image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[\{- \sqrt{3},0, \sqrt{3} \}\]
\[\cos^{2} \theta\]
\[\frac{1}{2}n(n+1)\]
\[a=a_{-g}+a_{-g+1}+ \ldots\]
\[\sin \theta=F_{06}\]
\[\int d1\]
\[\tan \beta=1\]
\[\frac{1}{8}+ \frac{1}{8k_{1}}\]
\[x^{2}-zy^{2}+t^{3}-tz^{2n+1}=0\]
\[\frac{9}{4}x^{-1}(x^{3}-1)^{-1}\]
\[y^{i}y^{j}=y^{i+j}\]
\[\sum_{a}A_{aa}^{i}= \sum_{a}A_{a}^{ia}\]
\[h \log h\]
\[z \rightarrow \frac{z^{n+1}}{a^{n}}\]
\[- \frac{M^{2}}{4} \tan( \frac{p \pi}{2})\]
\[\frac{ \sqrt{1517}}{13}\]
\[b=b_{1}+b_{2}+ \ldots\]
\[\sin \alpha=0\]
\[1.923-4.134s+1.653s^{3}\]
\[(2ba)b^{n}=2nb^{n}+2b^{n+1}a\]
\[p \rightarrow \sqrt{-p^{2}}\]
\[\int d^{d}x \sqrt{-g}R^{2}\]
\[-8.8 \times 10^{+7}\]
\[\int pdx=1\]
\[\int d^{3}xd^{3}y\]
\[696729600\]
\[-9 \sqrt{7}\]
\[\int F \neq 0\]
\[1- \sqrt{1- \sqrt{E}}\]
\[\sum_{a}e^{a}e^{a}\]
\[\frac{(p+1)(p+2)}{2}+1\]
\[k \times k\]
\[+2(7+8-8+8-8)\]
\[xxyy\]
\[P_{ \lambda}H_{ \Delta}P_{ \lambda}\]
\[\int \sqrt{g}\]
\[- \sqrt{2(2+ \sqrt{2})}\]
\[\int A_{m}\]
\[- \frac{1}{2 \sqrt{3}}\]
\[\int d^{2}x\]
\[h_{12}=h_{1}+h_{2}-h_{3}\]
\[r= \sqrt{(x^{8})^{2}+(x^{9})^{2}+(x^{10})^{2}}\]
\[\tan \theta_{k}= \pm \frac{ \sqrt{1-T^{2}}}{T}\]
\[\int \beta(x)dx\]
\[\frac{n-1}{2(k+n-2)}+ \frac{1}{k+2}\]
\[An \log n\]
\[x^{1}+x^{3}+x^{5}=b\]
\[\cos^{2}(t \sqrt{C})=0\]
\[\int X_{8}\]
\[L_{0}+L_{1}+ \ldots+L_{m}=p\]
\[\frac{7}{9}\]
\[\frac{9}{8}\]
\[z=( \sin \frac{1}{2} \theta_{12} \sin \frac{1}{2} \theta_{34})/( \sin \frac{1}{2} \theta_{13} \sin \frac{1}{2} \theta_{24})\]
\[H=H_{0}^{1}+H_{1}^{1}\]
\[\frac{ \log p^{2}}{p^{2}}\]
\[\int C_{p}\]
\[x_{0}^{2}+x_{1}^{3}+x_{2}^{12}+x_{3}^{24}+x_{4}^{24}=0\]
\[1+16+120+10=147\]
\[u+ \frac{u_{n}}{2}\]
\[2f+2(e_{1}+e_{9})-(e_{2}+e_{3})+e_{7}\]
\[x^{7}x^{8}x^{9}\]
\[[C[-1]]+[B]=[A]\]
\[-99\]
\[xyx^{-1}y^{-1}\]
\[( \frac{5+ \sqrt{5}}{5- \sqrt{5}})^{ \frac{1}{4}}\]
\[\sin \pi \alpha\]
\[- \frac{1}{24} \times \frac{8}{3} \times 3 \times 2 \times 6=-4\]
\[\sqrt{-h}\]
\[\frac{21}{4(k+6)}+ \frac{3}{4(k+2)}\]
\[\beta=( \cos^{4} \theta+A \sin^{4} \theta)^{ \frac{1}{2}}\]
\[F_{12}=-F_{21}=- \tan \theta\]
\[kx=-k^{0}x^{0}+k^{i}x^{i}\]
\[\lim_{x \rightarrow \infty}e^{-x^{2 \alpha-2}x^{4 \alpha-2}}\]
\[S^{0i}S^{0i}-S^{di}S^{di}=(S^{0}-qS^{di})(S^{0i}+qS^{di})-q[S^{0},S^{d}]\]
\[\frac{m}{ \sqrt{2}} \sqrt{1+ \frac{m^{2}}{2M^{2}}}\]
\[\frac{1}{n+x}\]
\[\frac{b}{a}\]
\[\frac{d^{2}u}{dt^{2}}=- \frac{2}{a} \frac{e^{-2t}}{1+ce^{u}}\]
\[\frac{9}{4}\]
\[n_{a}=n_{a+ \frac{n}{2}}\]
\[C_{xx}\]
\[\int d^{n}xa_{2}\]
\[M_{3}\]
\[xz=e^{u}+e^{v}+e^{-t-u+v}+1\]
\[z= \int dy \sqrt{f(y)}\]
\[A \times A\]
\[1+4+6+4+1=16\]
\[-2^{p-5}+ \frac{1}{2}+n\]
\[r=z \tan \alpha\]
\[2 \sin(x-y) \sin(x+y)= \cos(2y)- \cos(2x)\]
\[ax+by+c=0\]
\[y^{ \prime}x^{ \prime}=qx^{ \prime}y^{ \prime}\]
\[r \sin \theta\]
\[\frac{n^{2}-n-4}{2n(k+n+1)}+ \frac{2}{nk}\]
\[| \frac{ \cos(x)-1}{x}|=| \frac{ \cos(|x|)-1}{|x|}|\]
\[z= \tan(cr)/c\]
\[n \geq 9\]
\[\beta= \sqrt{k}+ \frac{1}{ \sqrt{k}}\]
\[\sum_{a}A_{aa}^{0}\]
\[\lim_{l \rightarrow \infty}f_{l}=v\]