image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[u(x+b)=u(x-b)\]
\[x^{n}+y^{n}+z^{n}=0\]
\[b(r)=b_{-1}r^{-1}+b_{1}r+( \frac{1}{8}b_{1}-2f_{1}k_{1})r^{3}+ \ldots\]
\[i=1 \div N\]
\[\frac{1}{4}=- \frac{3}{4}+1\]
\[y_{0} \leq y \leq L\]
\[h_{i}^{-1}= \sin^{2} \theta_{i}f^{-1}+ \cos^{2} \theta_{i}\]
\[n_{abc}=n_{a}+n_{b}+n_{c}\]
\[d \geq 7\]
\[a \neq i\]
\[\frac{n-1}{2(k+n-2)}+ \frac{m-1}{2(k+m-2)}\]
\[C_{x_{k+1}x_{k}}\]
\[s(h,u+u_{1})=h^{-1} \sin h(u+u_{1})\]
\[-0.73 \div 0.54\]
\[f^{-1}(z)= \tan z\]
\[S^{3}\]
\[\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}\]
\[a_{bc}^{a}=b_{bc}^{a}\]
\[n \times n\]
\[x_{0}= \tan \pi(t- \frac{1}{2})\]
\[y^{p+1}+z^{p+1}=1\]
\[\frac{1}{ \sqrt{l}}\]
\[c= \cos^{2} \theta- \frac{1}{2}\]
\[(73)(37)(77)\]
\[8.0777\]
\[\sum_{i=0}^{n-1}t^{i}= \frac{1-t^{n}}{1-t}\]
\[\lim_{P \rightarrow 0}g_{P}=0\]
\[dx_{6}dx_{7}dx_{8}\]
\[x \rightarrow x- \frac{1}{5}(2(a+b)+c)\]
\[\sqrt{3+ \sqrt{3}} \sqrt{3- \sqrt{3}}= \sqrt{3} \sqrt{2}\]
\[x= \sum_{i=1}^{n}x_{i}v^{(i)}\]
\[\int dxdp(f-hf^{2}) \geq 0\]
\[a_{aa}^{a}\]
\[p_{10}<p_{7}+p_{8}+p_{9}\]
\[x^{a_{1} \ldots a_{n}}\]
\[\int \sqrt{g}R\]
\[a_{3}=0.0307 \ldots\]
\[\sqrt{- \Delta c}\]
\[\frac{1}{ \sqrt{1-l^{2}}}=( \cos \alpha)^{-1}\]
\[c(w)= \sum_{p}c_{-p}w^{p}\]
\[3.8\]
\[\int d^{p}x \sqrt{g}\]
\[x= \sqrt{2c} \cos \theta\]
\[2^{ \frac{p}{p+1}}\]
\[\sum \alpha=0\]
\[x+x(a)\]
\[-0,46 \div 1\]
\[x^{4}=br \sin \theta \cos \phi\]
\[e_{3,4},f_{3,4},g_{3,4}\]
\[\sum_{a}j_{a}+1\]
\[x^{3}+bx^{4},x^{4}-bx^{3}\]
\[3.14\]
\[(2a+b+1) \times(2a+b+1)\]
\[r= \sqrt{y_{6}^{2}+y_{7}^{2}+y_{8}^{2}}\]
\[w^{2}=(w_{1})^{2}+(w_{2})^{2}\]
\[\frac{dx_{1}dx_{2}du}{x_{1}x_{2}u}\]
\[x \geq c\]
\[PxP=-x\]
\[C \rightarrow \sqrt{f}C\]
\[r \sin \theta\]
\[d= \frac{a_{0}(t)b_{0}(t)}{a_{0}(0)b_{0}(0)}\]
\[r= \sqrt{x^{i}x^{i}}\]
\[0.54 \div 1.28\]
\[\tan \phi=b\]
\[\log| \sin q|\]
\[x_{1}( \frac{x_{2}}{x_{1}})^{2}\]
\[C=-iC_{0}+C_{2}+iC_{4}-C_{6}-iC_{8}\]
\[f_{1}^{3}=f_{2}^{3}+f_{3}^{3}+f_{1}^{3}f_{2}^{3}f_{3}^{3}\]
\[\frac{G_{00}}{h}+ \frac{G_{ii}}{a}\]
\[7^{- \frac{1}{2}}2^{- \frac{5}{4}}( \frac{5- \sqrt{5}}{5+ \sqrt{5}})^{ \frac{3}{4}}\]
\[n \neq 8\]
\[\gamma= \cos c\]
\[a_{n}=- \sum_{k=1}^{n-1}c_{n-k}a_{n}\]
\[k!>0\]
\[e_{RI}^{0}(v_{R}^{0})=v_{R}^{0}=S_{e_{RI}^{0}(v_{R}^{0})}^{0}\]
\[\sin \theta \neq 0\]
\[- \sqrt{3}\]
\[2n \pi+ \frac{m-1}{m+1} \pi\]
\[(x^{0},x^{1},x^{2},x^{3},x^{4})=(t,x,y,z, \theta)\]
\[f(x)= \log(x+c)\]
\[P= \sum p\]
\[T= \tan \theta\]
\[\tan( \frac{ \pi(2k-1)}{4(2L+1)})\]
\[\sin( \theta)\]
\[( \log y)/y\]
\[a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}\]
\[2(-1)^{ab}+(-1)^{a+b}=(-1)^{a}+(-1)^{b}+1\]
\[9+9\]
\[\beta=2 \cos( \frac{ \pi}{5})= \frac{1+ \sqrt{5}}{2}\]
\[(a-b)-(k-b-c) \times(a-b)=(a-k+c) \times(a-b)\]
\[h= \tan \phi\]
\[a_{abc}=a_{cba}\]
\[(q^{ \frac{1}{2}}-q^{- \frac{1}{2}})^{-2}\]
\[|xy|=|x||y|\]
\[E \times \ldots \times E\]
\[\sqrt{x^{2}+y^{2}}\]
\[\sqrt{ \frac{2}{9-3 \sqrt{5}}}\]
\[R(t)=-72 \frac{4- \cos^{2}t}{(8+ \cos^{2}t)^{2}}\]
\[E= \sqrt{n_{1}}+ \sqrt{n_{2}}\]
\[-v_{1}+v_{2}+v_{3}= \frac{1}{2}\]