willco-afk commited on
Commit
a47bac8
·
verified ·
1 Parent(s): 3543c6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -19
app.py CHANGED
@@ -21,28 +21,46 @@ model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache
21
  model = tf.keras.models.load_model(model_path)
22
 
23
  # Streamlit UI
24
- st.title("Christmas Tree Classifier")
25
- st.write("Upload an image of a Christmas tree to classify it:")
26
 
27
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
 
 
 
28
 
29
- if uploaded_file is not None:
30
- # Display the uploaded image
31
- image = Image.open(uploaded_file)
32
- st.image(image, caption="Uploaded Image.", use_column_width=True)
33
- st.write("")
34
- st.write("Classifying...")
35
 
36
- # Preprocess the image
37
- image = image.resize((224, 224)) # Resize to match your model's input size
38
- image_array = np.array(image) / 255.0 # Normalize pixel values
39
- image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
 
 
40
 
41
- # Make prediction
42
- prediction = model.predict(image_array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- # Get predicted class
45
- predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
 
 
 
46
 
47
- # Display the prediction
48
- st.write(f"Prediction: {predicted_class}")
 
 
21
  model = tf.keras.models.load_model(model_path)
22
 
23
  # Streamlit UI
24
+ tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Image Links"])
 
25
 
26
+ # Tab 1: Christmas Tree Classifier
27
+ with tab1:
28
+ st.title("Christmas Tree Classifier")
29
+ st.write("Upload an image of a Christmas tree to classify it:")
30
 
31
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
 
 
 
 
 
32
 
33
+ if uploaded_file is not None:
34
+ # Display the uploaded image
35
+ image = Image.open(uploaded_file)
36
+ st.image(image, caption="Uploaded Image.", use_column_width=True)
37
+ st.write("")
38
+ st.write("Classifying...")
39
 
40
+ # Preprocess the image
41
+ image = image.resize((224, 224)) # Resize to match your model's input size
42
+ image_array = np.array(image) / 255.0 # Normalize pixel values
43
+ image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
44
+
45
+ # Make prediction
46
+ prediction = model.predict(image_array)
47
+
48
+ # Get predicted class
49
+ predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
50
+
51
+ # Display the prediction
52
+ st.write(f"Prediction: {predicted_class}")
53
+
54
+ # Tab 2: Sample Image Links
55
+ with tab2:
56
+ st.title("Sample Image Links and Placeholder Texts")
57
 
58
+ # Display 50 placeholder texts (as links) for sample tree images
59
+ st.write("Here are 50 placeholder links for sample tree images:")
60
+
61
+ for i in range(1, 51):
62
+ st.write(f"[Sample Tree Image {i}](https://www.example.com/sample-tree-image-{i})")
63
 
64
+ st.write("\nAdditional Links:")
65
+ st.write("[View sample images here](https://www.example.com/sample-images)")
66
+ st.write("[Download sample images here](https://www.example.com/download-sample-images)")