image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[\sin kx\]
\[a=a_{1}+a_{2}+ \ldots\]
\[A(t)= \sin(t)\]
\[m^{a}m^{b}m^{c}\]
\[\sin^{2} \sigma\]
\[\lim_{n \rightarrow \infty}T_{2n,2n-1}=-2+ \sqrt{3}\]
\[\frac{1}{ \sqrt{ \pi}}\]
\[x \geq y \geq z\]
\[(2.7.1)\]
\[x^{-z}=z^{-1}x^{-1}z\]
\[X \rightarrow X\]
\[t=0.4,0.45,0.5,0.55,0.6\]
\[f_{x}=x-[x]\]
\[\cos(a)\]
\[\log r_{h}\]
\[\beta= \cos b\]
\[x+y\]
\[2.0 \times 1.0\]
\[+ \sqrt{3}\]
\[\sin^{2}x \leq 1\]
\[Y^{a}Y^{a}+Y^{5}Y^{5}=5\]
\[\log(1-x)\]
\[f-e_{j}+e_{1}+e_{9}\]
\[c_{n+1}= \frac{n+3}{2n}(c_{n+2}-2c_{n+1})\]
\[T^{4}\]
\[n(xy)=n(x)n(y)\]
\[y= \frac{5t^{3}-1}{1+t^{3}}\]
\[\frac{1}{2} \int C^{1}C^{2}\]
\[t=y_{1}-y_{2}-y_{3}-y_{4}-y_{5}-y_{6}-y_{7}+y_{8}\]
\[\tan( \pi z)\]
\[\sum d_{n}= \sum d_{x}=399\]
\[( \frac{5- \sqrt{5}}{5+ \sqrt{5}})^{ \frac{3}{4}}\]
\[2[y]=3[x]=[t]\]
\[k.y(1)=k.y(0)\]
\[\frac{9}{5}\]
\[x \neq y\]
\[\frac{a}{2} \cos 2q\]
\[4_{a}4_{b}+4_{b}4_{a}\]
\[x^{a+1}y^{b+1}\]
\[Tr(A^{a}A^{b}A^{c}A^{d})\]
\[\frac{l}{x}\]
\[(x+y)^{n}\]
\[\int T(z)v(z)dz\]
\[[2]= \frac{ \sqrt{2}}{ \sqrt{3}-1}\]
\[\int dx_{5} \int dx_{6}\]
\[-( \frac{5- \sqrt{5}}{5+ \sqrt{5}})^{ \frac{3}{4}}\]
\[\int \sqrt{V}\]
\[a_{3}= \frac{a_{1}}{4}+ \frac{a_{2}}{2}- \frac{1}{8}\]
\[a+b \sqrt{n}\]
\[16 \times 2 \times 2-(16+16 \times 2)=16\]
\[- \frac{4 \sqrt{3}-2}{11}\]
\[F_{y}=F_{aya^{-1}}=aF_{y}a^{-1}\]
\[1-n+2 \sqrt{(n+2)(n-1)}>0\]
\[\frac{5 \times 4}{2}-5+1= \frac{4 \times 3}{2}=6\]
\[\frac{B^{2}c^{2}}{4 \pi \sin^{2}( \frac{b+c}{2})}\]
\[\sum I= \sum I^{(1)}+ \sum I^{(2)}\]
\[x_{a}x_{a}\]
\[f \times f\]
\[\sum_{n} \int_{0}^{1}dx(1-x)f(x,n)= \sum_{n} \int_{0}^{1}dyyf(y,n)\]
\[\frac{f(1+ \cos \theta)}{2 \sin \theta}= \frac{f \sin \theta}{2(1- \cos \theta)}\]
\[1.4 \times 10^{-5} \pm 9 \times 10^{-6}\]
\[\pm \sqrt{u}\]
\[y= \sin \frac{ \phi}{2}\]
\[p_{1}+p_{2}=p=-(p_{3}+p_{4})\]
\[( \frac{1}{18}, \frac{1}{18})\]
\[z^{a}=x^{2a-1}+ix^{2a}\]
\[V=a_{1}+a_{2} \cos \theta+a_{3} \cos 2 \theta\]
\[10 \div 30\]
\[\int a=s \int b\]
\[[x^{(4)}]^{-1}d[x^{(4)}]\]
\[- \frac{1}{2 \pi} \sum_{n} \frac{P_{n}}{z-z_{n}}\]
\[f(x^{11})=k(x^{11})=-b(x^{11})\]
\[\sqrt{4 \pi}\]
\[- \frac{1}{2} \pm \sqrt{H(s+ \frac{1}{2})+4}\]
\[- \frac{7}{160} \sqrt{30}\]
\[\frac{4}{q}+ \frac{4}{2 \pi-q}-( \frac{8}{ \pi}- \frac{ \pi}{2})\]
\[y^{a}= \{r \cos \theta_{1}, \ldots,r \sin \theta_{1} \ldots \cos \theta_{d-1},r \sin \theta_{1} \ldots \sin \theta_{d-1} \}\]
\[\frac{9+4 \sqrt{3}}{33}\]
\[5 \times 5 \times \ldots \times 5\]
\[V(x)= \frac{1}{2}-2x^{2}+ \frac{1}{2}x^{4}\]
\[\lim_{x \rightarrow 0}o(x)=0\]
\[+x_{3}\]
\[[b] \times[b]\]
\[- \frac{1}{160} \sqrt{30}\]
\[\frac{1}{2}+ \frac{1}{2}=1\]
\[[ab]= \frac{1}{2}(ab-ba)\]
\[\forall i,j,k\]
\[x \rightarrow \infty\]
\[\lim_{n \rightarrow+ \infty}B_{n}=I\]
\[+1-1+1-1+1=+1\]
\[y^{4}=(x-b_{1})^{3}(x-b_{2})^{3}\]
\[- \sqrt{2+ \sqrt{2}}\]
\[(9+1)-(5+5)-(1+9)\]
\[-x^{2}-y^{3}+16yz^{3}=0\]
\[- \frac{1}{2},+ \frac{1}{2},- \frac{1}{2},+ \frac{1}{2}\]
\[q^{ \frac{1}{2}}-q^{- \frac{1}{2}}\]
\[h \times h\]
\[\int_{-d}^{d}dx^{11}=2 \int_{0}^{d}dx^{11}\]
\[x^{2}+y^{2}+(z-z_{1}(t))(z-z_{2}(t))(z-z_{3}(t))=0\]
\[\tan M= \sin M/ \cos M\]