First version of the chinese_roberta_L-8_H-512 model and tokenizer.
Browse files- README.md +144 -0
- config.json +20 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Chinese
|
3 |
+
datasets: CLUECorpus
|
4 |
+
widget:
|
5 |
+
- text: "北京是[MASK]国的首都。"
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
# Chinese RoBERTa Miniatures
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
|
13 |
+
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
|
14 |
+
|
15 |
+
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
|
16 |
+
|
17 |
+
| |H=128|H=256|H=512|H=768|
|
18 |
+
|---|:---:|:---:|:---:|:---:|
|
19 |
+
| **L=2** |[**2/128 (Tiny)**][2_128]|[2/256]|[2/512]|[2/768]|
|
20 |
+
| **L=4** |[4/128]|[**4/256 (Mini)**][4_256]|[**4/512 (Small)**]|[4/768]|
|
21 |
+
| **L=6** |[6/128]|[6/256]|[6/512]|[6/768]|
|
22 |
+
| **L=8** |[8/128]|[8/256]|[**8/512 (Medium)**][8_512]|[8/768]|
|
23 |
+
| **L=10** |[10/128]|[10/256]|[10/512]|[10/768]|
|
24 |
+
| **L=12** |[12/128]|[12/256]|[12/512]|[**12/768 (Base)**]|
|
25 |
+
|
26 |
+
## How to use
|
27 |
+
|
28 |
+
You can use this model directly with a pipeline for masked language modeling:
|
29 |
+
|
30 |
+
```python
|
31 |
+
>>> from transformers import pipeline
|
32 |
+
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
|
33 |
+
>>> unmasker("中国的首都是[MASK]京。")
|
34 |
+
[
|
35 |
+
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
|
36 |
+
'score': 0.9338967204093933,
|
37 |
+
'token': 1266,
|
38 |
+
'token_str': '北'},
|
39 |
+
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
|
40 |
+
'score': 0.039428312331438065,
|
41 |
+
'token': 1298,
|
42 |
+
'token_str': '南'},
|
43 |
+
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
|
44 |
+
'score': 0.01681734062731266,
|
45 |
+
'token': 691,
|
46 |
+
'token_str': '东'},
|
47 |
+
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]',
|
48 |
+
'score': 0.004590896889567375,
|
49 |
+
'token': 3249,
|
50 |
+
'token_str': '普'},
|
51 |
+
{'sequence': '[CLS] 中 国 的 首 都 是 燕 京 。 [SEP]',
|
52 |
+
'score': 0.0007656012894585729,
|
53 |
+
'token': 4242,
|
54 |
+
'token_str': '燕'}
|
55 |
+
]
|
56 |
+
|
57 |
+
```
|
58 |
+
|
59 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
60 |
+
|
61 |
+
```python
|
62 |
+
from transformers import BertTokenizer, BertModel
|
63 |
+
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
|
64 |
+
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
|
65 |
+
text = "用你喜欢的任何文本替换我。"
|
66 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
67 |
+
output = model(**encoded_input)
|
68 |
+
```
|
69 |
+
|
70 |
+
and in TensorFlow:
|
71 |
+
|
72 |
+
```python
|
73 |
+
from transformers import BertTokenizer, TFBertModel
|
74 |
+
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
|
75 |
+
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
|
76 |
+
text = "用你喜欢的任何文本替换我。"
|
77 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
78 |
+
output = model(encoded_input)
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
## Training data
|
84 |
+
|
85 |
+
CLUECorpus2020 and CLUECorpusSmall are used as training data.
|
86 |
+
|
87 |
+
## Training procedure
|
88 |
+
|
89 |
+
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
|
90 |
+
|
91 |
+
Stage1:
|
92 |
+
```
|
93 |
+
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
|
94 |
+
--vocab_path models/google_zh_vocab.txt \
|
95 |
+
--dataset_path cluecorpus_seq128_dataset.pt \
|
96 |
+
--processes_num 32 --seq_length 128 \
|
97 |
+
--dynamic_masking --target mlm
|
98 |
+
```
|
99 |
+
```
|
100 |
+
python3 pretrain.py --dataset_path cluecorpus_seq128_dataset.pt \
|
101 |
+
--vocab_path models/google_zh_vocab.txt \
|
102 |
+
--config_path models/bert_medium_config.json \
|
103 |
+
--output_model_path models/cluecorpus_roberta_medium_seq128_model.bin \
|
104 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
105 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
106 |
+
--learning_rate 1e-4 --batch_size 64 \
|
107 |
+
--tie_weights --encoder bert --target mlm
|
108 |
+
```
|
109 |
+
Stage2:
|
110 |
+
```
|
111 |
+
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
|
112 |
+
--vocab_path models/google_zh_vocab.txt \
|
113 |
+
--dataset_path cluecorpus_seq512_dataset.pt \
|
114 |
+
--processes_num 32 --seq_length 512 \
|
115 |
+
--dynamic_masking --target mlm
|
116 |
+
```
|
117 |
+
```
|
118 |
+
python3 pretrain.py --dataset_path cluecorpus_seq512_dataset.pt \
|
119 |
+
--pretrained_model_path models/cluecorpus_roberta_medium_seq128_model.bin-1000000 \
|
120 |
+
--vocab_path models/google_zh_vocab.txt \
|
121 |
+
--config_path models/bert_medium_config.json \
|
122 |
+
--output_model_path models/cluecorpus_roberta_medium_seq512_model.bin \
|
123 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
124 |
+
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
|
125 |
+
--learning_rate 5e-5 --batch_size 16 \
|
126 |
+
--tie_weights --encoder bert --target mlm
|
127 |
+
```
|
128 |
+
|
129 |
+
### BibTeX entry and citation info
|
130 |
+
|
131 |
+
```
|
132 |
+
@article{zhao2019uer,
|
133 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
134 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
135 |
+
journal={EMNLP-IJCNLP 2019},
|
136 |
+
pages={241},
|
137 |
+
year={2019}
|
138 |
+
}
|
139 |
+
```
|
140 |
+
|
141 |
+
[2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128
|
142 |
+
[4_256]: https://huggingface.co/uer/chinese_roberta_L-4_H-256
|
143 |
+
[8_512]: https://huggingface.co/uer/chinese_roberta_L-8_H-512
|
144 |
+
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 512,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 2048,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 8,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"type_vocab_size": 2,
|
19 |
+
"vocab_size": 21128
|
20 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08d4f174eca71a30050c061139d9224158cbc1f07c12a5e8d31413823d304539
|
3 |
+
size 146403143
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac1fbad67249f2b0453069239129dc8e8e3a5ae24ecf23cab296d5e9438fb17f
|
3 |
+
size 191919800
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|