Spaces:
Sleeping
Sleeping
File size: 2,866 Bytes
f0ecbdc e8c41c8 f0ecbdc e406126 f0ecbdc 9268827 f0ecbdc e406126 f0ecbdc e406126 9268827 f0ecbdc e406126 f0ecbdc 78435e5 a47bac8 f0ecbdc a47bac8 ae6c2da a47bac8 f0ecbdc a47bac8 3a49c7a a47bac8 f0ecbdc a47bac8 a5c12e4 e406126 a5c12e4 a47bac8 a5c12e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import os
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
from huggingface_hub import login, hf_hub_download
# Authenticate with Hugging Face token (if available)
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Download and load the model from the Hugging Face Hub
repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default
filename = "your_trained_model.keras" # Updated filename
cache_dir = "./models" # Local directory to cache the model
os.makedirs(cache_dir, exist_ok=True)
model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
# Load the model
model = tf.keras.models.load_model(model_path)
# Streamlit UI
tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Image Links"])
# Tab 1: Christmas Tree Classifier
with tab1:
st.title("Christmas Tree Classifier")
st.write("Upload an image of a Christmas tree to classify it:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_container_width=True) # Updated to use_container_width
st.write("")
st.write("Classifying...")
# Preprocess the image
image = image.resize((224, 224)) # Resize to match your model's input size
image_array = np.array(image) / 255.0 # Normalize pixel values
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
# Make prediction
prediction = model.predict(image_array)
# Get predicted class
predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
# Display the prediction
st.write(f"Prediction: {predicted_class}")
# Tab 2: Sample Image Links
with tab2:
st.title("Sample Image Links")
# First header and paragraph with link
st.header("View some of my decorated and undecorated tree samples for the Model here:")
st.write("You can view the sample images for both decorated and undecorated trees in the following link:")
st.write("[View sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=0)")
# Second header and paragraph with download link
st.header("Download the tree sample pictures to test them on the model yourself here:")
st.write("You can download the tree sample images by clicking on the link below to test them in the Christmas Tree Classifier:")
st.write("[Download sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=1)") |