|
--- |
|
language: Chinese |
|
datasets: CLUECorpus |
|
widget: |
|
- text: "北京是[MASK]国的首都。" |
|
--- |
|
|
|
|
|
# Chinese RoBERTa Miniatures |
|
|
|
## Model description |
|
|
|
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf). |
|
|
|
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: |
|
|
|
| |H=128|H=256|H=512|H=768| |
|
|---|:---:|:---:|:---:|:---:| |
|
| **L=2** |[**2/128 (Tiny)**][2_128]|[2/256]|[2/512]|[2/768]| |
|
| **L=4** |[4/128]|[**4/256 (Mini)**][4_256]|[**4/512 (Small)**]|[4/768]| |
|
| **L=6** |[6/128]|[6/256]|[6/512]|[6/768]| |
|
| **L=8** |[8/128]|[8/256]|[**8/512 (Medium)**][8_512]|[8/768]| |
|
| **L=10** |[10/128]|[10/256]|[10/512]|[10/768]| |
|
| **L=12** |[12/128]|[12/256]|[12/512]|[**12/768 (Base)**]| |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') |
|
>>> unmasker("中国的首都是[MASK]京。") |
|
[ |
|
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', |
|
'score': 0.9338967204093933, |
|
'token': 1266, |
|
'token_str': '北'}, |
|
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', |
|
'score': 0.039428312331438065, |
|
'token': 1298, |
|
'token_str': '南'}, |
|
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', |
|
'score': 0.01681734062731266, |
|
'token': 691, |
|
'token_str': '东'}, |
|
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', |
|
'score': 0.004590896889567375, |
|
'token': 3249, |
|
'token_str': '普'}, |
|
{'sequence': '[CLS] 中 国 的 首 都 是 燕 京 。 [SEP]', |
|
'score': 0.0007656012894585729, |
|
'token': 4242, |
|
'token_str': '燕'} |
|
] |
|
|
|
``` |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import BertTokenizer, BertModel |
|
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') |
|
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
and in TensorFlow: |
|
|
|
```python |
|
from transformers import BertTokenizer, TFBertModel |
|
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') |
|
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
|
|
|
|
|
|
## Training data |
|
|
|
CLUECorpus2020 and CLUECorpusSmall are used as training data. |
|
|
|
## Training procedure |
|
|
|
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. |
|
|
|
Stage1: |
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpus_seq128_dataset.pt \ |
|
--processes_num 32 --seq_length 128 \ |
|
--dynamic_masking --target mlm |
|
``` |
|
``` |
|
python3 pretrain.py --dataset_path cluecorpus_seq128_dataset.pt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--config_path models/bert_medium_config.json \ |
|
--output_model_path models/cluecorpus_roberta_medium_seq128_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ |
|
--learning_rate 1e-4 --batch_size 64 \ |
|
--tie_weights --encoder bert --target mlm |
|
``` |
|
Stage2: |
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpus_seq512_dataset.pt \ |
|
--processes_num 32 --seq_length 512 \ |
|
--dynamic_masking --target mlm |
|
``` |
|
``` |
|
python3 pretrain.py --dataset_path cluecorpus_seq512_dataset.pt \ |
|
--pretrained_model_path models/cluecorpus_roberta_medium_seq128_model.bin-1000000 \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--config_path models/bert_medium_config.json \ |
|
--output_model_path models/cluecorpus_roberta_medium_seq512_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ |
|
--learning_rate 5e-5 --batch_size 16 \ |
|
--tie_weights --encoder bert --target mlm |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
[2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128 |
|
[4_256]: https://huggingface.co/uer/chinese_roberta_L-4_H-256 |
|
[8_512]: https://huggingface.co/uer/chinese_roberta_L-8_H-512 |
|
|
|
|