--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-common-voice-40p-persian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-common-voice-40p-persian-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1805 - Wer: 0.6024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9643 | 1.05 | 200 | 3.0107 | 1.0 | | 2.7552 | 2.11 | 400 | 2.7370 | 0.9997 | | 1.9144 | 3.16 | 600 | 1.8266 | 0.9703 | | 1.502 | 4.21 | 800 | 1.3981 | 0.8996 | | 1.3155 | 5.26 | 1000 | 1.2148 | 0.8507 | | 0.9471 | 6.32 | 1200 | 1.1698 | 0.7860 | | 0.8391 | 7.37 | 1400 | 1.1106 | 0.7857 | | 0.7986 | 8.42 | 1600 | 1.1858 | 0.7769 | | 0.7692 | 9.47 | 1800 | 1.1227 | 0.7603 | | 0.7871 | 10.53 | 2000 | 1.0626 | 0.7612 | | 0.6795 | 11.58 | 2200 | 1.1249 | 0.7209 | | 0.4842 | 12.63 | 2400 | 1.1626 | 0.7336 | | 0.492 | 13.68 | 2600 | 1.0995 | 0.7212 | | 0.5117 | 14.74 | 2800 | 1.1406 | 0.7105 | | 0.5649 | 15.79 | 3000 | 1.0603 | 0.6819 | | 0.3232 | 16.84 | 3200 | 1.1781 | 0.7070 | | 0.4098 | 17.89 | 3400 | 1.1182 | 0.6764 | | 0.3917 | 18.95 | 3600 | 1.1320 | 0.6750 | | 0.3712 | 20.0 | 3800 | 1.1920 | 0.6724 | | 0.3157 | 21.05 | 4000 | 1.1102 | 0.6786 | | 0.2397 | 22.11 | 4200 | 1.1924 | 0.6519 | | 0.2751 | 23.16 | 4400 | 1.1497 | 0.6468 | | 0.2279 | 24.21 | 4600 | 1.2274 | 0.6400 | | 0.393 | 25.26 | 4800 | 1.1741 | 0.6436 | | 0.1748 | 26.32 | 5000 | 1.2038 | 0.6327 | | 0.1727 | 27.37 | 5200 | 1.1639 | 0.6347 | | 0.255 | 28.42 | 5400 | 1.1948 | 0.6367 | | 0.2261 | 29.47 | 5600 | 1.1560 | 0.6362 | | 0.2359 | 30.53 | 5800 | 1.1227 | 0.6269 | | 0.1668 | 31.58 | 6000 | 1.1861 | 0.6295 | | 0.1699 | 32.63 | 6200 | 1.2442 | 0.6314 | | 0.14 | 33.68 | 6400 | 1.1340 | 0.6277 | | 0.1919 | 34.74 | 6600 | 1.1691 | 0.6139 | | 0.2527 | 35.79 | 6800 | 1.1511 | 0.6110 | | 0.1219 | 36.84 | 7000 | 1.2062 | 0.6139 | | 0.1389 | 37.89 | 7200 | 1.2142 | 0.6072 | | 0.135 | 38.95 | 7400 | 1.1967 | 0.6040 | | 0.1563 | 40.0 | 7600 | 1.1805 | 0.6024 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3