image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[\frac{9}{4}(3x^{3}-1)x^{-1}\]
\[m_{1} \leq m_{2} \leq \ldots m_{n}\]
\[\sqrt{ \alpha+c}\]
\[[a(a+b)cdc(a+b)a]\]
\[\sum(x^{i})^{2}=(x^{0})^{2}\]
\[\frac{15}{4(k+4)}+ \frac{3}{4(k+2)}\]
\[\sum_{i}Y_{i}\]
\[h_{yy}\]
\[\frac{f}{2 \sin \theta}\]
\[B \times B\]
\[- \frac{d^{2}}{dx^{2}}+x \frac{d}{dx}+1\]
\[C_{xx}=C_{xy}C_{yx}\]
\[1- \frac{1}{8}x^{2}y^{2}+ \frac{1}{192}x^{4}y^{4}- \frac{1}{9216}x^{6}y^{6}+o(y^{8})\]
\[12x_{5}-x_{6}+8x_{8}=0\]
\[\tan \theta<0\]
\[2 \cos \alpha\]
\[199 \times 199\]
\[f_{x}(y)=f(y+x)\]
\[\frac{1}{ \sqrt{3}}\]
\[v^{2}=v_{x}^{2}+v_{y}^{2}\]
\[- \frac{(2ga)^{4}}{16} \times 2 \times 4=- \frac{(2ga)^{4}}{2}\]
\[nmax= \infty\]
\[\frac{1}{n^{2}}[ \cos( \theta(p)- \theta(pn))-1]\]
\[\frac{1}{2}n(n+1)-n= \frac{1}{2}n(n-1)\]
\[F(y(r))e^{-y(r)}\]
\[(n+4r) \times(n+4r)\]
\[y=(1- \sqrt{x})/(1+ \sqrt{x})\]
\[y_{i}-1<y<y_{i}\]
\[\{ \infty \}\]
\[z= \frac{x}{1+x}\]
\[y \geq y_{1}\]
\[s(x)= \sin( \pi x)\]
\[(x+y)^{2}+2(xy-1)^{2}=0\]
\[(- \log x,- \log y)\]
\[\lim_{k \rightarrow \infty}f(k)=1\]
\[( \frac{1}{2})^{8} \frac{1}{8!}\]
\[\int(B+F)\]
\[\sin^{2}2q\]
\[x^{3}+y^{3}+z^{3}+axyz\]
\[y= \cos^{2}z\]
\[s_{i}= \sin \theta_{i}\]
\[\lim_{p \rightarrow \infty}f_{p}=0\]
\[f(s)= \frac{1}{1+e^{ \frac{-1}{s-1}}e^{ \frac{1}{t-s}}}\]
\[\frac{1}{12}(n+2)^{2}(n+1)(n+3)\]
\[X_{7}=x_{7} \sqrt{x_{4}^{4}+x_{5}^{4}}\]
\[C_{xy}^{(q)}C_{yx}^{(q)}\]
\[\forall x \in M\]