image
imagewidth (px) 56
1.4k
| latex_formula
stringlengths 7
153
|
---|---|
\[\{- \sqrt{3},0, \sqrt{3} \}\] |
|
\[\cos^{2} \theta\] |
|
\[\frac{1}{2}n(n+1)\] |
|
\[a=a_{-g}+a_{-g+1}+ \ldots\] |
|
\[\sin \theta=F_{06}\] |
|
\[\int d1\] |
|
\[\tan \beta=1\] |
|
\[\frac{1}{8}+ \frac{1}{8k_{1}}\] |
|
\[x^{2}-zy^{2}+t^{3}-tz^{2n+1}=0\] |
|
\[\frac{9}{4}x^{-1}(x^{3}-1)^{-1}\] |
|
\[y^{i}y^{j}=y^{i+j}\] |
|
\[\sum_{a}A_{aa}^{i}= \sum_{a}A_{a}^{ia}\] |
|
\[h \log h\] |
|
\[z \rightarrow \frac{z^{n+1}}{a^{n}}\] |
|
\[- \frac{M^{2}}{4} \tan( \frac{p \pi}{2})\] |
|
\[\frac{ \sqrt{1517}}{13}\] |
|
\[b=b_{1}+b_{2}+ \ldots\] |
|
\[\sin \alpha=0\] |
|
\[1.923-4.134s+1.653s^{3}\] |
|
\[(2ba)b^{n}=2nb^{n}+2b^{n+1}a\] |
|
\[p \rightarrow \sqrt{-p^{2}}\] |
|
\[\int d^{d}x \sqrt{-g}R^{2}\] |
|
\[-8.8 \times 10^{+7}\] |
|
\[\int pdx=1\] |
|
\[\int d^{3}xd^{3}y\] |
|
\[696729600\] |
|
\[-9 \sqrt{7}\] |
|
\[\int F \neq 0\] |
|
\[1- \sqrt{1- \sqrt{E}}\] |
|
\[\sum_{a}e^{a}e^{a}\] |
|
\[\frac{(p+1)(p+2)}{2}+1\] |
|
\[k \times k\] |
|
\[+2(7+8-8+8-8)\] |
|
\[xxyy\] |
|
\[P_{ \lambda}H_{ \Delta}P_{ \lambda}\] |
|
\[\int \sqrt{g}\] |
|
\[- \sqrt{2(2+ \sqrt{2})}\] |
|
\[\int A_{m}\] |
|
\[- \frac{1}{2 \sqrt{3}}\] |
|
\[\int d^{2}x\] |
|
\[h_{12}=h_{1}+h_{2}-h_{3}\] |
|
\[r= \sqrt{(x^{8})^{2}+(x^{9})^{2}+(x^{10})^{2}}\] |
|
\[\tan \theta_{k}= \pm \frac{ \sqrt{1-T^{2}}}{T}\] |
|
\[\int \beta(x)dx\] |
|
\[\frac{n-1}{2(k+n-2)}+ \frac{1}{k+2}\] |
|
\[An \log n\] |
|
\[x^{1}+x^{3}+x^{5}=b\] |
|
\[\cos^{2}(t \sqrt{C})=0\] |
|
\[\int X_{8}\] |
|
\[L_{0}+L_{1}+ \ldots+L_{m}=p\] |
|
\[\frac{7}{9}\] |
|
\[\frac{9}{8}\] |
|
\[z=( \sin \frac{1}{2} \theta_{12} \sin \frac{1}{2} \theta_{34})/( \sin \frac{1}{2} \theta_{13} \sin \frac{1}{2} \theta_{24})\] |
|
\[H=H_{0}^{1}+H_{1}^{1}\] |
|
\[\frac{ \log p^{2}}{p^{2}}\] |
|
\[\int C_{p}\] |
|
\[x_{0}^{2}+x_{1}^{3}+x_{2}^{12}+x_{3}^{24}+x_{4}^{24}=0\] |
|
\[1+16+120+10=147\] |
|
\[u+ \frac{u_{n}}{2}\] |
|
\[2f+2(e_{1}+e_{9})-(e_{2}+e_{3})+e_{7}\] |
|
\[x^{7}x^{8}x^{9}\] |
|
\[[C[-1]]+[B]=[A]\] |
|
\[-99\] |
|
\[xyx^{-1}y^{-1}\] |
|
\[( \frac{5+ \sqrt{5}}{5- \sqrt{5}})^{ \frac{1}{4}}\] |
|
\[\sin \pi \alpha\] |
|
\[- \frac{1}{24} \times \frac{8}{3} \times 3 \times 2 \times 6=-4\] |
|
\[\sqrt{-h}\] |
|
\[\frac{21}{4(k+6)}+ \frac{3}{4(k+2)}\] |
|
\[\beta=( \cos^{4} \theta+A \sin^{4} \theta)^{ \frac{1}{2}}\] |
|
\[F_{12}=-F_{21}=- \tan \theta\] |
|
\[kx=-k^{0}x^{0}+k^{i}x^{i}\] |
|
\[\lim_{x \rightarrow \infty}e^{-x^{2 \alpha-2}x^{4 \alpha-2}}\] |
|
\[S^{0i}S^{0i}-S^{di}S^{di}=(S^{0}-qS^{di})(S^{0i}+qS^{di})-q[S^{0},S^{d}]\] |
|
\[\frac{m}{ \sqrt{2}} \sqrt{1+ \frac{m^{2}}{2M^{2}}}\] |
|
\[\frac{1}{n+x}\] |
|
\[\frac{b}{a}\] |
|
\[\frac{d^{2}u}{dt^{2}}=- \frac{2}{a} \frac{e^{-2t}}{1+ce^{u}}\] |
|
\[\frac{9}{4}\] |
|
\[n_{a}=n_{a+ \frac{n}{2}}\] |
|
\[C_{xx}\] |
|
\[\int d^{n}xa_{2}\] |
|
\[M_{3}\] |
|
\[xz=e^{u}+e^{v}+e^{-t-u+v}+1\] |
|
\[z= \int dy \sqrt{f(y)}\] |
|
\[A \times A\] |
|
\[1+4+6+4+1=16\] |
|
\[-2^{p-5}+ \frac{1}{2}+n\] |
|
\[r=z \tan \alpha\] |
|
\[2 \sin(x-y) \sin(x+y)= \cos(2y)- \cos(2x)\] |
|
\[ax+by+c=0\] |
|
\[y^{ \prime}x^{ \prime}=qx^{ \prime}y^{ \prime}\] |
|
\[r \sin \theta\] |
|
\[\frac{n^{2}-n-4}{2n(k+n+1)}+ \frac{2}{nk}\] |
|
\[| \frac{ \cos(x)-1}{x}|=| \frac{ \cos(|x|)-1}{|x|}|\] |
|
\[z= \tan(cr)/c\] |
|
\[n \geq 9\] |
|
\[\beta= \sqrt{k}+ \frac{1}{ \sqrt{k}}\] |
|
\[\sum_{a}A_{aa}^{0}\] |
|
\[\lim_{l \rightarrow \infty}f_{l}=v\] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.