ & & & $\checkmark$ & $\checkmark$& \\ \cline{2-8}
\multicolumn{1}{ |c }{\multirow{4}{*}{\begin{turn}{-270}issue\end{turn}}} &
\multicolumn{1}{ |c| }{\shortstack{nonlinear\\ convergent}} & & & & $\checkmark$ & $\checkmark$& $\checkmark$& \\ \cline{2-8}
\multicolumn{1}{ |c }{} &
\multicolumn{1}{ |c| }{\shortstack{off-policy\\ convergent}} & & & $\checkmark$& & $\checkmark$& $\checkmark$& \\ \cline{2-8}
\multicolumn{1}{ |c }{} &
\multicolumn{1}{ |c| }{\shortstack{model-free,\\ online}} & $\checkmark$ & & $\checkmark$ & &$\checkmark$ & $\checkmark$& \\ \cline{2-8}
\multicolumn{1}{ |c }{} &
\multicolumn{1}{ |c| }{\shortstack{converges to\\ PBE = 0}} & $\checkmark$& $\checkmark$& $\checkmark$& $\checkmark$& & $\checkmark$& \\ \cline{1-8}
\end{tabular}
\caption{RL Issues vs. Algorithms}
\label{table-rl}
\end{table} | [
[
"",
null,
"algorithm",
null,
null,
null,
null,
null
],
[
null,
null,
"TD(λ)\nSARSA(λ)",
"ADP",
"LSTD(λ)\nLSPE(λ)",
"Fitted-Q",
"Residual\nGradient",
"GTD(λ)\nGQ(λ)"
],
[
"issue",
"linear\ncomputation",
"✓",
"✓",
"",
"",
"✓",
"✓"
],
[
null,
"nonlinear\nconvergent",
"",
"",
"",
"✓",
"✓",
"✓"
],
[
null,
"off-policy\nconvergent",
"",
"",
"✓",
"",
"✓",
"✓"
],
[
null,
"model-free,\nonline",
"✓",
"",
"✓",
"",
"✓",
"✓"
],
[
null,
"converges to\nPBE = 0",
"✓",
"✓",
"✓",
"✓",
"",
"✓"
]
] | 0.422247 | null | null |
0 | 2307.00501v2 | 17 | [
112.31183624267578,
117.66293334960938,
497.94268798828125,
383.41980997721356
] | \begin{table}[!htb]
\centering
\caption{Hyperparameters tested and selected}\label{tab:hyperA}
\adjustbox{scale=0.665}{
\begin{tabular}{c|ccccc}
\midrule\midrule
Learning & \multirow{2}{*}{Hyperparameter}
& \multirow{2}{*}{Tested} & \multicolumn{3}{c}{Selected} \\
\cline{4-6} \\[-2.5ex]
technique & & & Histogram & Digram & Sequence \\
\midrule
%
\multirow{3}{*}{SVM} &
$C$ & 1, 10, 100, 1000 & 100 & 1 & 1\\ %\midrule
& $\gamma$ & 0.001, 0.0001 & 0.001 & 0.001 & 0.0001 \\ %\midrule
& kernel & linear, poly, rbf, sigmoid & rbf & rbf & rbf\\
\midrule %\midrule
%
\multirow{3}{*}{$k$-NN} &
Number of neighbors & (1,2,\ldots,200) & 83 & 98 & 74\\
& Distance metric & Euclidean, manhattan, minkowski & Euclidean & Euclidean & manhattan\\
& Weights & uniform, distance & uniform & uniform & uniform\\
\midrule
%
\multirow{3}{*}{RF} &
Number of estimators & (1,2,\ldots,200) & 192 & 197 & 177\\
& Max depth & 4, 5, 6, 7, 8 & 8 & 8 & 8\\
& Criterion & gini, entropy & gini & gini & gini\\
\midrule
%
\multirow{5}{*}{MLP} &
Activation function & tanh, relu & relu & relu & tanh\\
& $\alpha$ & 0.0001, 0.05 & 0.0001 & 0.0001 & 0.0001 \\ % regularization term
%%%%% What does (500,) mean?
% only 1 hidden layer with 500 hidden units
& Hidden layer size & (100,200,15), (150,100,50), (500,) & (500,) & (500,) & (500,)\\
& Max iterations & 200, 500, 1000 & 200 & 200 & 200\\
& Solver & sgd, adam & adam & adam & adam\\
\midrule
%
\multirow{2}{*}{ELM} &
Activation function & relu, sigmoid, tanh & relu & tanh & tanh\\
& Hidden neurons & (1,2,\ldots,1000) & 133 & 9696 & 995\\
\midrule
%
\multirow{3}{*}{LSTM} &
Number of hidden layers & 1, 2, 3 & 3 & 2 & 2\\
& Activation function & relu, tanh, softmax & softmax & softmax & softmax\\
& Dropout rate & 0.1, 0.3, 0.9 & 0.3 & 0.3 & 0.3\\
\midrule
%
\multirow{3}{*}{CNN} &
Number of layers & 3, 4, 5 & 5 & 5 & 5\\
& Activation function & sigmoid, softmax & sigmoid & sigmoid & sigmoid\\
& Dropout rate & 0.1, 0.3, 0.5 & 0.3 & 0.3 & 0.3\\
\midrule\midrule
\end{tabular}
}
\end{table} | [
[
"Learning Selected\nHyperparameter Tested\ntechnique Histogram Digram Sequence",
null
],
[
"SVM",
"𝐶 1, 10, 100, 1000 100 1 1\n𝛾 0.001, 0.0001 0.001 0.001 0.0001\nkernel linear, poly, rbf, sigmoid rbf rbf rbf"
],
[
"𝑘-NN",
"Number of neighbors (1,2,. . . ,200) 83 98 74\nDistance metric Euclidean, manhattan, minkowski Euclidean Euclidean manhattan\nWeights uniform, distance uniform uniform uniform"
],
[
"RF",
"Number of estimators (1,2,. . . ,200) 192 197 177\nMax depth 4, 5, 6, 7, 8 8 8 8\nCriterion gini, entropy gini gini gini"
],
[
"MLP",
"Activation function tanh, relu relu relu tanh\n𝛼 0.0001, 0.05 0.0001 0.0001 0.0001\nHidden layer size (100,200,15), (150,100,50), (500,) (500,) (500,) (500,)\nMax iterations 200, 500, 1000 200 200 200\nSolver sgd, adam adam adam adam"
],
[
"ELM",
"Activation function relu, sigmoid, tanh relu tanh tanh\nHidden neurons (1,2,. . . ,1000) 133 9696 995"
],
[
"LSTM",
"Number of hidden layers 1, 2, 3 3 2 2\nActivation function relu, tanh, softmax softmax softmax softmax\nDropout rate 0.1, 0.3, 0.9 0.3 0.3 0.3"
],
[
"CNN",
"Number of layers 3, 4, 5 5 5 5\nActivation function sigmoid, softmax sigmoid sigmoid sigmoid\nDropout rate 0.1, 0.3, 0.5 0.3 0.3 0.3"
]
] | 0.70459 | null | null |
0 | 2109.03188v3 | 7 | [
112.17500305175781,
88.13897705078125,
476.5580139160156,
349.1610107421875
] | \begin{table}
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & Gradient Descent & Augmented \\
\hline
Circle Train Loss & $ \mathbf{0.5834 \pm 2 * 10^{-6}} $ & $ 0.5834 \pm 5 * 10^{-6}$ \\
\hline
