image
imagewidth (px) 56
1.4k
| latex_formula
stringlengths 7
153
|
---|---|
\[\sin kx\]
|
|
\[a=a_{1}+a_{2}+ \ldots\]
|
|
\[A(t)= \sin(t)\]
|
|
\[m^{a}m^{b}m^{c}\]
|
|
\[\sin^{2} \sigma\]
|
|
\[\lim_{n \rightarrow \infty}T_{2n,2n-1}=-2+ \sqrt{3}\]
|
|
\[\frac{1}{ \sqrt{ \pi}}\]
|
|
\[x \geq y \geq z\]
|
|
\[(2.7.1)\]
|
|
\[x^{-z}=z^{-1}x^{-1}z\]
|
|
\[X \rightarrow X\]
|
|
\[t=0.4,0.45,0.5,0.55,0.6\]
|
|
\[f_{x}=x-[x]\]
|
|
\[\cos(a)\]
|
|
\[\log r_{h}\]
|
|
\[\beta= \cos b\]
|
|
\[x+y\]
|
|
\[2.0 \times 1.0\]
|
|
\[+ \sqrt{3}\]
|
|
\[\sin^{2}x \leq 1\]
|
|
\[Y^{a}Y^{a}+Y^{5}Y^{5}=5\]
|
|
\[\log(1-x)\]
|
|
\[f-e_{j}+e_{1}+e_{9}\]
|
|
\[c_{n+1}= \frac{n+3}{2n}(c_{n+2}-2c_{n+1})\]
|
|
\[T^{4}\]
|
|
\[n(xy)=n(x)n(y)\]
|
|
\[y= \frac{5t^{3}-1}{1+t^{3}}\]
|
|
\[\frac{1}{2} \int C^{1}C^{2}\]
|
|
\[t=y_{1}-y_{2}-y_{3}-y_{4}-y_{5}-y_{6}-y_{7}+y_{8}\]
|
|
\[\tan( \pi z)\]
|
|
\[\sum d_{n}= \sum d_{x}=399\]
|
|
\[( \frac{5- \sqrt{5}}{5+ \sqrt{5}})^{ \frac{3}{4}}\]
|
|
\[2[y]=3[x]=[t]\]
|
|
\[k.y(1)=k.y(0)\]
|
|
\[\frac{9}{5}\]
|
|
\[x \neq y\]
|
|
\[\frac{a}{2} \cos 2q\]
|
|
\[4_{a}4_{b}+4_{b}4_{a}\]
|
|
\[x^{a+1}y^{b+1}\]
|
|
\[Tr(A^{a}A^{b}A^{c}A^{d})\]
|
|
\[\frac{l}{x}\]
|
|
\[(x+y)^{n}\]
|
|
\[\int T(z)v(z)dz\]
|
|
\[[2]= \frac{ \sqrt{2}}{ \sqrt{3}-1}\]
|
|
\[\int dx_{5} \int dx_{6}\]
|
|
\[-( \frac{5- \sqrt{5}}{5+ \sqrt{5}})^{ \frac{3}{4}}\]
|
|
\[\int \sqrt{V}\]
|
|
\[a_{3}= \frac{a_{1}}{4}+ \frac{a_{2}}{2}- \frac{1}{8}\]
|
|
\[a+b \sqrt{n}\]
|
|
\[16 \times 2 \times 2-(16+16 \times 2)=16\]
|
|
\[- \frac{4 \sqrt{3}-2}{11}\]
|
|
\[F_{y}=F_{aya^{-1}}=aF_{y}a^{-1}\]
|
|
\[1-n+2 \sqrt{(n+2)(n-1)}>0\]
|
|
\[\frac{5 \times 4}{2}-5+1= \frac{4 \times 3}{2}=6\]
|
|
\[\frac{B^{2}c^{2}}{4 \pi \sin^{2}( \frac{b+c}{2})}\]
|
|
\[\sum I= \sum I^{(1)}+ \sum I^{(2)}\]
|
|
\[x_{a}x_{a}\]
|
|
\[f \times f\]
|
|
\[\sum_{n} \int_{0}^{1}dx(1-x)f(x,n)= \sum_{n} \int_{0}^{1}dyyf(y,n)\]
|
|
\[\frac{f(1+ \cos \theta)}{2 \sin \theta}= \frac{f \sin \theta}{2(1- \cos \theta)}\]
|
|
\[1.4 \times 10^{-5} \pm 9 \times 10^{-6}\]
|
|
\[\pm \sqrt{u}\]
|
|
\[y= \sin \frac{ \phi}{2}\]
|
|
\[p_{1}+p_{2}=p=-(p_{3}+p_{4})\]
|
|
\[( \frac{1}{18}, \frac{1}{18})\]
|
|
\[z^{a}=x^{2a-1}+ix^{2a}\]
|
|
\[V=a_{1}+a_{2} \cos \theta+a_{3} \cos 2 \theta\]
|
|
\[10 \div 30\]
|
|
\[\int a=s \int b\]
|
|
\[[x^{(4)}]^{-1}d[x^{(4)}]\]
|
|
\[- \frac{1}{2 \pi} \sum_{n} \frac{P_{n}}{z-z_{n}}\]
|
|
\[f(x^{11})=k(x^{11})=-b(x^{11})\]
|
|
\[\sqrt{4 \pi}\]
|
|
\[- \frac{1}{2} \pm \sqrt{H(s+ \frac{1}{2})+4}\]
|
|
\[- \frac{7}{160} \sqrt{30}\]
|
|
\[\frac{4}{q}+ \frac{4}{2 \pi-q}-( \frac{8}{ \pi}- \frac{ \pi}{2})\]
|
|
\[y^{a}= \{r \cos \theta_{1}, \ldots,r \sin \theta_{1} \ldots \cos \theta_{d-1},r \sin \theta_{1} \ldots \sin \theta_{d-1} \}\]
|
|
\[\frac{9+4 \sqrt{3}}{33}\]
|
|
\[5 \times 5 \times \ldots \times 5\]
|
|
\[V(x)= \frac{1}{2}-2x^{2}+ \frac{1}{2}x^{4}\]
|
|
\[\lim_{x \rightarrow 0}o(x)=0\]
|
|
\[+x_{3}\]
|
|
\[[b] \times[b]\]
|
|
\[- \frac{1}{160} \sqrt{30}\]
|
|
\[\frac{1}{2}+ \frac{1}{2}=1\]
|
|
\[[ab]= \frac{1}{2}(ab-ba)\]
|
|
\[\forall i,j,k\]
|
|
\[x \rightarrow \infty\]
|
|
\[\lim_{n \rightarrow+ \infty}B_{n}=I\]
|
|
\[+1-1+1-1+1=+1\]
|
|
\[y^{4}=(x-b_{1})^{3}(x-b_{2})^{3}\]
|
|
\[- \sqrt{2+ \sqrt{2}}\]
|
|
\[(9+1)-(5+5)-(1+9)\]
|
|
\[-x^{2}-y^{3}+16yz^{3}=0\]
|
|
\[- \frac{1}{2},+ \frac{1}{2},- \frac{1}{2},+ \frac{1}{2}\]
|
|
\[q^{ \frac{1}{2}}-q^{- \frac{1}{2}}\]
|
|
\[h \times h\]
|
|
\[\int_{-d}^{d}dx^{11}=2 \int_{0}^{d}dx^{11}\]
|
|
\[x^{2}+y^{2}+(z-z_{1}(t))(z-z_{2}(t))(z-z_{3}(t))=0\]
|
|
\[\tan M= \sin M/ \cos M\]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.