metadata
language: Chinese
datasets: CLUECorpus
widget:
- text: 北京是[MASK]国的首都。
Chinese RoBERTa Miniatures
Model description
This is the set of 24 Chinese RoBERTa models pre-trained by UER-py.
You can download the 24 Chinese RoBERTa miniatures either from the UER-py Github page, or via HuggingFace from the links below:
H=128 | H=256 | H=512 | H=768 | |
---|---|---|---|---|
L=2 | 2/128 (Tiny) | [2/256] | [2/512] | [2/768] |
L=4 | [4/128] | 4/256 (Mini) | [4/512 (Small)] | [4/768] |
L=6 | [6/128] | [6/256] | [6/512] | [6/768] |
L=8 | [8/128] | [8/256] | 8/512 (Medium) | [8/768] |
L=10 | [10/128] | [10/256] | [10/512] | [10/768] |
L=12 | [12/128] | [12/256] | [12/512] | [12/768 (Base)] |
How to use
You can use this model directly with a pipeline for masked language modeling:
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
>>> unmasker("中国的首都是[MASK]京。")
[
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
'score': 0.9338967204093933,
'token': 1266,
'token_str': '北'},
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
'score': 0.039428312331438065,
'token': 1298,
'token_str': '南'},
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
'score': 0.01681734062731266,
'token': 691,
'token_str': '东'},
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]',
'score': 0.004590896889567375,
'token': 3249,
'token_str': '普'},
{'sequence': '[CLS] 中 国 的 首 都 是 燕 京 。 [SEP]',
'score': 0.0007656012894585729,
'token': 4242,
'token_str': '燕'}
]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
and in TensorFlow:
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Training data
CLUECorpus2020 and CLUECorpusSmall are used as training data.
Training procedure
Models are pre-trained by UER-py on Tencent Cloud TI-ONE. We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
Stage1:
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpus_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --target mlm
python3 pretrain.py --dataset_path cluecorpus_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert_medium_config.json \
--output_model_path models/cluecorpus_roberta_medium_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--tie_weights --encoder bert --target mlm
Stage2:
python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpus_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --target mlm
python3 pretrain.py --dataset_path cluecorpus_seq512_dataset.pt \
--pretrained_model_path models/cluecorpus_roberta_medium_seq128_model.bin-1000000 \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert_medium_config.json \
--output_model_path models/cluecorpus_roberta_medium_seq512_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--tie_weights --encoder bert --target mlm
BibTeX entry and citation info
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}