Circle Validation Loss & $ 0.5761 \pm 0.0001$ & $ \mathbf{0.57048 \pm 0.0017} $ \\
\hline
Moons Train Loss & $ 0.354218 \pm 0.000379 $ & $ \mathbf{0.3538 \pm 3 * 10^{-5} }$ \\
\hline
Moons Validation Loss & $ 0.36714 \pm 0.0042747 $ & $ \mathbf{0.3586 \pm 0.00143}$ \\
\hline
Blobs Train Loss & $ \mathbf{ 1.5677 \pm 0.03122} $ & $ 1.578 \pm 0.01315 $ \\
\hline
Blobs Validation Loss & $ \mathbf{1.56367 \pm 0.02969} $ & $ 1.5798 \pm 0.0155 $ \\
\hline
Regression Train Loss& $ \mathbf{0.0254 \pm 0.00502} $ & $ 0.0719 \pm 0.0182 $ \\
\hline
Regression Validation & $ \mathbf{0.0291 \pm 0.00513} $ & $0.0747 \pm 0.0131 $ \\
Loss & & \\
\hline
5 Qubit QAOA Cost & $ -1.50 \pm 8 * 10^{-7} $ & $ \mathbf{ -1.50 \pm 9 * 10^{-7}} $ \\
\hline
10 Qubit QAOA Cost & $\mathbf{ -2.9998 \pm 0.000205} $ & $ -2.9997 \pm 0.000262 $ \\
\hline
20 Qubit QAOA Cost & $\mathbf{ -7.8989 \pm 0.0877} $ & $ -7.667 \pm 0.461 $ \\
\hline
5 Qubit VQE Cost & $ -2.51396 \pm 0.1517 $ & $ \mathbf{-2.5595 \pm 0.1471} $ \\
\hline
10 Qubit VQE Cost & $ \mathbf{-1.2362 \pm 0.0109} $ & $ -1.2345 \pm 0.0195 $ \\
\hline
20 Qubit VQE Cost & $ -0.05 \pm 0.000838 $ & $\mathbf{ -0.05 \pm 0.000827} $ \\
\hline
\end{tabular} \caption{Noiseless} \label{tab:exp1}
\end{table} | [
[
"Evaluation",
"Gradient Descent",
"Augmented"
],
[
"Circle Train Loss",
"0.5834 2 ∗10−6\n±",
"0.5834 5 ∗10−6\n±"
],
[
"Circle Validation Loss",
"0.5761 0.0001\n±",
"0.57048 0.0017\n±"
],
[
"Moons Train Loss",
"0.354218 0.000379\n±",
"0.3538 3 ∗10−5\n±"
],
[
"Moons Validation Loss",
"0.36714 0.0042747\n±",
"0.3586 0.00143\n±"
],
[
"Blobs Train Loss",
"1.5677 0.03122\n±",
"1.578 0.01315\n±"
],
[
"Blobs Validation Loss",
"1.56367 0.02969\n±",
"1.5798 0.0155\n±"
],
[
"Regression Train Loss",
"0.0254 0.00502\n±",
"0.0719 0.0182\n±"
],
[
"Regression Validation\nLoss",
"0.0291 0.00513\n±",
"0.0747 0.0131\n±"
],
[
"5 Qubit QAOA Cost",
"−1.50 8 ∗10−7\n±",
"−1.50 9 ∗10−7\n±"
],
[
"10 Qubit QAOA Cost",
"2.9998 0.000205\n− ±",
"2.9997 0.000262\n− ±"
],
[
"20 Qubit QAOA Cost",
"7.8989 0.0877\n− ±",
"7.667 0.461\n− ±"
],
[
"5 Qubit VQE Cost",
"2.51396 0.1517\n− ±",
"2.5595 0.1471\n− ±"
],
[
"10 Qubit VQE Cost",
"1.2362 0.0109\n− ±",
"1.2345 0.0195\n− ±"
],
[
"20 Qubit VQE Cost",
"0.05 0.000838\n− ±",
"0.05 0.000827\n− ±"
]
] | 0.461165 | null | null |
1 | 2109.03188v3 | 7 | [
119.03450012207031,
393.1960144042969,
469.698063659668,
540.2440185546875
] | \begin{table}
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & Gradient Descent & Augmented \\
\hline
Circle Train Loss & $\mathbf{0.5674 \pm 0.00032}$ & $0.5676 \pm 0.0003$ \\
\hline
Circle Validation Loss & $0.6087 \pm 0.001076$ & $\mathbf{0.605 \pm 0.0005565}$ \\
\hline
Moons Train Loss & $0.344 \pm 0.0002$ & $\mathbf{0.3439 \pm 0.00042}$ \\
\hline
Moons Validation Loss & $0.3844 \pm 0.000683$ & $\mathbf{0.3835 \pm 0.0008}$ \\
\hline
5 Qubit QAOA Cost & $-1.561 \pm 0.0061$ & $\mathbf{-1.5627 \pm 0.0034}$ \\
\hline
10 Qubit QAOA Cost & $\mathbf{-4.8 \pm 0.2382}$ & $-4.687 \pm 0.2756$ \\
\hline
5 Qubit VQE Cost & $\mathbf{-3.575 \pm 0.198}$ & $-3.5626 \pm 0.076$ \\
\hline
10 Qubit VQE Cost & $-1.0922 \pm 0.0813$ & $\mathbf{-1.1215 \pm 0.0599}$ \\
\hline
\end{tabular} \caption{Only shot noise}\label{tab:exp2}
\end{table} | [
[
"Evaluation",
"Gradient Descent",
"Augmented"
],
[
"Circle Train Loss",
"0.5674 0.00032\n±",
"0.5676 0.0003\n±"
],
[
"Circle Validation Loss",
"0.6087 0.001076\n±",
"0.605 0.0005565\n±"
],
[
"Moons Train Loss",
"0.344 0.0002\n±",
"0.3439 0.00042\n±"
],
[
"Moons Validation Loss",
"0.3844 0.000683\n±",
"0.3835 0.0008\n±"
],
[
"5 Qubit QAOA Cost",
"1.561 0.0061\n− ±",
"1.5627 0.0034\n− ±"
],
[
"10 Qubit QAOA Cost",
"4.8 0.2382\n− ±",
"4.687 0.2756\n− ±"
],
[
"5 Qubit VQE Cost",
"3.575 0.198\n− ±",
"3.5626 0.076\n− ±"
],
[
"10 Qubit VQE Cost",
"1.0922 0.0813\n− ±",
"1.1215 0.0599\n− ±"
]
] | 0.533613 | null | null |
2 | 2109.03188v3 | 7 | [
119.03450012207031,
584.2789916992188,
469.698063659668,
731.3280029296875
] | \begin{table}
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & Gradient Descent & Augmented \\
\hline
Circle Train Loss & $0.6739 \pm 0.000303$ & $\mathbf{0.6724 \pm 0.00012}$ \\
\hline
Circle Validation Loss & $0.656 \pm 0.000278$ & $\mathbf{0.6547 \pm 0.00106}$ \\
\hline
Moons Train Loss & $0.644 \pm 0.005$ & $\mathbf{0.6347 \pm 0.00307}$ \\
\hline
Moons Validation Loss & $0.6406 \pm 0.0058$ & $\mathbf{0.631 \pm 0.0043}$ \\
\hline
5 Qubit QAOA Cost & $-1.52 \pm 0.00998$ & $\mathbf{-1.5773 \pm 0.01062}$ \\
\hline
10 Qubit QAOA Cost & $-4.805 \pm 0.683$ & $\mathbf{-5.2257 \pm 0.0889}$ \\
\hline
5 Qubit VQE Cost & $ -0.1634 \pm 0.0297 $ & $\mathbf{-0.1716 \pm 0.0242} $ \\
\hline
10 Qubit VQE Cost & $-1.0683 \pm 0.06495$ & $\mathbf{-1.10984 \pm 0.0272}$ \\
\hline
\end{tabular} \caption{Shot and depolarizing noise}\label{tab:exp3}
\end{table} | [
[
"Evaluation",
"Gradient Descent",
"Augmented"
],
[
"Circle Train Loss",
"0.6739 0.000303\n±",
"0.6724 0.00012\n±"
],
[
"Circle Validation Loss",
"0.656 0.000278\n±",
"0.6547 0.00106\n±"
],
[
"Moons Train Loss",
"0.644 0.005\n±",
"0.6347 0.00307\n±"
