onebitquantized commited on
Commit
04ea4b7
1 Parent(s): 4a8b5e9

Upload of AutoGPTQ quantized model

Browse files
README.md CHANGED
@@ -1,22 +1,37 @@
1
  ---
2
- base_model:
3
- - meta-llama/Llama-3.2-3B-Instruct
4
  library_name: transformers
5
  license: llama3.2
 
 
6
  ---
7
 
8
  # This model has been xMADified!
9
 
10
  This repository contains [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # How to Run Model
13
 
14
  Loading the model checkpoint of this xMADified model requires less than 3 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.
15
 
16
  **Package prerequisites**: Run the following commands to install the required packages.
17
  ```bash
18
- pip install -q --upgrade transformers accelerate optimum
19
- pip install -q --no-build-isolation auto-gptq
 
20
  ```
21
 
22
  **Sample Inference Code**
@@ -24,15 +39,12 @@ pip install -q --no-build-isolation auto-gptq
24
  ```python
25
  from transformers import AutoTokenizer
26
  from auto_gptq import AutoGPTQForCausalLM
27
-
28
- model_id = "xmadai/Llama-3.2-3B-Instruct-xMADai-4bit"
29
  prompt = [
30
  {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
31
  {"role": "user", "content": "What's Deep Learning?"},
32
  ]
33
-
34
  tokenizer = AutoTokenizer.from_pretrained(model_id)
35
-
36
  inputs = tokenizer.apply_chat_template(
37
  prompt,
38
  tokenize=True,
@@ -40,15 +52,13 @@ inputs = tokenizer.apply_chat_template(
40
  return_tensors="pt",
41
  return_dict=True,
42
  ).to("cuda")
43
-
44
  model = AutoGPTQForCausalLM.from_quantized(
45
  model_id,
46
  device_map='auto',
47
  trust_remote_code=True,
48
  )
49
-
50
  outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
51
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
52
  ```
53
 
54
- For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
 
1
  ---
 
 
2
  library_name: transformers
3
  license: llama3.2
4
+ base_model:
5
+ - meta-llama/Llama-3.2-3B-Instruct
6
  ---
7
 
8
  # This model has been xMADified!
9
 
10
  This repository contains [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
11
 
12
+
13
+ # Why should I use this model?
14
+ 1. **Accuracy**: This xMADified model is the best quantized version of the `meta-llama/Llama-3.2-3B-Instruct` model. We are on par with the original (fp16) model (see _Table 1_ below).
15
+
16
+ 2. **Memory-efficiency**: This xMADified model (3 GB) is >50% less memory than the full-precision model (6.5 GB). You can run this on any laptop GPU.
17
+
18
+ 3. **Fine-tuning**: These models are fine-tunable over the same reduced (3 GB) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
19
+ ## Table 1: xMAD vs. Meta
20
+
21
+ | | MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | Winogrande | HellaSwag |
22
+ | ----------------------------------------------------------------------------------------------------------- | --------- | ------------- | --------- | ---------------- | -------------- | --------- | ---------- | --------- |
23
+ | [xmadai/Llama-3.2-3B-Instruct-xMADai-INT4](https://huggingface.co/xmadai/Llama-3.2-3B-Instruct-xMADai-INT4) | **58.60** | **39.93** | **72.10** | **53.77** | **62.49** | **74.27** | **63.69** | **51.28** |
24
+ | [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 60.48 | 43.69 | 74.24 | 57.75 | 66.54 | 75.73 | 67.40 | 52.20 |
25
+
26
  # How to Run Model
27
 
28
  Loading the model checkpoint of this xMADified model requires less than 3 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.
29
 
30
  **Package prerequisites**: Run the following commands to install the required packages.
31
  ```bash
32
+ pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
33
+ pip install transformers accelerate optimum
34
+ pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
35
  ```
36
 
37
  **Sample Inference Code**
 
39
  ```python
40
  from transformers import AutoTokenizer
41
  from auto_gptq import AutoGPTQForCausalLM
42
+ model_id = "xmadai/Llama-3.2-3B-Instruct-xMADai-INT4"
 
43
  prompt = [
44
  {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
45
  {"role": "user", "content": "What's Deep Learning?"},
46
  ]
 
47
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
48
  inputs = tokenizer.apply_chat_template(
49
  prompt,
50
  tokenize=True,
 
52
  return_tensors="pt",
53
  return_dict=True,
54
  ).to("cuda")
 
55
  model = AutoGPTQForCausalLM.from_quantized(
56
  model_id,
57
  device_map='auto',
58
  trust_remote_code=True,
59
  )
 
60
  outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
61
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
62
  ```
63
 
64
+ For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
config.json CHANGED
@@ -26,14 +26,14 @@
26
  "quantization_config": {
27
  "bits": 4,
28
  "checkpoint_format": "gptq",
29
- "damp_percent": 0.01,
30
  "desc_act": true,
31
  "exponent_hinv": 4.0,
32
- "group_size": -1,
33
  "model_file_base_name": null,
34
  "model_name_or_path": null,
35
  "quant_method": "gptq",
36
- "shrink": 0.0625,
37
  "static_groups": false,
38
  "sym": false,
39
  "true_sequential": true
 
26
  "quantization_config": {
27
  "bits": 4,
28
  "checkpoint_format": "gptq",
29
+ "damp_percent": 0.05,
30
  "desc_act": true,
31
  "exponent_hinv": 4.0,
32
+ "group_size": 128,
33
  "model_file_base_name": null,
34
  "model_name_or_path": null,
35
  "quant_method": "gptq",
36
+ "shrink": 0.0001,
37
  "static_groups": false,
38
  "sym": false,
39
  "true_sequential": true
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91ea6d47c866319bf44774967e13a2035901de68c9a457354552e52bb9a46093
3
+ size 3043772416
quantize_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "bits": 4,
3
- "group_size": -1,
4
- "damp_percent": 0.01,
5
  "desc_act": true,
6
  "static_groups": false,
7
  "sym": false,
@@ -9,7 +9,7 @@
9
  "model_name_or_path": null,
10
  "model_file_base_name": null,
11
  "exponent_hinv": 4.0,
12
- "shrink": 0.0625,
13
  "quant_method": "gptq",
14
  "checkpoint_format": "gptq"
15
  }
 
1
  {
2
  "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.05,
5
  "desc_act": true,
6
  "static_groups": false,
7
  "sym": false,
 
9
  "model_name_or_path": null,
10
  "model_file_base_name": null,
11
  "exponent_hinv": 4.0,
12
+ "shrink": 0.0001,
13
  "quant_method": "gptq",
14
  "checkpoint_format": "gptq"
15
  }