File size: 3,332 Bytes
dd37cf1 4a8b5e9 04ea4b7 dd37cf1 969525a dd37cf1 969525a dd37cf1 04ea4b7 969525a dd37cf1 969525a dd37cf1 969525a 04ea4b7 969525a dd37cf1 969525a dd37cf1 969525a 04ea4b7 969525a dd37cf1 04ea4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: llama3.2
base_model:
- meta-llama/Llama-3.2-3B-Instruct
---
# This model has been xMADified!
This repository contains [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
# Why should I use this model?
1. **Accuracy**: This xMADified model is the best quantized version of the `meta-llama/Llama-3.2-3B-Instruct` model. We are on par with the original (fp16) model (see _Table 1_ below).
2. **Memory-efficiency**: This xMADified model (3 GB) is >50% less memory than the full-precision model (6.5 GB). You can run this on any laptop GPU.
3. **Fine-tuning**: These models are fine-tunable over the same reduced (3 GB) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
## Table 1: xMAD vs. Meta
| | MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | Winogrande | HellaSwag |
| ----------------------------------------------------------------------------------------------------------- | --------- | ------------- | --------- | ---------------- | -------------- | --------- | ---------- | --------- |
| [xmadai/Llama-3.2-3B-Instruct-xMADai-INT4](https://huggingface.co/xmadai/Llama-3.2-3B-Instruct-xMADai-INT4) | **58.60** | **39.93** | **72.10** | **53.77** | **62.49** | **74.27** | **63.69** | **51.28** |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 60.48 | 43.69 | 74.24 | 57.75 | 66.54 | 75.73 | 67.40 | 52.20 |
# How to Run Model
Loading the model checkpoint of this xMADified model requires less than 3 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.
**Package prerequisites**: Run the following commands to install the required packages.
```bash
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate optimum
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
```
**Sample Inference Code**
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/Llama-3.2-3B-Instruct-xMADai-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device_map='auto',
trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
|