zoha's picture
update model card README.md
fca861e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-base-common-voice-40p-persian-colab
    results: []

wav2vec2-base-common-voice-40p-persian-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1805
  • Wer: 0.6024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00018
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9643 1.05 200 3.0107 1.0
2.7552 2.11 400 2.7370 0.9997
1.9144 3.16 600 1.8266 0.9703
1.502 4.21 800 1.3981 0.8996
1.3155 5.26 1000 1.2148 0.8507
0.9471 6.32 1200 1.1698 0.7860
0.8391 7.37 1400 1.1106 0.7857
0.7986 8.42 1600 1.1858 0.7769
0.7692 9.47 1800 1.1227 0.7603
0.7871 10.53 2000 1.0626 0.7612
0.6795 11.58 2200 1.1249 0.7209
0.4842 12.63 2400 1.1626 0.7336
0.492 13.68 2600 1.0995 0.7212
0.5117 14.74 2800 1.1406 0.7105
0.5649 15.79 3000 1.0603 0.6819
0.3232 16.84 3200 1.1781 0.7070
0.4098 17.89 3400 1.1182 0.6764
0.3917 18.95 3600 1.1320 0.6750
0.3712 20.0 3800 1.1920 0.6724
0.3157 21.05 4000 1.1102 0.6786
0.2397 22.11 4200 1.1924 0.6519
0.2751 23.16 4400 1.1497 0.6468
0.2279 24.21 4600 1.2274 0.6400
0.393 25.26 4800 1.1741 0.6436
0.1748 26.32 5000 1.2038 0.6327
0.1727 27.37 5200 1.1639 0.6347
0.255 28.42 5400 1.1948 0.6367
0.2261 29.47 5600 1.1560 0.6362
0.2359 30.53 5800 1.1227 0.6269
0.1668 31.58 6000 1.1861 0.6295
0.1699 32.63 6200 1.2442 0.6314
0.14 33.68 6400 1.1340 0.6277
0.1919 34.74 6600 1.1691 0.6139
0.2527 35.79 6800 1.1511 0.6110
0.1219 36.84 7000 1.2062 0.6139
0.1389 37.89 7200 1.2142 0.6072
0.135 38.95 7400 1.1967 0.6040
0.1563 40.0 7600 1.1805 0.6024

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3