],
[
"Moons Validation Loss",
"0.6406 0.0058\n±",
"0.631 0.0043\n±"
],
[
"5 Qubit QAOA Cost",
"1.52 0.00998\n− ±",
"1.5773 0.01062\n− ±"
],
[
"10 Qubit QAOA Cost",
"4.805 0.683\n− ±",
"5.2257 0.0889\n− ±"
],
[
"5 Qubit VQE Cost",
"0.1634 0.0297\n− ±",
"0.1716 0.0242\n− ±"
],
[
"10 Qubit VQE Cost",
"1.0683 0.06495\n− ±",
"1.10984 0.0272\n− ±"
]
] | 0.458848 | null | null |
3 | 2109.03188v3 | 13 | [
123.25800323486328,
131.19500732421875,
465.4739990234375,
392.21600341796875
] | \begin{table}[H]
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & SAC MLP & SAC CNN \\
\hline
Circle Train Loss & $ 0.588 \pm 0.00115 $ & $ 0.5993 \pm 0.0056 $ \\
\hline
Circle Validation Loss & $ 0.5657 \pm 0.00148 $ & $ 0.576 \pm 0.01$ \\
\hline
Moons Train Loss & $ 0.4148 \pm 0.0201 $ & $ 0.4266 \pm 0.02148 $ \\
\hline
Moons Validation Loss & $ 0.39574 \pm 0.01771 $ & $ 0.4098 \pm 0.03125 $ \\
\hline
Blobs Train Loss & $ 1.854 \pm 0.00951 $ & $ 1.856 \pm 0.007386 $ \\
\hline
Blobs Validation Loss & $ 1.852 \pm 0.00759 $ & $ 1.859 \pm 0.00538 $ \\
\hline
Regression Train Loss & $ 0.1349 \pm 0.01003 $ & $ 0.1428 \pm 0.00777 $ \\
\hline
Regression Validation & $ 0.1526 \pm 0.00251 $ & $ 0.1572 \pm 0.00395$\\
Loss & & \\
\hline
5 Qubit QAOA Cost & $ -1.312 \pm 0.09788 $ & $ -1.3387 \pm 0.0979$ \\
\hline
10 Qubit QAOA Cost & $ -2.4763 \pm 0.3418 $ & $ -2.237 \pm 0.319 $ \\
\hline
20 Qubit QAOA Cost & $ -5.3057 \pm 0.194 $ & $ -4.8765 \pm 0.0498$ \\
\hline
5 Qubit VQE Cost & $ -1.604 \pm 0.00368 $ & $ -0.6838 \pm 0.0863 $ \\
\hline
10 Qubit VQE Cost & $ -0.1667 \pm 0.031 $ & $ -0.1598 \pm 0.00192$ \\
\hline
20 Qubit VQE Cost & $ -0.00457 \pm 0.0004 $ & $ -0.00479 \pm 0.0007 $ \\
\hline
\end{tabular} \caption{Noiseless} \label{tab:exp1_app}
\end{table} | [
[
"Evaluation",
"SAC MLP",
"SAC CNN"
],
[
"Circle Train Loss",
"0.588 0.00115\n±",
"0.5993 0.0056\n±"
],
[
"Circle Validation Loss",
"0.5657 0.00148\n±",
"0.576 0.01\n±"
],
[
"Moons Train Loss",
"0.4148 0.0201\n±",
"0.4266 0.02148\n±"
],
[
"Moons Validation Loss",
"0.39574 0.01771\n±",
"0.4098 0.03125\n±"
],
[
"Blobs Train Loss",
"1.854 0.00951\n±",
"1.856 0.007386\n±"
],
[
"Blobs Validation Loss",
"1.852 0.00759\n±",
"1.859 0.00538\n±"
],
[
"Regression Train Loss",
"0.1349 0.01003\n±",
"0.1428 0.00777\n±"
],
[
"Regression Validation\nLoss",
"0.1526 0.00251\n±",
"0.1572 0.00395\n±"
],
[
"5 Qubit QAOA Cost",
"1.312 0.09788\n− ±",
"1.3387 0.0979\n− ±"
],
[
"10 Qubit QAOA Cost",
"2.4763 0.3418\n− ±",
"2.237 0.319\n− ±"
],
[
"20 Qubit QAOA Cost",
"5.3057 0.194\n− ±",
"4.8765 0.0498\n− ±"
],
[
"5 Qubit VQE Cost",
"1.604 0.00368\n− ±",
"0.6838 0.0863\n− ±"
],
[
"10 Qubit VQE Cost",
"0.1667 0.031\n− ±",
"0.1598 0.00192\n− ±"
],
[
"20 Qubit VQE Cost",
"0.00457 0.0004\n− ±",
"0.00479 0.0007\n− ±"
]
] | 0.44875 | null | null |
4 | 2109.03188v3 | 13 | [
129.11099243164062,
450.39801025390625,
459.6210021972656,
597.4459838867188
] | \begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & SAC MLP & SAC CNN \\
\hline
Circle Train Loss & $0.5743 \pm 0.00063$ & $0.5876 \pm 0.0103$ \\
\hline
Circle Validation Loss & $0.6094 \pm 0.0023$ & $0.6138 \pm 0.00868$ \\
\hline
Moons Train Loss & $0.4401 \pm 0.0159$ & $0.4172 \pm 0.0229$ \\
\hline
Moons Validation Loss & $0.4563 \pm 0.008$ & $0.4493 \pm 0.0219$ \\
\hline
5 Qubit QAOA Cost & $-1.293 \pm 0.0451$ & $-1.2663 \pm 0.0404$ \\
\hline
10 Qubit QAOA Cost & $-2.84 \pm 0.4335$ & $-2.634 \pm 0.3651$ \\
\hline
5 Qubit VQE Cost & $-0.9572 \pm 0.2028$ & $-0.8533 \pm 0.078$ \\
\hline
10 Qubit VQE Cost & $-0.209 \pm 0.00234$ & $-0.226 \pm 0.0293$ \\
\hline
\end{tabular} \caption{Only shot noise}\label{tab:exp2_app}
\end{table} | [
[
"Evaluation",
"SAC MLP",
"SAC CNN"
],
[
"Circle Train Loss",
"0.5743 0.00063\n±",
"0.5876 0.0103\n±"
],
[
"Circle Validation Loss",
"0.6094 0.0023\n±",
"0.6138 0.00868\n±"
],
[
"Moons Train Loss",
"0.4401 0.0159\n±",
"0.4172 0.0229\n±"
],
[
"Moons Validation Loss",
"0.4563 0.008\n±",
"0.4493 0.0219\n±"
],
[
"5 Qubit QAOA Cost",
"1.293 0.0451\n− ±",
"1.2663 0.0404\n− ±"
],
[
"10 Qubit QAOA Cost",
"2.84 0.4335\n− ±",
"2.634 0.3651\n− ±"
],
[
"5 Qubit VQE Cost",
"0.9572 0.2028\n− ±",
"0.8533 0.078\n− ±"
],
[
"10 Qubit VQE Cost",
"0.209 0.00234\n− ±",
"0.226 0.0293\n− ±"
]
] | 0.525405 | null | null |
5 | 2109.03188v3 | 14 | [
124.98100280761719,
88.13897705078125,
463.7510070800781,
235.18798828125
] | \begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Evaluation & SAC MLP & SAC CNN \\
\hline
Circle Train Loss & $0.676 \pm 0.000288$ & $0.681 \pm 0.00131$ \\
\hline
Circle Validation Loss & $0.6571 \pm 0.00022$ & $0.6679 \pm 0.0019$ \\
\hline
Moons Train Loss & $0.6599 \pm 0.00176$ & $0.6657 \pm 0.00204$ \\
\hline
Moons Validation Loss & $0.6564 \pm 0.000924$ & $0.6645 \pm 0.00253$ \\
\hline
5 Qubit QAOA Cost & $-1.364 \pm 0.0936$ & $-1.368 \pm 0.095$ \\
\hline
10 Qubit QAOA Cost & $-3.1087 \pm 0.4198$ & $-2.7073 \pm 0.811$ \\
\hline
5 Qubit VQE Cost & $ -0.1751 \pm 0.0226 $ & $-0.1889 \pm 0.0267$ \\
\hline
10 Qubit VQE Cost & $-0.829 \pm 0.00707$ & $-0.7524 \pm 0.02768$ \\
