File size: 5,358 Bytes
0cfb4a5
d4fba6d
0dec378
 
757da8f
d4fba6d
2fc432b
 
d95dbe9
32fdddd
219d097
471c590
757da8f
52a0784
757da8f
481dde5
d95dbe9
 
 
2fc432b
32fdddd
 
 
 
757da8f
32fdddd
 
 
52a0784
1a52ee5
68ef0f8
481dde5
68ef0f8
 
 
481dde5
 
 
d95dbe9
32fdddd
5d264e2
 
 
 
 
52a0784
ffe0681
 
32fdddd
 
 
e3be785
 
5d264e2
d95dbe9
 
 
 
 
 
e3be785
32fdddd
2fc432b
5d264e2
757da8f
5d264e2
757da8f
 
ffe0681
d8f32ab
2713519
757da8f
 
 
e3be785
32fdddd
e3be785
 
32fdddd
e3be785
3b4ee8c
32fdddd
3b4ee8c
32fdddd
 
 
 
5d264e2
67e8080
5d264e2
 
 
 
 
 
 
 
757da8f
d8f32ab
32fdddd
d95dbe9
 
68ef0f8
2713519
68ef0f8
d8f32ab
68ef0f8
5d264e2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, InferenceClient
from PIL import Image
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = prompt + "," + lora_word
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    
    improved_prompt = await improve_prompt(prompt)
    combined_prompt = f"{prompt} {improved_prompt}"

    image, seed = await generate_image(combined_prompt, model, "", width, height, scales, steps, seed)
    
    if isinstance(image, str) and image.startswith("Error"):
        return [image, None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
        if upscale_image_path is not None:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save("upscale_image.jpg", format="JPEG")
            return [image_path, "upscale_image.jpg"]
        else:
            return [image_path, image_path]
    else:
        return [image_path, image_path]

async def improve_prompt(prompt):
    try:
        instruction = "Mejora mi prompt para texto a imagen en ingl茅s con estilo, cinematograf铆a, c谩maras, atm贸sfera e iluminaci贸n para la mejor calidad, de m谩ximo 200 palabras."
        formatted_prompt = f"{instruction}: {prompt}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
        improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()

        return improved_text
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripci贸n de im谩gen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                
                with gr.Row():
                    process_lora = gr.Checkbox(label="Procesar LORA")
                    process_upscale = gr.Checkbox(label="Procesar Escalador")

                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)

                improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)

                improve_btn = gr.Button("Mejora mi prompt")
                improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt)
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
                    seed = gr.Number(label="Semilla", value=-1)
    
                btn = gr.Button("Generar")
                btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
    demo.launch()