Sadjad Alikhani commited on
Commit
bfaa02d
1 Parent(s): 12672eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -7
README.md CHANGED
@@ -86,14 +86,39 @@ This repository contains the implementation of **LWM** (Large Wireless Model), a
86
 
87
  4. **Tokenize the DeepMIMO Dataset**
88
 
89
- Tokenize the loaded dataset. You can choose the scenario indices to select specific scenarios from DeepMIMO:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
- ```python
92
- # Step 7: Tokenize the dataset (direct call, no module prefix)
93
- scenario_idxs = torch.arange(1) # Adjust the number of scenarios you want
94
- print("Tokenizing the dataset...")
95
- preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
96
- ```
97
 
98
  5. **LWM Inference**
99
 
 
86
 
87
  4. **Tokenize the DeepMIMO Dataset**
88
 
89
+ After loading the dataset, you can tokenize the DeepMIMO dataset based on specific scenarios. The table below lists the available scenarios, their corresponding DeepMIMO pages, and relevant details:
90
+
91
+ | **Scenario** | **City** | **Link to DeepMIMO Page** |
92
+ |---------------|---------------|----------------------------------------------------------------------------------------------------------------|
93
+ | Scenario 0 | Denver | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
94
+ | Scenario 1 | Indianapolis | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
95
+ | Scenario 2 | Oklahoma | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
96
+ | Scenario 3 | Fort Worth | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) |
97
+ | Scenario 4 | Santa Clara | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
98
+ | Scenario 5 | San Diego | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
99
+
100
+ #### **Operational Settings**:
101
+ - **Antennas at BS**: 32
102
+ - **Antennas at UEs**: 1
103
+ - **Subcarriers**: 32
104
+ - **Paths**: 20
105
+
106
+ #### **Tokenization Code**:
107
+ You can adjust the number of scenarios by changing the `scenario_idxs`. In the example below, scenario 0 and 1 are selected.
108
+
109
+ ```python
110
+ # Step 7: Tokenize the dataset
111
+ scenario_idxs = torch.arange(2) # Adjust the number of scenarios you want
112
+ print("Tokenizing the dataset...")
113
+ preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
114
+ ```
115
+
116
+ - Use the `scenario_idxs` variable to select specific scenarios from the DeepMIMO dataset.
117
+ - The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.
118
 
119
+ ---
120
+
121
+ This format separates the **scenarios**, **operational settings**, and the **code** clearly, making it more readable. The table provides a structured overview of the available scenarios with direct links to their respective pages on DeepMIMO.
 
 
 
122
 
123
  5. **LWM Inference**
124