\hline
\end{tabular} \caption{Shot and depolarizing noise}\label{tab:exp3_app}
\end{table} | [
[
"Evaluation",
"SAC MLP",
"SAC CNN"
],
[
"Circle Train Loss",
"0.676 0.000288\n±",
"0.681 0.00131\n±"
],
[
"Circle Validation Loss",
"0.6571 0.00022\n±",
"0.6679 0.0019\n±"
],
[
"Moons Train Loss",
"0.6599 0.00176\n±",
"0.6657 0.00204\n±"
],
[
"Moons Validation Loss",
"0.6564 0.000924\n±",
"0.6645 0.00253\n±"
],
[
"5 Qubit QAOA Cost",
"1.364 0.0936\n− ±",
"1.368 0.095\n− ±"
],
[
"10 Qubit QAOA Cost",
"3.1087 0.4198\n− ±",
"2.7073 0.811\n− ±"
],
[
"5 Qubit VQE Cost",
"0.1751 0.0226\n− ±",
"0.1889 0.0267\n− ±"
],
[
"10 Qubit VQE Cost",
"0.829 0.00707\n− ±",
"0.7524 0.02768\n− ±"
]
] | 0.446073 | null | null |
0 | 2103.07268v1 | 5 | [
89.00199890136719,
65.08697509765625,
259.9840087890625,
112.708984375
] | \begin{table}[htbp!]
\centering
\caption{Model architecture}
\label{tab:dl_arch}
\begin{tabular}{c|c}
\hline \textbf{Layer type} & \textbf{Layer information} \\ \hline \hline
Fully Connected + ReLU & 100 \\
Fully Connected + ReLU & 100 \\
Fully Connected + ReLU & 100 \\
Fully Connected + TanH & 1 \\ \hline
\end{tabular}
%%%%%%%%%%%%
\end{table} | [
[
"Layer type",
"Layer information"
],
[
"Fully Connected + ReLU\nFully Connected + ReLU\nFully Connected + ReLU\nFully Connected + TanH",
"100\n100\n100\n1"
]
] | 0.746269 | null | null |
1 | 2103.07268v1 | 5 | [
129.48599243164062,
142.63800048828125,
219.5,
199.22601318359375
] | \begin{table}[htbp!]
\centering
\caption{Milimater-wave beam prediction model parameters}
\label{tab:dl_arch_params}
\begin{tabular}{c|c}
\hline
\textbf{Parameter} & \textbf{Value} \\
\hline \hline
Optimizer & Adam \\
Learning rate & 0.01 \\
Batch Size & 100 \\
Dropout Ratio & 0.25 \\
Epochs & 10 \\
\hline
\end{tabular}
\end{table} | [
[
"Parameter",
"Value"
],
[
"Optimizer\nLearning rate\nBatch Size\nDropout Ratio\nEpochs",
"Adam\n0.01\n100\n0.25\n10"
]
] | 0.795699 | null | null |
2 | 2103.07268v1 | 5 | [
101.12300109863281,
683.9249877929688,
247.86399841308594,
704.64697265625
] | \begin{table}[htbp!]
\centering
\caption{Adversarial settings of our experiments perturbation budget $\epsilon$}
\label{tab:adversarial_settings}
\begin{tabular}{c|c|c}
\hline
\textbf{Attack} & \textbf{Parameters} & \textbf{$l_p$ norm}\\
\hline \hline
FGSM & $\epsilon \in [0.01, \cdots 0.1]$ & $l_\infty$\\
\hline
\end{tabular}
\end{table} | [
[
"Attack",
"Parameters",
"lp norm"
],
[
"FGSM",
"ϵ ∈[0.01, · · · 0.1]",
"l\n∞"
]
] | 0.760331 | null | null |
0 | 2206.13190v1 | 6 | [
110.25809478759766,
90.32650756835938,
501.74237060546875,
267.2620391845703
] | \begin{table}[!t]
\centering
\caption{Test accuracy (mean$\pm$std).}
\label{tab:result_accuracy}
%\vspace{-3mm}
\scalebox{0.89}{
\begin{tabular}{lccccc|c}\Hline
& FEMNIST & Shakespeare & Sent140 & MNIST & CIFAR-10 & Average rank \\\hline
FedAvg & 75.79±1.65 & 44.94±1.96 & 58.83±11.88 & 98.90±0.10 & 86.05±0.48 & 9.2 \\
FedAvg+FT & 77.25±3.99 & 42.53±2.19 & 74.66±6.20 & \textbf{99.23±0.09} & 89.59±0.94 & 3.6 \\
FedProx & 76.08±2.12 & 48.59±3.59 & 58.83±11.88 & 98.87±0.06 & 86.01±0.38 & 8.6 \\
FedProx+FT & 76.96±3.42 & 45.17±2.83 & 74.66±6.20 & 99.20±0.10 & 89.76±0.62 & 3.6 \\\hdashline
HypCluster & 75.99±2.94 & 41.82±3.33 & \textbf{77.08±4.69 }& 98.90±0.09 & 85.21±1.22 & 7.4 \\
HypCluster+FT & 76.29±3.15 & 41.10±3.29 & 73.16±9.41 & 99.15±0.12 & 88.54±1.42 & 7.2 \\
FML & 67.91±2.53 & 28.73±1.78 & 72.49±8.87 & 98.26±0.16 & 79.89±1.44 & 12.0 \\
FedMe & 77.64±2.39 & 46.98±2.30 & 73.99±8.29 & 98.92±0.14 & 88.15±0.52 & 5.8 \\
FedMe+FT & \textbf{78.06±3.00} & 45.83±2.48 & 74.41±8.16 & 99.17±0.07 & \textbf{90.96±0.84} & \textbf{2.8} \\
LG-FedAvg & 65.14±3.12 & 23.17±1.93 & 73.41±10.07 & 97.80±0.16 & 78.53±1.57 & 13.0 \\
FedPer & 65.96±2.81 & 30.83±3.32 & 74.16±7.59 & 99.11±0.08 & 90.00±0.83 & 8.0 \\
FedRep & 66.04±2.20 & 31.71±2.29 & 73.91±8.33 & 99.06±0.07 & 88.96±0.48 & 8.8 \\
Ditto & 75.68±3.63 & \textbf{49.33±1.85} & 74.28±8.10 & 99.22±0.06 & 90.41±0.67 & 3.8 \\
pFedMe & 72.92±3.54 & 40.33±2.27 & 71.20±10.25 & 98.96±0.05 & 79.46±2.08 & 10.6 \\\hdashline
Local Data Only & 64.71±2.94 & 24.77±1.95 & 74.33±7.86 & 97.60±0.28 & 73.17±1.55 & - \\
Centralized & 76.08±1.65 & 47.64±2.63 & 58.83±11.88 & 98.89±0.05 & 85.96±0.54 & - \\
Centralized+FT & 79.35±2.29 & 48.43±3.32 & 67.91±7.41 & 99.27±0.08 & 90.80±0.92 & - \\
\Hline
\end{tabular}
}
\end{table} | [
[
"FEMNIST Shakespeare Sent140 MNIST CIFAR-10",
"Average rank"
],
[
"FedAvg 75.79±1.65 44.94±1.96 58.83±11.88 98.90±0.10 86.05±0.48\nFedAvg+FT 77.25±3.99 42.53±2.19 74.66±6.20 99.23±0.09 89.59±0.94\nFedProx 76.08±2.12 48.59±3.59 58.83±11.88 98.87±0.06 86.01±0.38\nFedProx+FT 76.96±3.42 45.17±2.83 74.66±6.20 99.20±0.10 89.76±0.62\nHypCluster 75.99±2.94 41.82±3.33 77.08±4.69 98.90±0.09 85.21±1.22\nHypCluster+FT 76.29±3.15 41.10±3.29 73.16±9.41 99.15±0.12 88.54±1.42\nFML 67.91±2.53 28.73±1.78 72.49±8.87 98.26±0.16 79.89±1.44\nFedMe 77.64±2.39 46.98±2.30 73.99±8.29 98.92±0.14 88.15±0.52\nFedMe+FT 78.06±3.00 45.83±2.48 74.41±8.16 99.17±0.07 90.96±0.84\nLG-FedAvg 65.14±3.12 23.17±1.93 73.41±10.07 97.80±0.16 78.53±1.57\nFedPer 65.96±2.81 30.83±3.32 74.16±7.59 99.11±0.08 90.00±0.83\nFedRep 66.04±2.20 31.71±2.29 73.91±8.33 99.06±0.07 88.96±0.48\nDitto 75.68±3.63 49.33±1.85 74.28±8.10 99.22±0.06 90.41±0.67\npFedMe 72.92±3.54 40.33±2.27 71.20±10.25 98.96±0.05 79.46±2.08\nLocal Data Only 64.71±2.94 24.77±1.95 74.33±7.86 97.60±0.28 73.17±1.55\nCentralized 76.08±1.65 47.64±2.63 58.83±11.88 98.89±0.05 85.96±0.54\nCentralized+FT 79.35±2.29 48.43±3.32 67.91±7.41 99.27±0.08 90.80±0.92",
