File size: 9,883 Bytes
cd5c518
cd7cb8b
26fea1c
4ba6cbe
c583398
cd7cb8b
cd5c518
cd7cb8b
c583398
cd7cb8b
c583398
cd7cb8b
c583398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7cb8b
cd5c518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7cb8b
cd5c518
cd7cb8b
c583398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7cb8b
4eb476a
bfaa02d
fab1f6f
 
3284afd
 
 
 
 
 
 
 
fab1f6f
4eb476a
 
 
bfaa02d
 
 
 
 
 
 
476b019
 
bfaa02d
 
476b019
 
4ba6cbe
 
 
 
476b019
 
 
 
 
 
 
c583398
476b019
 
 
 
 
 
 
 
4ba6cbe
476b019
 
4ba6cbe
bfaa02d
 
4ba6cbe
 
c583398
4ba6cbe
476b019
4ba6cbe
 
476b019
4ba6cbe
 
 
 
cd7cb8b
bfaa02d
 
c583398
cd5c518
4ba6cbe
cd7cb8b
cd5c518
476b019
cd5c518
 
 
cd7cb8b
cd5c518
 
 
 
cd7cb8b
cd5c518
cd7cb8b
c583398
 
 
12672eb
c583398
cd7cb8b
cd5c518
cd7cb8b
cd5c518
476b019
cd5c518
 
 
cd7cb8b
 
 
cd5c518
cd7cb8b
cd5c518
c583398
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# πŸ“‘ **LWM: Large Wireless Model**

**[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**

Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM.

---

## πŸ›  **How to Use for Beginners**

### 1. **Install Conda or Mamba (via Miniforge)**

First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages.

#### **Option A: Install Conda**

If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**.

- **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution).
- **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html).

#### **Option B: Install Mamba (via Miniforge)**

**Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**.

- **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest).

After installation, you can use `conda` or `mamba` for environment management. The commands will be the same except for replacing `conda` with `mamba`.

---

### 2. **Create a New Environment**

Once you have Conda or Mamba installed, follow these steps to create a new environment and install the necessary packages.

#### **Step 1: Create a new environment**

You can create a new environment called `lwm_env` (or any other name) with Python 3.9 or any required version:

```bash
# If you're using Conda:
conda create -n lwm_env python=3.9

# If you're using Mamba:
mamba create -n lwm_env python=3.9
```

#### **Step 2: Activate the environment**

Activate the environment you just created:

```bash
# For both Conda and Mamba:
conda activate lwm_env
```

---

### 3. **Clone the Repository**

After setting up the environment, clone the Hugging Face repository to your local machine using the following Python code:

```python
import subprocess
import os
import sys
import importlib.util
import torch

# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"

# Directory where the repo will be cloned
clone_dir = "./LWM"

# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
    print(f"Cloning repository from {repo_url} into {clone_dir}...")
    result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)

    if result.returncode != 0:
        print(f"Error cloning repository: {result.stderr}")
        sys.exit(1)
    print(f"Repository cloned successfully into {clone_dir}")
else:
    print(f"Repository already cloned into {clone_dir}")

# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)

# Step 3: Import necessary functions
def import_functions_from_file(module_name, file_path):
    try:
        spec = importlib.util.spec_from_file_location(module_name, file_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)

        for function_name in dir(module):
            if callable(getattr(module, function_name)) and not function_name.startswith("__"):
                globals()[function_name] = getattr(module, function_name)
        return module
    except FileNotFoundError:
        print(f"Error: {file_path} not found!")
        sys.exit(1)

# Step 4: Import functions from the repository
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")
```

---

### 4. **Install Required Packages**

Install the necessary packages inside your new environment.

```bash
# If you're using Conda:
conda install pytorch torchvision torchaudio -c pytorch
pip install -r requirements.txt

# If you're using Mamba:
mamba install pytorch torchvision torchaudio -c pytorch
pip install -r requirements.txt
```

This will install **PyTorch**, **Torchvision**, and other required dependencies from the `requirements.txt` file in the cloned repository.

---

### 5. **Load the DeepMIMO Dataset**

Before proceeding with tokenization and data processing, the **DeepMIMO** datasetβ€”or any dataset generated using the operational settings outlined belowβ€”must first be loaded. The table below provides a list of available datasets and their respective links for further details:

πŸ“Š **Dataset Overview**

| πŸ“Š **Dataset** | πŸ™οΈ **City**         | πŸ‘₯ **Number of Users** | πŸ”— **DeepMIMO Page**                                                                                       |
|----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------|
| Dataset 0      | πŸŒ† Denver             | 1354                   | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/)                   |
| Dataset 1      | πŸ™οΈ Indianapolis       | 3248                   | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/)                   |
| Dataset 2      | πŸŒ‡ Oklahoma           | 3455                   | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/)                   |
| Dataset 3      | πŸŒ† Fort Worth         | 1902                   | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/)                   |
| Dataset 4      | πŸŒ‰ Santa Clara        | 2689                   | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/)                   |
| Dataset 5      | πŸŒ… San Diego          | 2192                   | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/)                     |

It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWM’s robust generalization capabilities rather than overfitting.

The operational settings below were used in generating the datasets for both the pre-training of LWM and the downstream tasks. If you intend to use custom datasets, please ensure they adhere to these configurations:

#### **Operational Settings**:
- **Antennas at BS**: 32
- **Antennas at UEs**: 1
- **Subcarriers**: 32
- **Paths**: 20

#### **Load Data Code**:
Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets.

```python
# Step 5: Load the DeepMIMO dataset
print("Loading the DeepMIMO dataset...")

# Load the DeepMIMO dataset
deepmimo_data = load_DeepMIMO_data()

# Select datasets to load
dataset_idxs = torch.arange(2)  # Adjust the number of datasets as needed
print("DeepMIMO dataset loaded successfully.")
```

---

### 6. **Tokenize the DeepMIMO Dataset**

After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.

#### **Tokenization Code**:

```python
# Step 6: Tokenize the dataset
print("Tokenizing the DeepMIMO dataset...")

# Tokenize the loaded datasets
preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True)
print("Dataset tokenized successfully.")
```

---

### 7. **Load the LWM Model**

Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:

```python
# Step 7: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
```

---

### 8. **LWM Inference**

Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.

```python
# Step 8: Generate the dataset for inference
input_type = ['cls_emb', 'channel_emb', 'raw'][1]  # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)
```

You can choose between:
- `cls_emb`: LWM CLS token embeddings
- `channel_emb`: LWM channel embeddings
- `raw`: Raw wireless channel data

---

###

 9. **Post-processing for Downstream Task**

#### **Use the Dataset in Downstream Tasks**

Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.

```python
# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")
```

---

## πŸ“‹ **Requirements**

- **Python 3.x**
- **PyTorch**
- **Git**

---

### Summary of Steps:

1. **Install Conda/Mamba**: Install a package manager for environment management.
2. **Create Environment**: Use Conda or Mamba to create a new environment.
3. **Clone the Repository**: Download the project files from Hugging Face.
4. **Install Packages**: Install PyTorch and other dependencies.
5. **Load and Tokenize Data**: Load the DeepMIMO dataset and prepare it for the model.
6. **Load Model and Perform Inference**: Use the LWM model for generating embeddings or raw channels.