File size: 9,883 Bytes
cd5c518 cd7cb8b 26fea1c 4ba6cbe c583398 cd7cb8b cd5c518 cd7cb8b c583398 cd7cb8b c583398 cd7cb8b c583398 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b c583398 cd7cb8b 4eb476a bfaa02d fab1f6f 3284afd fab1f6f 4eb476a bfaa02d 476b019 bfaa02d 476b019 4ba6cbe 476b019 c583398 476b019 4ba6cbe 476b019 4ba6cbe bfaa02d 4ba6cbe c583398 4ba6cbe 476b019 4ba6cbe 476b019 4ba6cbe cd7cb8b bfaa02d c583398 cd5c518 4ba6cbe cd7cb8b cd5c518 476b019 cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b c583398 12672eb c583398 cd7cb8b cd5c518 cd7cb8b cd5c518 476b019 cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 c583398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# π‘ **LWM: Large Wireless Model**
**[π Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**
Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM.
---
## π **How to Use for Beginners**
### 1. **Install Conda or Mamba (via Miniforge)**
First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages.
#### **Option A: Install Conda**
If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**.
- **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution).
- **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html).
#### **Option B: Install Mamba (via Miniforge)**
**Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**.
- **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest).
After installation, you can use `conda` or `mamba` for environment management. The commands will be the same except for replacing `conda` with `mamba`.
---
### 2. **Create a New Environment**
Once you have Conda or Mamba installed, follow these steps to create a new environment and install the necessary packages.
#### **Step 1: Create a new environment**
You can create a new environment called `lwm_env` (or any other name) with Python 3.9 or any required version:
```bash
# If you're using Conda:
conda create -n lwm_env python=3.9
# If you're using Mamba:
mamba create -n lwm_env python=3.9
```
#### **Step 2: Activate the environment**
Activate the environment you just created:
```bash
# For both Conda and Mamba:
conda activate lwm_env
```
---
### 3. **Clone the Repository**
After setting up the environment, clone the Hugging Face repository to your local machine using the following Python code:
```python
import subprocess
import os
import sys
import importlib.util
import torch
# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"
# Directory where the repo will be cloned
clone_dir = "./LWM"
# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
print(f"Cloning repository from {repo_url} into {clone_dir}...")
result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
if result.returncode != 0:
print(f"Error cloning repository: {result.stderr}")
sys.exit(1)
print(f"Repository cloned successfully into {clone_dir}")
else:
print(f"Repository already cloned into {clone_dir}")
# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)
# Step 3: Import necessary functions
def import_functions_from_file(module_name, file_path):
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
for function_name in dir(module):
if callable(getattr(module, function_name)) and not function_name.startswith("__"):
globals()[function_name] = getattr(module, function_name)
return module
except FileNotFoundError:
print(f"Error: {file_path} not found!")
sys.exit(1)
# Step 4: Import functions from the repository
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")
```
---
### 4. **Install Required Packages**
Install the necessary packages inside your new environment.
```bash
# If you're using Conda:
conda install pytorch torchvision torchaudio -c pytorch
pip install -r requirements.txt
# If you're using Mamba:
mamba install pytorch torchvision torchaudio -c pytorch
pip install -r requirements.txt
```
This will install **PyTorch**, **Torchvision**, and other required dependencies from the `requirements.txt` file in the cloned repository.
---
### 5. **Load the DeepMIMO Dataset**
Before proceeding with tokenization and data processing, the **DeepMIMO** datasetβor any dataset generated using the operational settings outlined belowβmust first be loaded. The table below provides a list of available datasets and their respective links for further details:
π **Dataset Overview**
| π **Dataset** | ποΈ **City** | π₯ **Number of Users** | π **DeepMIMO Page** |
|----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------|
| Dataset 0 | π Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
| Dataset 1 | ποΈ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
| Dataset 2 | π Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
| Dataset 3 | π Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) |
| Dataset 4 | π Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
| Dataset 5 | π
San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWMβs robust generalization capabilities rather than overfitting.
The operational settings below were used in generating the datasets for both the pre-training of LWM and the downstream tasks. If you intend to use custom datasets, please ensure they adhere to these configurations:
#### **Operational Settings**:
- **Antennas at BS**: 32
- **Antennas at UEs**: 1
- **Subcarriers**: 32
- **Paths**: 20
#### **Load Data Code**:
Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets.
```python
# Step 5: Load the DeepMIMO dataset
print("Loading the DeepMIMO dataset...")
# Load the DeepMIMO dataset
deepmimo_data = load_DeepMIMO_data()
# Select datasets to load
dataset_idxs = torch.arange(2) # Adjust the number of datasets as needed
print("DeepMIMO dataset loaded successfully.")
```
---
### 6. **Tokenize the DeepMIMO Dataset**
After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.
#### **Tokenization Code**:
```python
# Step 6: Tokenize the dataset
print("Tokenizing the DeepMIMO dataset...")
# Tokenize the loaded datasets
preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True)
print("Dataset tokenized successfully.")
```
---
### 7. **Load the LWM Model**
Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:
```python
# Step 7: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
```
---
### 8. **LWM Inference**
Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
```python
# Step 8: Generate the dataset for inference
input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)
```
You can choose between:
- `cls_emb`: LWM CLS token embeddings
- `channel_emb`: LWM channel embeddings
- `raw`: Raw wireless channel data
---
###
9. **Post-processing for Downstream Task**
#### **Use the Dataset in Downstream Tasks**
Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
```python
# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")
```
---
## π **Requirements**
- **Python 3.x**
- **PyTorch**
- **Git**
---
### Summary of Steps:
1. **Install Conda/Mamba**: Install a package manager for environment management.
2. **Create Environment**: Use Conda or Mamba to create a new environment.
3. **Clone the Repository**: Download the project files from Hugging Face.
4. **Install Packages**: Install PyTorch and other dependencies.
5. **Load and Tokenize Data**: Load the DeepMIMO dataset and prepare it for the model.
6. **Load Model and Perform Inference**: Use the LWM model for generating embeddings or raw channels. |