image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[\pm \frac{1}{6}\]
\[\lim_{x \rightarrow 1}p(x)B_{n}(x)\]
\[\frac{1}{6}(n+1)(n+2)(n+3)\]
\[a \leq x \leq b\]
\[\int d^{4}x \sqrt{-g}R\]
\[\frac{d+2e+f}{2}- \frac{a+2b+c}{2}\]
\[f(R)= \tan R\]
\[x=[x]+f_{x}\]
\[\frac{4}{9}\]
\[\sum d_{x}\]
\[\alpha=1 \div 4\]
\[A_{j}= \sqrt{j(j+1)}\]
\[y_{7},y_{8},y_{9},y_{10}\]
\[a_{i3}- \frac{1}{2}( \frac{m^{i}m^{3}}{4}+m^{i}+ \frac{m^{3}}{2})\]
\[\int dx^{1}dy^{1}\]
\[\frac{1}{2}f-b=8-9=-1\]
\[\frac{3}{4}(1 \pm 4 \sqrt{3}c+4c^{2})\]
\[C=C_{xy}C_{yx}\]
\[\sum_{b} \pi_{ab} \pi_{bc}= \pi_{ac}\]
\[m=- \frac{1}{2} \pm \sqrt{ \frac{17}{36}}\]
\[y^{4}=(x-b_{1})(x-b_{2})(x-b_{3})(x-b_{4})(x-b_{5})\]
\[q^{2}= \tan \theta\]
\[[e]\]
\[t_{1}t_{2}+t_{2}t_{3}+t_{3}t_{1}\]
\[\sum SS=S\]
\[\frac{9}{4}x^{2}(3x^{3}-2)(x^{3}-1)^{-1}\]
\[b_{bc}^{a}=b_{cb}^{a}\]
\[r= \sqrt{x_{6}^{2}+x_{7}^{2}+x_{8}^{2}+x_{9}^{2}}\]
\[\int d^{10}x \sqrt{G}R\]
\[\frac{1}{2 \sqrt{2- \sqrt{3}}}\]
\[|a|=a_{0}+a_{1}+a_{2}+a_{3}\]
\[x-x_{o}\]
\[s(u)= \frac{ \sin(u)}{ \sin( \lambda)}\]
\[z= \tan \alpha\]
\[\frac{n-1}{2(k+n-2)}+ \frac{1}{2k}\]
\[\sin^{2} \theta\]
\[x^{2M}+x^{M-1}\]
\[y^{2}=(x-b_{1})(x-b_{2})(x-b_{3})(x-b_{4})\]
\[z(t)= \sqrt{ \frac{m}{2}}(x(t)+iy(t))\]
\[\frac{1}{2}(l+1)(l+2)\]
\[\frac{9-4 \sqrt{3}}{33}\]
\[\frac{1}{(n+2)(n+1)}\]
\[\lim_{y \rightarrow+ \infty}H(0,y)=1\]
\[-a \leq x \leq a\]
\[d^{p+1}x=d^{p}ydx\]
\[(x^{+9})^{2}+(y^{+6})^{3}+y^{64}(z^{+4})^{3}=0\]
\[( \sin x)^{-1}\]
\[q(x+y)-q(x)-q(y)=b(x,y)\]
\[\sin \frac{k_{1} \times k_{2}}{2}\]
\[N_{1}^{3}= \frac{2}{3}N_{1}+ \frac{1}{3}N_{2}+1\]
\[\frac{2n}{n+1}\]
\[\int L_{0}\]
\[a \geq( \frac{n-3}{n-1})( \frac{2}{(n-1)c})^{ \frac{2}{n-3}}\]
\[[x,y]=x \times y-y \times x\]
\[ABC=CBA\]
\[r= \sqrt{x_{6}^{2}+x_{7}^{2}+x_{8}^{2}}\]
\[\sum d_{n}^{2}= \sum d_{x}^{2}\]
\[\int p_{i}dx_{i}\]
\[x^{2} \log x\]
\[y \geq x\]
\[(e_{1}e_{2}+e_{5}e_{4}+e_{6}e_{7})\]
\[\frac{1}{ \sqrt{B}}\]
\[x_{1}+x_{2}+x_{3}=0\]
\[(3.1.5)\]
\[p^{k}x^{k}\]
\[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=x_{1}x_{2}x_{3}\]
\[-7^{- \frac{1}{2}}2^{- \frac{5}{4}}( \frac{5+ \sqrt{5}}{5- \sqrt{5}})^{ \frac{1}{4}}\]
\[v \times v\]
\[x^{2}+y^{2}+z^{2}-t(t-2a)=0\]
\[x>b\]
\[-0.901,-0.960,-0.979\]
\[-9.778\]
\[\int CC\]
\[Y^{1}+Y^{2}+Y^{3}=-t+3Y^{0}\]
\[\frac{T}{L} \log \frac{T}{L}\]
\[6+6\]
\[\sin^{2}x\]
\[\int \int dzdw\]
\[\sqrt{ \theta}a\]
\[1-x+iy\]
\[-2^{ \frac{1}{4}}( \frac{5+ \sqrt{5}}{5- \sqrt{5}})^{ \frac{1}{4}}\]
\[\sqrt{|g|}dx^{1} \ldots dx^{n}\]
\[\frac{7}{16}+9\]
\[- \infty \leq x \leq 0\]
\[h_{5}E_{- \beta_{1}- \beta_{2}- \beta_{3}- \beta_{4}- \beta_{5}}\]
\[\frac{d^{n}}{dx^{n}}\]
\[\lim_{n \rightarrow \infty}R_{n}= \infty\]
\[0 \leq m \leq \frac{p+1}{2}\]
\[-3+4 \sqrt{n}\]
\[\sum_{b}k_{b}\]
\[\frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{9}{16}\]
\[\sqrt{c_{i}}\]
\[(-1)^{ \frac{p(p+1)}{2}+1}\]
\[x^{0}x^{1}x^{2}x^{3}x^{8}x^{9}\]
\[\frac{1}{360}(n+3)^{2}(n+1)(n+2)(n+4)(n+5)\]
\[\ldots bab \ldots\]
\[F_{min}^{VV}( \beta+2 \pi i/N)(F_{min}^{VV}( \beta))^{2}F_{min}^{VV}( \beta-2 \pi i/N)\]
\[kx=k_{0}x^{0}+k_{1}x^{1}\]
\[\sin( \frac{ \theta}{2})\]
\[(x^{a}-x^{-a})/(x-x^{-1})\]