"9.2\n3.6\n8.6\n3.6\n7.4\n7.2\n12.0\n5.8\n2.8\n13.0\n8.0\n8.8\n3.8\n10.6\n-\n-\n-"
]
] | 0.914523 | null | null |
0 | 1902.02904v1 | 10 | [
64.51200103759766,
133.18455505371094,
528.0989990234375,
402.76214599609375
] | \begin{table}[!t]
\footnotesize
\caption{Statistics for Features and Response Variable.}
\setlength{\tabcolsep}{7pt}
\centering
\resizebox{1\textwidth}{!}{% <------ Don't forget this %
\begin{tabular}{ l | l | l l l l l l }
\hline
\textbf{Variable} & \textbf{Description} & \textbf{Category} & \textbf{\%} & \textbf{Min} & \textbf{Max} & \textbf{Mean} & \textbf{SD} \\[0.5ex] \hline
\textit{Response Variable} &&&&&&& \\[0.5ex]
Switching Choice & & MOD Transit & 35.28 & & & & \\
& & Not MOD Transit & 64.72 & & & & \\
& &&&&&& \\
\textit{Features} &&&&&&& \\[0.5ex]
TT\_Drive & Travel time of driving (min) & & & 2.00 & 40.00 & 15.21 & 6.62
\\
TT\_Walk & Travel time of walking (min) & & & 3.00 & 120.00 & 32.30 & 23.08
\\
TT\_Bike & Travel time of biking (min) & & & 1.00 & 55.00 & 15.34 & 10.45
\\
TT\_MOD & Travel time of using MOD transit (min) & & & 6.20 & 34.00 & 18.68 & 4.75
\\
Wait\_Time & Wait time for MOD (min) & & & 3.00 & 8.00 & 5.00 & 2.07
\\
Transfer & Number of transfers in MOD & & & 0.00 & 2.00 & 0.33 & 0.65
\\
Rideshare & Number of additional pickups in MOD & & & 0.00 & 2.00 & 1.11 & 0.82
\\
Income& Income level
& & & 1.00 & 6.00 & 1.93 & 1.34 \\
Bike\_Walkability& Importance of bike- and walk-ability & & & 1.00 & 4.00 & 3.22 & 0.95 \\
MOD\_Access& ease of access to MOD & & & 1.00 & 4.00 & 3.09 & 1.02 \\
CarPerCap & Car per capita & & & 0.00 & 3.00 & 0.53 & 0.48
\\
Female & Female or Male & Female & 56.32 & & & & \\
& & Male & 43.68 & & & & \\
Student & Students or faculty/staff & Student & 73.52 & & & & \\
&& Faculty or staff & 26.48 & & & & \\
Current\_Mode\_Car & Current travel mode is Car or not & Car & 16.68 & & & & \\
&& Not Car & 83.32 & & & & \\
Current\_Mode\_Walk & Current travel mode is Walk or not & Walk & 40.41 & & & & \\
&& Not Walk & 59.59 & & & & \\
Current\_Mode\_Bike & Current travel mode is Bike or not & Bike & 8.25 & & & & \\
&& Not Bike & 91.75 & & & & \\
[1ex]
\hline
\end{tabular}
}
\label{tab:var}
\end{table} | [
[
"Variable",
"Description",
"Category % Min Max Mean SD"
],
[
"Response Variable\nSwitching Choice\nFeatures\nTT Drive\nTT Walk\nTT Bike\nTT MOD\nWait Time\nTransfer\nRideshare\nIncome\nBike Walkability\nMOD Access\nCarPerCap\nFemale\nStudent\nCurrent Mode Car\nCurrent Mode Walk\nCurrent Mode Bike",
"Travel time of driving (min)\nTravel time of walking (min)\nTravel time of biking (min)\nTravel time of using MOD transit (min)\nWait time for MOD (min)\nNumber of transfers in MOD\nNumber of additional pickups in MOD\nIncome level\nImportance of bike- and walk-ability\nease of access to MOD\nCar per capita\nFemale or Male\nStudents or faculty/staff\nCurrent travel mode is Car or not\nCurrent travel mode is Walk or not\nCurrent travel mode is Bike or not",
"MOD Transit 35.28\nNot MOD Transit 64.72\n2.00 40.00 15.21 6.62\n3.00 120.00 32.30 23.08\n1.00 55.00 15.34 10.45\n6.20 34.00 18.68 4.75\n3.00 8.00 5.00 2.07\n0.00 2.00 0.33 0.65\n0.00 2.00 1.11 0.82\n1.00 6.00 1.93 1.34\n1.00 4.00 3.22 0.95\n1.00 4.00 3.09 1.02\n0.00 3.00 0.53 0.48\nFemale 56.32\nMale 43.68\nStudent 73.52\nFaculty or staff 26.48\nCar 16.68\nNot Car 83.32\nWalk 40.41\nNot Walk 59.59\nBike 8.25\nNot Bike 91.75"
]
] | 0.379601 | null | null |
1 | 1902.02904v1 | 14 | [
170.0570068359375,
337.7920227050781,
425.218994140625,
571.3160400390625
] | \begin{table}[!t]
\centering
\begin{tabular}{c|c|c|c}
\hline
\multicolumn{2}{c|}{\textbf{Mode/Outcome}} & \textbf{Accuracy} & \textbf{L1-Norm} \\ \hline
\multicolumn{2}{c|}{Overall} & 0.893 & \multirow{3}{*}{0.02695} \\ \cline{1-3}
\multicolumn{2}{c|}{Switching} & 0.808 & \\ \cline{1-3}
\multicolumn{2}{c|}{Non-switching} & 0.939 & \\ \hline
\multirow{3}{*}{Car} & Overall & 0.869 & \multirow{3}{*}{0.00213} \\ \cline{2-3}
& Switching & 0.836 & \\ \cline{2-3}
& Non-switching & 0.890 & \\ \hline
\multirow{3}{*}{Walk} & Overall & 0.904 & \multirow{3}{*}{0.04375} \\ \cline{2-3}
& Switching & 0.620 & \\ \cline{2-3}
& Non-switching & 0.981 & \\ \hline
\multirow{3}{*}{Bike} & Overall & 0.946 & \multirow{3}{*}{0.00433} \\ \cline{2-3}
& Switching & 0.714 & \\ \cline{2-3}
& Non-switching & 0.979 & \\ \hline
\multirow{3}{*}{Bus} & Overall & 0.882 & \multirow{3}{*}{0.02525} \\ \cline{2-3}
& Switching & 0.890 & \\ \cline{2-3}
& Non-switching & 0.873 & \\ \hline
\end{tabular}
