image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[\sqrt{-1}\]
\[- \frac{4}{16}+ \frac{4}{24}=- \frac{1}{12}\]
\[z_{1}z_{2}+z_{1}z_{3}+z_{1}z_{4}+z_{2}z_{3}\]
\[q= \lim_{x \rightarrow \infty}g(x)\]
\[I+II\]
\[\frac{767}{128(k+8)}+ \frac{1}{128k}\]
\[x^{9}-x^{8}\]
\[\frac{E}{m}= \frac{1}{ \sqrt{1-v^{2}}}\]
\[b_{abc}^{1}=b_{a(bc)}^{1}\]
\[a_{2}=- \frac{3- \sqrt{3}}{4}a_{1}\]
\[w_{ \infty}^{ \infty}\]
\[\frac{0}{0}\]
\[xg^{-1}gy=xy\]
\[a=a_{0}+a_{1}+ \ldots\]
\[\frac{q^{2} \sqrt{ \pi}}{2g} \sqrt{ \frac{a-1}{a}}\]
\[y^{4}=(x-b_{1})^{2}(x-b_{2})^{2}(x-b_{3})^{3}\]
\[b^{x}a^{y+n}\]
\[\frac{-11+ \sqrt{221}}{10}\]
\[\cos \frac{(a_{0}+a_{1}) \pi}{2}\]
\[X=x_{2}p^{-3}+x_{1}p^{-2}+x_{0}p^{-1}\]
\[e^{ \pi t( \frac{f^{2}}{2 \pi^{2}}- \frac{f}{2 \pi}+1)}\]
\[f= \sum_{i}f(x_{a}-x_{a}^{(i)})\]
\[\sum_{ \alpha}c_{ \alpha}E^{ \alpha}\]
\[n \log n\]
\[\int dz\]
\[+2-2+2-2+ \ldots\]
\[\sqrt{1+x}\]
\[\lim_{n \rightarrow \infty} \phi_{n}=0\]
\[\beta_{1}+ \beta_{2}+ \beta_{3}+ \beta_{4}+ \beta_{5}+ \beta_{6}+ \beta_{7}\]
\[8 \times 8\]
\[\int C_{6}\]
\[q= \frac{ \sqrt{d}}{2}\]
\[l \log l\]
\[\sigma \sigma \sigma\]
\[\tan \phi=B\]
\[L=L_{0}+L_{2}+L_{3}+L_{4}\]
\[2 \pi n= \int B\]
\[A.A\]
\[\frac{1}{2}n(n+1)+n+1\]
\[\sum d_{n}= \sum d_{x}=20\]
\[(1+ \sqrt{7})\]
\[- \log 2\]
\[P(z)= \frac{az+b}{cz+d}\]
\[1-v=z+x-zx\]
\[\exists p(k)\]
\[\sin z< \beta\]
\[V_{ \alpha}= \sqrt{n_{a}^{2}+m_{a}^{2}+2n_{a}m_{a} \cos(2 \alpha)}\]
\[a=a_{0}+a_{1}+a_{k}+ \ldots\]
\[p \geq 7\]
\[b=-c= \sin \alpha\]
\[tgh=gh_{1}+gh_{2}+gh_{3}\]
\[\frac{1}{c}\]
\[\cos( \alpha)\]
\[\frac{1}{3!}\]
\[\sum_{j}n_{j}= \sum_{j}m_{j}\]
\[[x]+[y]+[z]\]
\[\int dyf(y)=1\]
\[r^{m} \sin(r)\]
\[y=x- \frac{1}{2}(x_{1}+x_{2})\]
\[\frac{b(u)}{a(u)}\]
\[b= \sin \theta\]
\[\sqrt{ \frac{1}{3}}\]
\[x^{p} \log x\]
\[f-l+e_{1}+e_{7}+e_{8}+e_{9}\]
\[\frac{p_{2}}{q_{2}}= \frac{p_{1}+p_{3}}{q_{1}+q_{3}}\]
\[\int eR(e)\]
\[v_{x}v_{y}v_{z}\]
\[13x^{2}+29x-13\]
\[\frac{1}{ \sqrt{b}}\]
\[\sum_{n=0}^{ \infty}(-x)^{n}=(1+x)^{-1}\]
\[n(n-1)(n-2) \ldots\]
\[x \geq 1\]
\[c_{1}=t-1+3 \times \frac{1}{2}=t+ \frac{1}{2}\]
\[x=-n+f\]
\[- \frac{4}{24}- \frac{4}{16}=- \frac{5}{12}\]
\[\frac{x}{x}\]
\[\sum_{i_{1}}m_{i_{1}}+ \sum_{j_{1}}m_{j_{1}}-2 \sum_{k_{1}}m_{k_{1}}=-3\]
\[w= \frac{ \sin^{2} \theta}{1+ \cos^{2} \theta}\]
\[u \times u\]
\[x^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\]
\[\frac{(4 \pi \sigma)^{ \frac{n}{2}}}{ \sqrt{n+1}}\]
\[|c|=|c_{1}|+|c_{2}|=0\]
\[e^{ \gamma^{5}}= \cos \alpha+ \gamma^{5} \sin \alpha\]
\[-b \leq x \leq b\]
\[\int dx\]
\[t_{1}=-t_{2}= \sqrt{t(t-2a)}\]
\[\sin(x)\]
\[3 \times 1+3 \times 1=6\]
\[\lim_{x \rightarrow \infty}x^{n}[f(x)-(a_{0}+a_{1}/x+ \ldots+a_{n}/x^{n})]=0\]
\[-y,y, \frac{1}{2}py, \frac{1}{2}py\]
\[e^{ \frac{2}{3}t_{1}+ \frac{1}{3}t_{2}}\]
\[x^{5}=r \sin \theta \sin \phi \cos \alpha\]
\[x_{ab}=x_{a}-x_{b}\]
\[x>x_{o}\]
\[\frac{dA^{-1}}{dx}=-A^{-1} \frac{dA}{dx}A^{-1}\]
\[R= \lim_{n \rightarrow \infty}a_{n}/a_{n+2}\]
\[a \neq e\]
\[(n+1) \times(n+1)\]
\[6 \times 6\]
\[|z_{1}|^{2}-|z_{2}|^{2}=|z^{2}|-|z^{1}|=1\]