Sadjad Alikhani
commited on
Commit
•
bfaa02d
1
Parent(s):
12672eb
Update README.md
Browse files
README.md
CHANGED
@@ -86,14 +86,39 @@ This repository contains the implementation of **LWM** (Large Wireless Model), a
|
|
86 |
|
87 |
4. **Tokenize the DeepMIMO Dataset**
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
print("Tokenizing the dataset...")
|
95 |
-
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
|
96 |
-
```
|
97 |
|
98 |
5. **LWM Inference**
|
99 |
|
|
|
86 |
|
87 |
4. **Tokenize the DeepMIMO Dataset**
|
88 |
|
89 |
+
After loading the dataset, you can tokenize the DeepMIMO dataset based on specific scenarios. The table below lists the available scenarios, their corresponding DeepMIMO pages, and relevant details:
|
90 |
+
|
91 |
+
| **Scenario** | **City** | **Link to DeepMIMO Page** |
|
92 |
+
|---------------|---------------|----------------------------------------------------------------------------------------------------------------|
|
93 |
+
| Scenario 0 | Denver | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
|
94 |
+
| Scenario 1 | Indianapolis | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
|
95 |
+
| Scenario 2 | Oklahoma | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
|
96 |
+
| Scenario 3 | Fort Worth | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) |
|
97 |
+
| Scenario 4 | Santa Clara | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
|
98 |
+
| Scenario 5 | San Diego | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
|
99 |
+
|
100 |
+
#### **Operational Settings**:
|
101 |
+
- **Antennas at BS**: 32
|
102 |
+
- **Antennas at UEs**: 1
|
103 |
+
- **Subcarriers**: 32
|
104 |
+
- **Paths**: 20
|
105 |
+
|
106 |
+
#### **Tokenization Code**:
|
107 |
+
You can adjust the number of scenarios by changing the `scenario_idxs`. In the example below, scenario 0 and 1 are selected.
|
108 |
+
|
109 |
+
```python
|
110 |
+
# Step 7: Tokenize the dataset
|
111 |
+
scenario_idxs = torch.arange(2) # Adjust the number of scenarios you want
|
112 |
+
print("Tokenizing the dataset...")
|
113 |
+
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
|
114 |
+
```
|
115 |
+
|
116 |
+
- Use the `scenario_idxs` variable to select specific scenarios from the DeepMIMO dataset.
|
117 |
+
- The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.
|
118 |
|
119 |
+
---
|
120 |
+
|
121 |
+
This format separates the **scenarios**, **operational settings**, and the **code** clearly, making it more readable. The table provides a structured overview of the available scenarios with direct links to their respective pages on DeepMIMO.
|
|
|
|
|
|
|
122 |
|
123 |
5. **LWM Inference**
|
124 |
|