\caption{Predicted Accuracy for all Intances and for Instances
Segmented by Current Mode Choice in the \textit{Testing} Set.}
\label{tab:accuracy}
\end{table} | [
[
"Mode/Outcome",
null,
"Accuracy",
"L1-Norm"
],
[
"Overall",
null,
"0.893",
"0.02695"
],
[
"Switching",
null,
"0.808",
null
],
[
"Non-switching",
null,
"0.939",
null
],
[
"Car",
"Overall",
"0.869",
"0.00213"
],
[
null,
"Switching",
"0.836",
null
],
[
null,
"Non-switching",
"0.890",
null
],
[
"Walk",
"Overall",
"0.904",
"0.04375"
],
[
null,
"Switching",
"0.620",
null
],
[
null,
"Non-switching",
"0.981",
null
],
[
"Bike",
"Overall",
"0.946",
"0.00433"
],
[
null,
"Switching",
"0.714",
null
],
[
null,
"Non-switching",
"0.979",
null
],
[
"Bus",
"Overall",
"0.882",
"0.02525"
],
[
null,
"Switching",
"0.890",
null
],
[
null,
"Non-switching",
"0.873",
null
]
] | 0.510204 | null | null |
0 | 1905.10345v1 | 4 | [
103.43900299072266,
114.572998046875,
505.489013671875,
258.63299560546875
] | \begin{table}
\centering
\footnotesize
\caption{Grammar $<T, N, P, S>$ for machine learning pipelines for a classification task.}
\label{tab:grammar}
\begin{tabular}{|l|l|}
\hline
$\textbf{T}$[Terminals] & $SkImputer$, $MissingIndicator$, $OneHotEncoder$, $OrdinalEncoder$, \\
& $PCA$ $\ldots$, $GaussianNB$, $RidgeClassifier$, $SGDClassifier$, $LinearSVC$ \\
\hline
$\textbf{N}$[Non-Terminals] & $DataCleaning$ ${<}DC{>}$, $DataTransformation$ ${<}DT{>}$, \\
& $Estimators$ ${<}E{>}$ \\
\hline
$\textbf{S}$[Start] & $S$ \\
\hline
$\textbf{P}$[Production Rules] & ${<}S{>}$\hspace{.4cm}::= ${<}E{>}$ $|$ ${<}DC{>}$ ${<}E{>}$ $|$ ${<}DT{>}$ ${<}E{>}$ $|$ ${<}DC{>}$ ${<}DT{>}$ ${<}E{>}$ \\
& ${<}DC{>}$\hspace{.1cm}::= $SkImputer$ ${<}DC{>}$ $|\ldots|$ $MissingIndicator$ ${<}DC{>}$ $|$ \\
& \hspace{1.7cm}$SkImputer$ $|\ldots|$ $MissingIndicator$ \\
& ${<}DT{>}$\hspace{.1cm}::= $OneHotEncoder$ ${<}DT{>}$ $OrdinalEncoder$ ${<}DT{>}$ $|\ldots|$ \\ & \hspace{1.7cm}$PCA$ ${<}DT{>}$ $|$\\
& \hspace{1.7cm}$OneHotEncoder$ $OrdinalEncoder$ $|\ldots|$ $PCA$\\
& ${<}E{>}$\hspace{.4cm}::= $GaussianNB$ $|$ $RidgeClassifier$ $|$ $SGDClassifier$ $|\ldots|$ \\
& \hspace{1.7cm} $LinearSVC$\\
\hline
\end{tabular}
\vspace{-15pt}
\end{table} | [
[
"T[Terminals]",
"SkImputer, MissingIndicator, OneHotEncoder, OrdinalEncoder,\nPCA . . ., GaussianNB, RidgeClassifier, SGDClassifier, LinearSV C"
],
[
"N[Non-Terminals]",
"DataCleaning <DC>, DataTransformation <DT>,\nEstimators <E>"
],
[
"S[Start]",
"S"
],
[
"P[Production Rules]",
"<S> ::= <E> | <DC> <E> | <DT> <E> | <DC> <DT> <E>\n<DC> ::= SkImputer <DC> | . . . | MissingIndicator <DC> |\nSkImputer | . . . | MissingIndicator\n<DT> ::= OneHotEncoder <DT> OrdinalEncoder <DT> | . . . |\nPCA <DT> |\nOneHotEncoder OrdinalEncoder | . . . | PCA\n<E> ::= GaussianNB | RidgeClassifier | SGDClassifier | . . . |\nLinearSV C"
]
] | 0.892282 | null | null |
0 | 1407.0375v1 | 151 | [
187.93600463867188,
105.2349853515625,
443.97698974609375,
153.85296630859375
] | \begin{table}[t]
\begin{center}
\small
\begin{tabular}{rl|rrr|rrr}
\multicolumn{2}{c}{{\ER}} & \multicolumn{3}{c}{} & \multicolumn{3}{c}{} \\
%\multicolumn{2}{c|}{graph} & \multicolumn{3}{c|}{average degree} & \multicolumn{3}{c}{} \\
\multicolumn{2}{c}{parameters} & \multicolumn{3}{c}{\textsf{densest subgraph}} & \multicolumn{3}{c}{\textsf{optimal \QC}} \\
\hline
\multicolumn{1}{c}{$n$} &
\multicolumn{1}{c|}{$p$} &
\multicolumn{1}{c}{$|S|$} &
\multicolumn{1}{c}{$P$} &
\multicolumn{1}{c|}{$R$} &
\multicolumn{1}{c}{$|S|$} &
\multicolumn{1}{c}{$P$} &
\multicolumn{1}{c}{$R$} \\
\hline
3\,000 & 0.5 & 3\,000 & 0.01 & 1.00 & 3\,000 & 0.01 & 1.00 \\
3\,000 & 0.1 & 3\,000 & 0.01 & 1.00 & 30 & 1.00 & 1.00 \\
3\,000 & 0.008 & 30 & 1.00 & 1.00 & 30 & 1.00 & 1.00 \\
\hline
\end{tabular}
\end{center}
\caption{\label{tab:densesterdos}
Subgraphs returned by Goldberg's max-flow algorithm and by our
two algorithms (\Galgo, \LSalgo) on {\ER} graphs with 3\,000 vertices and three values of $p$,
and with a planted clique of 30 vertices.}
\end{table} | [
[
"n p",
"S P R\n| |",
"S P R\n| |"
],
[
"3 000 0.5\n3 000 0.1\n3 000 0.008",
"3 000 0.01 1.00\n3 000 0.01 1.00\n30 1.00 1.00",
"3 000 0.01 1.00\n30 1.00 1.00\n30 1.00 1.00"
]
] | 0.398438 | null | null |
1 | 1407.0375v1 | 195 | [
227.53399658203125,
81.32501220703125,
404.3800048828125,
234.74896240234375
] | \begin{table}[t]
%\label{tab:realavg}
\centering
\begin{tabular}{|c|c|c|} \hline
$k$ & Relative Gain & $\rho_{\text{Fennel}}-\rho_{\text{c}}$ \\ \hline
2 & 25.37\% & 0.47\% \\ \hline
4 & 25.07\% & 0.36\%\\ \hline
8 & 26.21\% & 0.18\% \\\hline
16 & 22.07\% & -0.43\% \\\hline
32 & 16.59\% & -0.34\% \\\hline
64 & 14.33\% & -0.67\% \\\hline
128 & 13.18\% & -0.17\% \\\hline
256 & 13.76\% & -0.20\% \\\hline
512 & 12.88\% &-0.17\% \\\hline
1024 & 11.24\% &-0.44\% \\\hline
\end{tabular}
\caption{\label{tab:realavg}
The relative gain $( 1-\frac{\lambda_{\text{Fennel}}}{ \lambda_{\text{c}} }) \times 100\%$
and load imbalance, where subindex $c$ stands for the best competitor,
averaged over all datasets in Table~\ref{tab:datasets} as a function of $k$.
