|
--- |
|
library_name: transformers |
|
license: llama3.2 |
|
base_model: |
|
- meta-llama/Llama-3.2-3B-Instruct |
|
--- |
|
|
|
# This model has been xMADified! |
|
|
|
This repository contains [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology. |
|
|
|
|
|
# Why should I use this model? |
|
1. **Accuracy**: This xMADified model is the best quantized version of the `meta-llama/Llama-3.2-3B-Instruct` model. We are on par with the original (fp16) model (see _Table 1_ below). |
|
|
|
2. **Memory-efficiency**: This xMADified model (3 GB) is >50% less memory than the full-precision model (6.5 GB). You can run this on any laptop GPU. |
|
|
|
3. **Fine-tuning**: These models are fine-tunable over the same reduced (3 GB) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA) |
|
## Table 1: xMAD vs. Meta |
|
|
|
| | MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | Winogrande | HellaSwag | |
|
| ----------------------------------------------------------------------------------------------------------- | --------- | ------------- | --------- | ---------------- | -------------- | --------- | ---------- | --------- | |
|
| [xmadai/Llama-3.2-3B-Instruct-xMADai-INT4](https://huggingface.co/xmadai/Llama-3.2-3B-Instruct-xMADai-INT4) | **58.60** | **39.93** | **72.10** | **53.77** | **62.49** | **74.27** | **63.69** | **51.28** | |
|
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 60.48 | 43.69 | 74.24 | 57.75 | 66.54 | 75.73 | 67.40 | 52.20 | |
|
|
|
# How to Run Model |
|
|
|
Loading the model checkpoint of this xMADified model requires less than 3 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs. |
|
|
|
**Package prerequisites**: Run the following commands to install the required packages. |
|
```bash |
|
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118 |
|
pip install transformers accelerate optimum |
|
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]" |
|
``` |
|
|
|
**Sample Inference Code** |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
model_id = "xmadai/Llama-3.2-3B-Instruct-xMADai-INT4" |
|
prompt = [ |
|
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."}, |
|
{"role": "user", "content": "What's Deep Learning?"}, |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
inputs = tokenizer.apply_chat_template( |
|
prompt, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
return_dict=True, |
|
).to("cuda") |
|
model = AutoGPTQForCausalLM.from_quantized( |
|
model_id, |
|
device_map='auto', |
|
trust_remote_code=True, |
|
) |
|
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) |
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
``` |
|
|
|
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list. |
|
|