Sadjad Alikhani commited on
Commit
c583398
β€’
1 Parent(s): 3284afd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -11
README.md CHANGED
@@ -2,15 +2,63 @@
2
 
3
  **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**
4
 
5
- Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.
6
 
7
  ---
8
 
9
- ## πŸ›  **How to Use**
10
 
11
- ### 1. **Clone the Repository**
12
 
13
- To get started, clone the Hugging Face repository to your local machine with the following Python code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  ```python
16
  import subprocess
@@ -65,7 +113,25 @@ print("All required functions imported successfully.")
65
 
66
  ---
67
 
68
- ### 2. **Load the DeepMIMO Dataset**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  Before tokenizing and processing the data, you need to load the **DeepMIMO** dataset. Below is a list of available datasets and their links for more information:
71
 
@@ -104,7 +170,7 @@ print("DeepMIMO dataset loaded successfully.")
104
 
105
  ---
106
 
107
- ### 3. **Tokenize the DeepMIMO Dataset**
108
 
109
  After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.
110
 
@@ -121,7 +187,7 @@ print("Dataset tokenized successfully.")
121
 
122
  ---
123
 
124
- ### 4. **Load the LWM Model**
125
 
126
  Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:
127
 
@@ -134,7 +200,7 @@ model = LWM.from_pretrained(device=device)
134
 
135
  ---
136
 
137
- ### 5. **LWM Inference**
138
 
139
  Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
140
 
@@ -151,9 +217,11 @@ You can choose between:
151
 
152
  ---
153
 
154
- ## πŸ”„ **Post-processing for Downstream Task**
 
 
155
 
156
- ### 1. **Use the Dataset in Downstream Tasks**
157
 
158
  Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
159
 
@@ -168,4 +236,16 @@ print("Inference completed successfully.")
168
  ## πŸ“‹ **Requirements**
169
 
170
  - **Python 3.x**
171
- - **PyTorch**
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**
4
 
5
+ Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM.
6
 
7
  ---
8
 
9
+ ## πŸ›  **How to Use for Beginners**
10
 
11
+ ### 1. **Install Conda or Mamba (via Miniforge)**
12
 
13
+ First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages.
14
+
15
+ #### **Option A: Install Conda**
16
+
17
+ If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**.
18
+
19
+ - **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution).
20
+ - **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html).
21
+
22
+ #### **Option B: Install Mamba (via Miniforge)**
23
+
24
+ **Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**.
25
+
26
+ - **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest).
27
+
28
+ After installation, you can use `conda` or `mamba` for environment management. The commands will be the same except for replacing `conda` with `mamba`.
29
+
30
+ ---
31
+
32
+ ### 2. **Create a New Environment**
33
+
34
+ Once you have Conda or Mamba installed, follow these steps to create a new environment and install the necessary packages.
35
+
36
+ #### **Step 1: Create a new environment**
37
+
38
+ You can create a new environment called `lwm_env` (or any other name) with Python 3.9 or any required version:
39
+
40
+ ```bash
41
+ # If you're using Conda:
42
+ conda create -n lwm_env python=3.9
43
+
44
+ # If you're using Mamba:
45
+ mamba create -n lwm_env python=3.9
46
+ ```
47
+
48
+ #### **Step 2: Activate the environment**
49
+
50
+ Activate the environment you just created:
51
+
52
+ ```bash
53
+ # For both Conda and Mamba:
54
+ conda activate lwm_env
55
+ ```
56
+
57
+ ---
58
+
59
+ ### 3. **Clone the Repository**
60
+
61
+ After setting up the environment, clone the Hugging Face repository to your local machine using the following Python code:
62
 
63
  ```python
64
  import subprocess
 
113
 
114
  ---
115
 
116
+ ### 4. **Install Required Packages**
117
+
118
+ Install the necessary packages inside your new environment.
119
+
120
+ ```bash
121
+ # If you're using Conda:
122
+ conda install pytorch torchvision torchaudio -c pytorch
123
+ pip install -r requirements.txt
124
+
125
+ # If you're using Mamba:
126
+ mamba install pytorch torchvision torchaudio -c pytorch
127
+ pip install -r requirements.txt
128
+ ```
129
+
130
+ This will install **PyTorch**, **Torchvision**, and other required dependencies from the `requirements.txt` file in the cloned repository.
131
+
132
+ ---
133
+
134
+ ### 5. **Load the DeepMIMO Dataset**
135
 
136
  Before tokenizing and processing the data, you need to load the **DeepMIMO** dataset. Below is a list of available datasets and their links for more information:
137
 
 
170
 
171
  ---
172
 
173
+ ### 6. **Tokenize the DeepMIMO Dataset**
174
 
175
  After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.
176
 
 
187
 
188
  ---
189
 
190
+ ### 7. **Load the LWM Model**
191
 
192
  Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:
193
 
 
200
 
201
  ---
202
 
203
+ ### 8. **LWM Inference**
204
 
205
  Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
206
 
 
217
 
218
  ---
219
 
220
+ ###
221
+
222
+ 9. **Post-processing for Downstream Task**
223
 
224
+ #### **Use the Dataset in Downstream Tasks**
225
 
226
  Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
227
 
 
236
  ## πŸ“‹ **Requirements**
237
 
238
  - **Python 3.x**
239
+ - **PyTorch**
240
+ - **Git**
241
+
242
+ ---
243
+
244
+ ### Summary of Steps:
245
+
246
+ 1. **Install Conda/Mamba**: Install a package manager for environment management.
247
+ 2. **Create Environment**: Use Conda or Mamba to create a new environment.
248
+ 3. **Clone the Repository**: Download the project files from Hugging Face.
249
+ 4. **Install Packages**: Install PyTorch and other dependencies.
250
+ 5. **Load and Tokenize Data**: Load the DeepMIMO dataset and prepare it for the model.
251
+ 6. **Load Model and Perform Inference**: Use the LWM model for generating embeddings or raw channels.