}
\end{table} | [
[
"k",
"Relative Gain",
"ρ ρ\nFennel − c"
],
[
"2",
"25.37%",
"0.47%"
],
[
"4",
"25.07%",
"0.36%"
],
[
"8",
"26.21%",
"0.18%"
],
[
"16",
"22.07%",
"-0.43%"
],
[
"32",
"16.59%",
"-0.34%"
],
[
"64",
"14.33%",
"-0.67%"
],
[
"128",
"13.18%",
"-0.17%"
],
[
"256",
"13.76%",
"-0.20%"
],
[
"512",
"12.88%",
"-0.17%"
],
[
"1024",
"11.24%",
"-0.44%"
]
] | 0.581081 | null | null |
2 | 1407.0375v1 | 229 | [
184.17599487304688,
103.24298095703125,
447.7380065917969,
200.8759765625
] | \begin{table}
\centering
\caption{\label{tab:proofcounts} Summary of proof of Lemma~\ref{lem:Trimmerlem3}.}
\begin{tabular}{|c|c|c|} \hline
~ & $w'(i_1, i_4)+w'(i_2,i_3)$ & $w'(i_1,i_3) + w'(i_2, i_4)$ \\ \hline
$(S_1,S_1)$ & 1 & 1 \\ \hline
$(S_2,S_2)$ & 2 & 2 \\ \hline
$(S_3,S_3)$ & 1 & 1 \\ \hline
$(S_1,S_2)$ & 1 & 1 \\ \hline
$(S_1,S_3)$ & 1 & 0 \\ \hline
$(S_2,S_3)$ & 1 & 1 \\ \hline
\end{tabular}
\end{table} | [
[
"",
"w′(i , i ) + w′(i , i )\n1 4 2 3",
"w′(i , i ) + w′(i , i )\n1 3 2 4"
],
[
"(S , S )\n1 1",
"1",
"1"
],
[
"(S , S )\n2 2",
"2",
"2"
],
[
"(S , S )\n3 3",
"1",
"1"
],
[
"(S , S )\n1 2",
"1",
"1"
],
[
"(S , S )\n1 3",
"1",
"0"
],
[
"(S , S )\n2 3",
"1",
"1"
]
] | 0.51773 | null | null |
3 | 1407.0375v1 | 234 | [
108,
115.197998046875,
493.7120056152344,
239.13299560546875
] | \begin{table}
\caption{\label{tab:descriptiondataset}Datasets, papers and the URLs where the datasets can be downloaded.
\textcolor{red}{$\odot$} and \textcolor{cyan}{$\blacksquare$} denote
which datasets are synthetic and real respectively. }
\begin{tabular}{|c|c|c|} \hline
~ & Dataset & Availability \\\hline
\textcolor{red}{$\odot$} & Lai et al. & \cite{1181383} \\
~ & & \url{http://compbio.med.harvard.edu/} \\ \hline
\textcolor{red}{$\odot$} & Willenbrock et al. & \cite{citeulike:387317} \\
~ & & \url{http://www.cbs.dtu.dk/~hanni/aCGH/} \\ \hline
\textcolor{cyan}{$\blacksquare$}& Coriell Cell lines & \cite{coriell} \\
~ & & \url{http://www.nature.com/ng/journal/v29/n3/} \\ \hline
\textcolor{cyan}{$\blacksquare$} & Berkeley Breast Cancer & \cite{berkeley} \\
& & \url{http://icbp.lbl.gov/breastcancer/} \\ \hline
\end{tabular}
\end{table} | [
[
"",
"Dataset",
"Availability"
],
[
"⊙",
"Lai et al.",
"[257]\nhttp://compbio.med.harvard.edu/"
],
[
"⊙",
"Willenbrock et al.",
"[407]\nhttp://www.cbs.dtu.dk/~hanni/aCGH/"
],
[
"■",
"Coriell Cell lines",
"[357]\nhttp://www.nature.com/ng/journal/v29/n3/"
],
[
"■",
"Berkeley Breast Cancer",
"[307]\nhttp://icbp.lbl.gov/breastcancer/"
]
] | 0.672241 | null | null |
4 | 1407.0375v1 | 112 | [
123.39700317382812,
81.32501220703125,
508.5169982910156,
137.115966796875
] | \begin{table}
\centering
\begin{tabular}{|c|c|} \hline
Description & Availability \\ \hline
SNAP & \url{http://snap.stanford.edu/} \\ \hline
UF Sparse Matrix Collection & \url{http://www.cise.ufl.edu/research/sparse} \\\hline
Max Planck & \url{http://socialnetworks.mpi-sws.org/} \\ \hline
\end{tabular}
\caption{\label{tab:sparsifierresources} Dataset sources.}
\end{table} | [
[
"Description",
"Availability"
],
[
"SNAP",
"http://snap.stanford.edu/"
],
[
"UF Sparse Matrix Collection",
"http://www.cise.ufl.edu/research/sparse"
],
[
"Max Planck",
"http://socialnetworks.mpi-sws.org/"
]
] | 0.880208 | null | null |
5 | 1407.0375v1 | 113 | [
108,
81.32501220703125,
468.5790100097656,
262.64501953125
] | \begin{table}[ht]
%\begin{center}
\begin{tabular}{|l|r|r|r|l|} \hline
Name (Abbr.) & Nodes & Edges & Triangle Count \\ \hline
\textcolor{red}{$\odot$} AS-Skitter (AS) & 1,696,415 & 11,095,298 & 28,769,868 \\ \hline
\textcolor{cyan}{$\star$}Flickr (FL) & 1,861,232 & 15,555,040 & 548,658,705 \\ \hline
\textcolor{cyan}{$\star$}Livejournal-links (LJ) & 5,284,457 & 48,709,772 & 310,876,909 \\ \hline
\textcolor{cyan}{$\star$}Orkut-links (OR) & 3,072,626 & 116,586,585 & 621,963,073 \\ \hline
\textcolor{cyan}{$\star$}Soc-LiveJournal (SL) & 4,847,571 & 42,851,237 & 285,730,264 \\ \hline
\textcolor{cyan}{$\star$}Youtube (YOU) & 1,157,822 & 2,990,442& 4,945,382 \\ \hline
\textcolor{green}{$\diamond$}Web-EDU (WE) & 9,845,725 & 46,236,104 & 254,718,147 \\ \hline
\textcolor{green}{$\diamond$}Web-Google (WG) & 875,713 & 3,852,985& 11,385,529 \\ \hline
\textcolor{green}{$\diamond$}Wikipedia 2005/11 (W0511) & 1,634,989 & 18,540,589 & 44,667,095 \\\hline
\textcolor{green}{$\diamond$}Wikipedia 2006/9 (W0609) & 2,983,494 & 35,048,115 &84,018,183 \\ \hline
\textcolor{green}{$\diamond$}Wikipedia 2006/11 (W0611)& 3,148,440 & 37,043,456 &88,823,817 \\ \hline
\textcolor{green}{$\diamond$}Wikipedia 2007/2 (W0702) & 3,566,907 & 42,375,911 & 102,434,918 \\\hline
\end{tabular}
%\end{center}
\caption{\label{tab:sparsifierdatasets}Datasets used in our experiments. Abbreviations are included. Symbol \textcolor{red}{$\odot$} stands for Autonomous Systems graphs,
\textcolor{cyan}{$\star$} for online social networks and \textcolor{green}{$\diamond$} for Web graphs.
