image
imagewidth (px) 56
1.4k
| latex_formula
stringlengths 7
153
|
---|---|
\[\sqrt{-1}\] |
|
\[- \frac{4}{16}+ \frac{4}{24}=- \frac{1}{12}\] |
|
\[z_{1}z_{2}+z_{1}z_{3}+z_{1}z_{4}+z_{2}z_{3}\] |
|
\[q= \lim_{x \rightarrow \infty}g(x)\] |
|
\[I+II\] |
|
\[\frac{767}{128(k+8)}+ \frac{1}{128k}\] |
|
\[x^{9}-x^{8}\] |
|
\[\frac{E}{m}= \frac{1}{ \sqrt{1-v^{2}}}\] |
|
\[b_{abc}^{1}=b_{a(bc)}^{1}\] |
|
\[a_{2}=- \frac{3- \sqrt{3}}{4}a_{1}\] |
|
\[w_{ \infty}^{ \infty}\] |
|
\[\frac{0}{0}\] |
|
\[xg^{-1}gy=xy\] |
|
\[a=a_{0}+a_{1}+ \ldots\] |
|
\[\frac{q^{2} \sqrt{ \pi}}{2g} \sqrt{ \frac{a-1}{a}}\] |
|
\[y^{4}=(x-b_{1})^{2}(x-b_{2})^{2}(x-b_{3})^{3}\] |
|
\[b^{x}a^{y+n}\] |
|
\[\frac{-11+ \sqrt{221}}{10}\] |
|
\[\cos \frac{(a_{0}+a_{1}) \pi}{2}\] |
|
\[X=x_{2}p^{-3}+x_{1}p^{-2}+x_{0}p^{-1}\] |
|
\[e^{ \pi t( \frac{f^{2}}{2 \pi^{2}}- \frac{f}{2 \pi}+1)}\] |
|
\[f= \sum_{i}f(x_{a}-x_{a}^{(i)})\] |
|
\[\sum_{ \alpha}c_{ \alpha}E^{ \alpha}\] |
|
\[n \log n\] |
|
\[\int dz\] |
|
\[+2-2+2-2+ \ldots\] |
|
\[\sqrt{1+x}\] |
|
\[\lim_{n \rightarrow \infty} \phi_{n}=0\] |
|
\[\beta_{1}+ \beta_{2}+ \beta_{3}+ \beta_{4}+ \beta_{5}+ \beta_{6}+ \beta_{7}\] |
|
\[8 \times 8\] |
|
\[\int C_{6}\] |
|
\[q= \frac{ \sqrt{d}}{2}\] |
|
\[l \log l\] |
|
\[\sigma \sigma \sigma\] |
|
\[\tan \phi=B\] |
|
\[L=L_{0}+L_{2}+L_{3}+L_{4}\] |
|
\[2 \pi n= \int B\] |
|
\[A.A\] |
|
\[\frac{1}{2}n(n+1)+n+1\] |
|
\[\sum d_{n}= \sum d_{x}=20\] |
|
\[(1+ \sqrt{7})\] |
|
\[- \log 2\] |
|
\[P(z)= \frac{az+b}{cz+d}\] |
|
\[1-v=z+x-zx\] |
|
\[\exists p(k)\] |
|
\[\sin z< \beta\] |
|
\[V_{ \alpha}= \sqrt{n_{a}^{2}+m_{a}^{2}+2n_{a}m_{a} \cos(2 \alpha)}\] |
|
\[a=a_{0}+a_{1}+a_{k}+ \ldots\] |
|
\[p \geq 7\] |
|
\[b=-c= \sin \alpha\] |
|
\[tgh=gh_{1}+gh_{2}+gh_{3}\] |
|
\[\frac{1}{c}\] |
|
\[\cos( \alpha)\] |
|
\[\frac{1}{3!}\] |
|
\[\sum_{j}n_{j}= \sum_{j}m_{j}\] |
|
\[[x]+[y]+[z]\] |
|
\[\int dyf(y)=1\] |
|
\[r^{m} \sin(r)\] |
|
\[y=x- \frac{1}{2}(x_{1}+x_{2})\] |
|
\[\frac{b(u)}{a(u)}\] |
|
\[b= \sin \theta\] |
|
\[\sqrt{ \frac{1}{3}}\] |
|
\[x^{p} \log x\] |
|
\[f-l+e_{1}+e_{7}+e_{8}+e_{9}\] |
|
\[\frac{p_{2}}{q_{2}}= \frac{p_{1}+p_{3}}{q_{1}+q_{3}}\] |
|
\[\int eR(e)\] |
|
\[v_{x}v_{y}v_{z}\] |
|
\[13x^{2}+29x-13\] |
|
\[\frac{1}{ \sqrt{b}}\] |
|
\[\sum_{n=0}^{ \infty}(-x)^{n}=(1+x)^{-1}\] |
|
\[n(n-1)(n-2) \ldots\] |
|
\[x \geq 1\] |
|
\[c_{1}=t-1+3 \times \frac{1}{2}=t+ \frac{1}{2}\] |
|
\[x=-n+f\] |
|
\[- \frac{4}{24}- \frac{4}{16}=- \frac{5}{12}\] |
|
\[\frac{x}{x}\] |
|
\[\sum_{i_{1}}m_{i_{1}}+ \sum_{j_{1}}m_{j_{1}}-2 \sum_{k_{1}}m_{k_{1}}=-3\] |
|
\[w= \frac{ \sin^{2} \theta}{1+ \cos^{2} \theta}\] |
|
\[u \times u\] |
|
\[x^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\] |
|
\[\frac{(4 \pi \sigma)^{ \frac{n}{2}}}{ \sqrt{n+1}}\] |
|
\[|c|=|c_{1}|+|c_{2}|=0\] |
|
\[e^{ \gamma^{5}}= \cos \alpha+ \gamma^{5} \sin \alpha\] |
|
\[-b \leq x \leq b\] |
|
\[\int dx\] |
|
\[t_{1}=-t_{2}= \sqrt{t(t-2a)}\] |
|
\[\sin(x)\] |
|
\[3 \times 1+3 \times 1=6\] |
|
\[\lim_{x \rightarrow \infty}x^{n}[f(x)-(a_{0}+a_{1}/x+ \ldots+a_{n}/x^{n})]=0\] |
|
\[-y,y, \frac{1}{2}py, \frac{1}{2}py\] |
|
\[e^{ \frac{2}{3}t_{1}+ \frac{1}{3}t_{2}}\] |
|
\[x^{5}=r \sin \theta \sin \phi \cos \alpha\] |
|
\[x_{ab}=x_{a}-x_{b}\] |
|
\[x>x_{o}\] |
|
\[\frac{dA^{-1}}{dx}=-A^{-1} \frac{dA}{dx}A^{-1}\] |
|
\[R= \lim_{n \rightarrow \infty}a_{n}/a_{n+2}\] |
|
\[a \neq e\] |
|
\[(n+1) \times(n+1)\] |
|
\[6 \times 6\] |
|
\[|z_{1}|^{2}-|z_{2}|^{2}=|z^{2}|-|z^{1}|=1\] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.