Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,70 +4,46 @@ import tensorflow as tf
|
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
from huggingface_hub import login, hf_hub_download
|
| 7 |
-
import zipfile # Added for extracting zip files
|
| 8 |
|
| 9 |
# Authenticate with Hugging Face token (if available)
|
| 10 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 11 |
if hf_token:
|
| 12 |
login(token=hf_token)
|
| 13 |
|
| 14 |
# Download and load the model from the Hugging Face Hub
|
| 15 |
repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default
|
| 16 |
-
filename = "
|
| 17 |
cache_dir = "./models" # Local directory to cache the model
|
| 18 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 19 |
-
|
| 20 |
-
# Download the model file from Hugging Face
|
| 21 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
|
| 22 |
|
| 23 |
-
# Extract and load the model
|
| 24 |
-
model_unzipped_path = os.path.join(cache_dir, "your_trained_model_resnet50.keras") # Path where we will extract the model
|
| 25 |
-
if not os.path.exists(model_unzipped_path):
|
| 26 |
-
with zipfile.ZipFile(model_path, 'r') as zip_ref:
|
| 27 |
-
zip_ref.extractall(cache_dir)
|
| 28 |
-
print(f"Model unzipped to {model_unzipped_path}")
|
| 29 |
-
|
| 30 |
# Load the model
|
| 31 |
-
model = tf.keras.models.load_model(
|
| 32 |
-
|
| 33 |
-
# Function for image prediction
|
| 34 |
-
def predict_decoration(image: Image.Image):
|
| 35 |
-
# Preprocess the image to match the model input size
|
| 36 |
-
image = image.resize((224, 224)) # Resize to match model's expected input size
|
| 37 |
-
image_array = np.array(image) / 255.0 # Normalize image to [0, 1]
|
| 38 |
-
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
| 39 |
-
|
| 40 |
-
# Make prediction
|
| 41 |
-
prediction = model.predict(image_array)
|
| 42 |
-
return "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
|
| 43 |
|
| 44 |
# Streamlit UI
|
| 45 |
-
st.title("
|
| 46 |
st.write("Upload an image of a Christmas tree to classify it:")
|
| 47 |
|
| 48 |
-
|
| 49 |
-
tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Images"])
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
st.image(image, caption="Uploaded Image.", use_container_width=True)
|
| 59 |
-
|
| 60 |
-
st.write("Classifying...")
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
st.write("
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
from huggingface_hub import login, hf_hub_download
|
|
|
|
| 7 |
|
| 8 |
# Authenticate with Hugging Face token (if available)
|
| 9 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 10 |
if hf_token:
|
| 11 |
login(token=hf_token)
|
| 12 |
|
| 13 |
# Download and load the model from the Hugging Face Hub
|
| 14 |
repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default
|
| 15 |
+
filename = "your_trained_model.keras" # Updated filename
|
| 16 |
cache_dir = "./models" # Local directory to cache the model
|
| 17 |
+
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
|
|
|
| 18 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Load the model
|
| 21 |
+
model = tf.keras.models.load_model(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Streamlit UI
|
| 24 |
+
st.title("Christmas Tree Classifier")
|
| 25 |
st.write("Upload an image of a Christmas tree to classify it:")
|
| 26 |
|
| 27 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
| 28 |
|
| 29 |
+
if uploaded_file is not None:
|
| 30 |
+
# Display the uploaded image
|
| 31 |
+
image = Image.open(uploaded_file)
|
| 32 |
+
# Updated Line:
|
| 33 |
+
st.image(image, caption="Uploaded Image.", use_container_width=True)
|
| 34 |
+
st.write("")
|
| 35 |
+
st.write("Classifying...")
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Preprocess the image
|
| 38 |
+
image = image.resize((224, 224)) # Resize to match your model's input size
|
| 39 |
+
image_array = np.array(image) / 255.0 # Normalize pixel values
|
| 40 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
| 41 |
|
| 42 |
+
# Make prediction
|
| 43 |
+
prediction = model.predict(image_array)
|
| 44 |
+
|
| 45 |
+
# Get predicted class
|
| 46 |
+
predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
|
| 47 |
|
| 48 |
+
# Display the prediction
|
| 49 |
+
st.write(f"Prediction: {predicted_class}")
|