Notice that the networks with the highest triangle counts are online social networks (Flickr, Livejournal, Orkut), verifying the
folklore that online social networks are abundant in triangles.}
\end{table} | [
[
"Name (Abbr.)",
"Nodes",
"Edges",
"Triangle Count"
],
[
"AS-Skitter (AS)\n⊙",
"1,696,415",
"11,095,298",
"28,769,868"
],
[
"⋆Flickr (FL)",
"1,861,232",
"15,555,040",
"548,658,705"
],
[
"⋆Livejournal-links (LJ)",
"5,284,457",
"48,709,772",
"310,876,909"
],
[
"⋆Orkut-links (OR)",
"3,072,626",
"116,586,585",
"621,963,073"
],
[
"⋆Soc-LiveJournal (SL)",
"4,847,571",
"42,851,237",
"285,730,264"
],
[
"⋆Youtube (YOU)",
"1,157,822",
"2,990,442",
"4,945,382"
],
[
"Web-EDU (WE)\n⋄",
"9,845,725",
"46,236,104",
"254,718,147"
],
[
"Web-Google (WG)\n⋄",
"875,713",
"3,852,985",
"11,385,529"
],
[
"Wikipedia 2005/11 (W0511)\n⋄",
"1,634,989",
"18,540,589",
"44,667,095"
],
[
"Wikipedia 2006/9 (W0609)\n⋄",
"2,983,494",
"35,048,115",
"84,018,183"
],
[
"Wikipedia 2006/11 (W0611)\n⋄",
"3,148,440",
"37,043,456",
"88,823,817"
],
[
"Wikipedia 2007/2 (W0702)\n⋄",
"3,566,907",
"42,375,911",
"102,434,918"
]
] | 0.390113 | null | null |
6 | 1407.0375v1 | 115 | [
168.5679931640625,
480.80364990234375,
463.34600830078125,
542.8330078125
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|c|c|} \hline
p & $\{T_1 , T_2 \}$ & $ \sqrt{ \frac{\text{Var}[T]}{\Mean{T}^2} \frac{1}{s}\ln{\frac{1}{\delta}}} $ & err(\%) \\ \hline
0.01 & $\{ 42,398,007 ~\& ~50,920,488\}$ & 0.1960 & 4.46 \\ \hline
0.02 & $\{ 42,540,941 ~\& ~43,773,753 \}$ & 0.0307 & 3.38 \\ \hline
0.04 & $\{ 44,573,294 ~\& ~43,398,549 \}$ & 0.0287 & 1.52 \\ \hline
\end{tabular}
\end{center}
\caption{Doubling procedure for the Wikipedia 2005 graph with 44,667,095 triangles.}
\label{tab:doublingexample}
\end{table} | [
[
"p",
"T , T\n{ 1 2}",
"qV Ea [Tr[T ]1 ln 1\n]2 s δ",
"err(%)"
],
[
"0.01",
"42, 398, 007 & 50, 920, 488\n{ }",
"0.1960",
"4.46"
],
[
"0.02",
"42, 540, 941 & 43, 773, 753\n{ }",
"0.0307",
"3.38"
],
[
"0.04",
"44, 573, 294 & 43, 398, 549\n{ }",
"0.0287",
"1.52"
]
] | 0.62039 | null | null |
7 | 1407.0375v1 | 121 | [
108,
383.625,
557.9130249023438,
564.9449462890625
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|l|r|r|r|l|} \hline
Name & Nodes & Edges & Triangle Count & Description\\ \hline
AS-Skitter & 1,696,415 & 11,095,298 & 28,769,868& Autonomous Systems \\ \hline
Flickr & 1,861,232 & 15,555,040 & 548,658,705 & Person to Person \\ \hline
Livejournal-links & 5,284,457 & 48,709,772 & 310,876,909 & Person to Person \\ \hline
Orkut-links & 3,072,626 & 116,586,585 & 621,963,073 & Person to Person \\ \hline
Soc-LiveJournal & 4,847,571 & 42,851,237 & 285,730,264 & Person to Person \\ \hline
Web-EDU& 9,845,725 & 46,236,104 & 254,718,147 & Web Graph (page to page) \\ \hline
Web-Google & 875,713 & 3,852,985& 11,385,529 & Web Graph \\ \hline
Wikipedia 2005/11 & 1,634,989 & 18,540,589 & 44,667,095 & Web Graph (page to page) \\\hline
Wikipedia 2006/9 & 2,983,494 & 35,048,115 &84,018,183& Web Graph (page to page) \\ \hline
Wikipedia 2006/11 & 3,148,440 & 37,043,456 &88,823,817 & Web Graph (page to page) \\ \hline
Wikipedia 2007/2 & 3,566,907 & 42,375,911 & 102,434,918 & Web Graph (page to page) \\\hline
Youtube & 1,157,822 & 2,990,442& 4,945,382 & Person to Person \\ \hline
\end{tabular}
\end{center}
\caption{\label{tab:degreedatasets}Datasets used in our experiments.}
\end{table} | [
[
"Name",
"Nodes",
"Edges",
"Triangle Count",
"Description"
],
[
"AS-Skitter",
"1,696,415",
"11,095,298",
"28,769,868",
"Autonomous Systems"
],
[
"Flickr",
"1,861,232",
"15,555,040",
"548,658,705",
"Person to Person"
],
[
"Livejournal-links",
"5,284,457",
"48,709,772",
"310,876,909",
"Person to Person"
],
[
"Orkut-links",
"3,072,626",
"116,586,585",
"621,963,073",
"Person to Person"
],
[
"Soc-LiveJournal",
"4,847,571",
"42,851,237",
"285,730,264",
"Person to Person"
],
[
"Web-EDU",
"9,845,725",
"46,236,104",
"254,718,147",
"Web Graph (page to page)"
],
[
"Web-Google",
"875,713",
"3,852,985",
"11,385,529",
"Web Graph"
],
[
"Wikipedia 2005/11",
"1,634,989",
"18,540,589",
"44,667,095",
"Web Graph (page to page)"
],
[
"Wikipedia 2006/9",
"2,983,494",
"35,048,115",
"84,018,183",
"Web Graph (page to page)"
],
[
"Wikipedia 2006/11",
"3,148,440",
"37,043,456",
"88,823,817",
"Web Graph (page to page)"
],
[
"Wikipedia 2007/2",
"3,566,907",
"42,375,911",
"102,434,918",
"Web Graph (page to page)"
],
[
"Youtube",
"1,157,822",
"2,990,442",
"4,945,382",
"Person to Person"
]
] | 0.966764 | null | null |