update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-base-common-voice-40p-persian-colab
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-base-common-voice-40p-persian-colab
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.1805
|
18 |
+
- Wer: 0.6024
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.00018
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 2000
|
44 |
+
- num_epochs: 40
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 2.9643 | 1.05 | 200 | 3.0107 | 1.0 |
|
52 |
+
| 2.7552 | 2.11 | 400 | 2.7370 | 0.9997 |
|
53 |
+
| 1.9144 | 3.16 | 600 | 1.8266 | 0.9703 |
|
54 |
+
| 1.502 | 4.21 | 800 | 1.3981 | 0.8996 |
|
55 |
+
| 1.3155 | 5.26 | 1000 | 1.2148 | 0.8507 |
|
56 |
+
| 0.9471 | 6.32 | 1200 | 1.1698 | 0.7860 |
|
57 |
+
| 0.8391 | 7.37 | 1400 | 1.1106 | 0.7857 |
|
58 |
+
| 0.7986 | 8.42 | 1600 | 1.1858 | 0.7769 |
|
59 |
+
| 0.7692 | 9.47 | 1800 | 1.1227 | 0.7603 |
|
60 |
+
| 0.7871 | 10.53 | 2000 | 1.0626 | 0.7612 |
|
61 |
+
| 0.6795 | 11.58 | 2200 | 1.1249 | 0.7209 |
|
62 |
+
| 0.4842 | 12.63 | 2400 | 1.1626 | 0.7336 |
|
63 |
+
| 0.492 | 13.68 | 2600 | 1.0995 | 0.7212 |
|
64 |
+
| 0.5117 | 14.74 | 2800 | 1.1406 | 0.7105 |
|
65 |
+
| 0.5649 | 15.79 | 3000 | 1.0603 | 0.6819 |
|
66 |
+
| 0.3232 | 16.84 | 3200 | 1.1781 | 0.7070 |
|
67 |
+
| 0.4098 | 17.89 | 3400 | 1.1182 | 0.6764 |
|
68 |
+
| 0.3917 | 18.95 | 3600 | 1.1320 | 0.6750 |
|
69 |
+
| 0.3712 | 20.0 | 3800 | 1.1920 | 0.6724 |
|
70 |
+
| 0.3157 | 21.05 | 4000 | 1.1102 | 0.6786 |
|
71 |
+
| 0.2397 | 22.11 | 4200 | 1.1924 | 0.6519 |
|
72 |
+
| 0.2751 | 23.16 | 4400 | 1.1497 | 0.6468 |
|
73 |
+
| 0.2279 | 24.21 | 4600 | 1.2274 | 0.6400 |
|
74 |
+
| 0.393 | 25.26 | 4800 | 1.1741 | 0.6436 |
|
75 |
+
| 0.1748 | 26.32 | 5000 | 1.2038 | 0.6327 |
|
76 |
+
| 0.1727 | 27.37 | 5200 | 1.1639 | 0.6347 |
|
77 |
+
| 0.255 | 28.42 | 5400 | 1.1948 | 0.6367 |
|
78 |
+
| 0.2261 | 29.47 | 5600 | 1.1560 | 0.6362 |
|
79 |
+
| 0.2359 | 30.53 | 5800 | 1.1227 | 0.6269 |
|
80 |
+
| 0.1668 | 31.58 | 6000 | 1.1861 | 0.6295 |
|
81 |
+
| 0.1699 | 32.63 | 6200 | 1.2442 | 0.6314 |
|
82 |
+
| 0.14 | 33.68 | 6400 | 1.1340 | 0.6277 |
|
83 |
+
| 0.1919 | 34.74 | 6600 | 1.1691 | 0.6139 |
|
84 |
+
| 0.2527 | 35.79 | 6800 | 1.1511 | 0.6110 |
|
85 |
+
| 0.1219 | 36.84 | 7000 | 1.2062 | 0.6139 |
|
86 |
+
| 0.1389 | 37.89 | 7200 | 1.2142 | 0.6072 |
|
87 |
+
| 0.135 | 38.95 | 7400 | 1.1967 | 0.6040 |
|
88 |
+
| 0.1563 | 40.0 | 7600 | 1.1805 | 0.6024 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.11.3
|
94 |
+
- Pytorch 1.10.0+cu113
|
95 |
+
- Datasets 1.18.3
|
96 |
+
- Tokenizers 0.10.3
|