Sadjad Alikhani commited on
Commit
476b019
•
1 Parent(s): 26fea1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -20
README.md CHANGED
@@ -65,12 +65,12 @@ print("All required functions imported successfully.")
65
 
66
  ---
67
 
68
- ### 2. **Load and Tokenize the DeepMIMO Dataset**
69
 
70
- Before loading the LWM model, you need to load the DeepMIMO dataset and select specific scenarios for tokenization. Below is a list of available scenarios and their links for more information:
71
 
72
- | **Scenario** | **City** | **Link to DeepMIMO Page** |
73
- |---------------|---------------|----------------------------------------------------------------------------------------------------------------|
74
  | Dataset 0 | Denver | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
75
  | Dataset 1 | Indianapolis | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
76
  | Dataset 2 | Oklahoma | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
@@ -84,32 +84,46 @@ Before loading the LWM model, you need to load the DeepMIMO dataset and select s
84
  - **Subcarriers**: 32
85
  - **Paths**: 20
86
 
87
- #### **Load and Tokenize Code**:
88
- Select and load specific scenarios by adjusting the `scenario_idxs`. In the example below, we select the first two scenarios and tokenize the data.
89
 
90
  ```python
91
- # Step 5: Load dataset and select specific scenarios
92
- print("Loading and tokenizing DeepMIMO dataset...")
93
 
94
  # Load the DeepMIMO dataset
95
  deepmimo_data = load_DeepMIMO_data()
96
 
97
- # Select scenarios to tokenize
98
- scenario_idxs = torch.arange(2) # Adjust the number of scenarios as needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
- # Tokenize the dataset
101
- preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
102
  print("Dataset tokenized successfully.")
103
  ```
104
 
105
  ---
106
 
107
- ### 3. **Load the LWM Model**
108
 
109
- After loading and tokenizing the DeepMIMO dataset, load the pre-trained **LWM** model using the following code:
110
 
111
  ```python
112
- # Step 6: Load the LWM model (with flexibility for the device)
113
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
114
  print(f"Loading the LWM model on {device}...")
115
  model = LWM.from_pretrained(device=device)
@@ -117,12 +131,12 @@ model = LWM.from_pretrained(device=device)
117
 
118
  ---
119
 
120
- ### 4. **LWM Inference**
121
 
122
  Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
123
 
124
  ```python
125
- # Step 7: Generate the dataset for inference
126
  input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
127
  dataset = dataset_gen(preprocessed_chs, input_type, model)
128
  ```
@@ -141,7 +155,7 @@ You can choose between:
141
  Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
142
 
143
  ```python
144
- # Step 8: Print results
145
  print(f"Dataset generated with shape: {dataset.shape}")
146
  print("Inference completed successfully.")
147
  ```
@@ -151,5 +165,4 @@ print("Inference completed successfully.")
151
  ## 📋 **Requirements**
152
 
153
  - **Python 3.x**
154
- - **PyTorch**
155
- - **Git**
 
65
 
66
  ---
67
 
68
+ ### 2. **Load the DeepMIMO Dataset**
69
 
70
+ Before tokenizing and processing the data, you need to load the **DeepMIMO** dataset. Below is a list of available datasets and their links for more information:
71
 
72
+ | **Dataset** | **City** | **Link to DeepMIMO Page** |
73
+ |--------------|---------------|----------------------------------------------------------------------------------------------------------------|
74
  | Dataset 0 | Denver | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
75
  | Dataset 1 | Indianapolis | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
76
  | Dataset 2 | Oklahoma | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
 
84
  - **Subcarriers**: 32
85
  - **Paths**: 20
86
 
87
+ #### **Load Data Code**:
88
+ Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets.
89
 
90
  ```python
91
+ # Step 5: Load the DeepMIMO dataset
92
+ print("Loading the DeepMIMO dataset...")
93
 
94
  # Load the DeepMIMO dataset
95
  deepmimo_data = load_DeepMIMO_data()
96
 
97
+ # Select datasets to load
98
+ dataset_idxs = torch.arange(2) # Adjust the number of datasets as needed
99
+ print("DeepMIMO dataset loaded successfully.")
100
+ ```
101
+
102
+ ---
103
+
104
+ ### 3. **Tokenize the DeepMIMO Dataset**
105
+
106
+ After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.
107
+
108
+ #### **Tokenization Code**:
109
+
110
+ ```python
111
+ # Step 6: Tokenize the dataset
112
+ print("Tokenizing the DeepMIMO dataset...")
113
 
114
+ # Tokenize the loaded datasets
115
+ preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True)
116
  print("Dataset tokenized successfully.")
117
  ```
118
 
119
  ---
120
 
121
+ ### 4. **Load the LWM Model**
122
 
123
+ Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:
124
 
125
  ```python
126
+ # Step 7: Load the LWM model (with flexibility for the device)
127
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
128
  print(f"Loading the LWM model on {device}...")
129
  model = LWM.from_pretrained(device=device)
 
131
 
132
  ---
133
 
134
+ ### 5. **LWM Inference**
135
 
136
  Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
137
 
138
  ```python
139
+ # Step 8: Generate the dataset for inference
140
  input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
141
  dataset = dataset_gen(preprocessed_chs, input_type, model)
142
  ```
 
155
  Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
156
 
157
  ```python
158
+ # Step 9: Print results
159
  print(f"Dataset generated with shape: {dataset.shape}")
160
  print("Inference completed successfully.")
161
  ```
 
165
  ## 📋 **Requirements**
166
 
167
  - **Python 3.x**
168
+ - **PyTorch**