willco-afk commited on
Commit
ae6c2da
·
verified ·
1 Parent(s): 2d7c0db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -25,6 +25,18 @@ model = tf.keras.models.load_model(model_path)
25
  st.title("Christmas Tree Classifier")
26
  st.write("Upload an image of a Christmas tree to classify it:")
27
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
29
 
30
  if uploaded_file is not None:
@@ -46,17 +58,4 @@ if uploaded_file is not None:
46
  predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
47
 
48
  # Display the prediction
49
- st.write(f"Prediction: {predicted_class}")
50
-
51
- # Create tabs here (after the main UI elements)
52
- tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Images"])
53
-
54
- # Tab 1: Christmas Tree Classifier
55
- with tab1:
56
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
57
- if uploaded_file is not None:
58
- # ... (Rest of the code for image processing and prediction) ...
59
-
60
- # Tab 2: Sample Images
61
- with tab2:
62
- # ... (Code for Tab 2 remains the same) ...
 
25
  st.title("Christmas Tree Classifier")
26
  st.write("Upload an image of a Christmas tree to classify it:")
27
 
28
+ # Create tabs here (after the main UI elements)
29
+ tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Images"])
30
+
31
+ # Tab 1: Christmas Tree Classifier
32
+ with tab1:
33
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
34
+ if uploaded_file is not None:
35
+ # ... (Rest of the code for image processing and prediction) ...
36
+
37
+ # Tab 2: Sample Images
38
+ with tab2:
39
+ # ... (Code for Tab 2 remains the same) ...
40
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
41
 
42
  if uploaded_file is not None:
 
58
  predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
59
 
60
  # Display the prediction
61
+ st.write(f"Prediction: {predicted_class}")