Spaces:
Runtime error
Runtime error
File size: 5,942 Bytes
babca6f cbe4d4c c8e54ed 1ae8e53 ff14337 87e9ad0 ff14337 df85058 ff14337 53eb88c 28ff844 ff14337 df85058 a94b06f df85058 61fa7d4 34bf2a6 61fa7d4 4b9eea9 df85058 c8e54ed 53eb88c c8e54ed bbd3701 2cadcf2 f5e59d1 9d36990 f5e59d1 f10b2fa 6bfef5d 395d676 73d041b 395d676 ff14337 7a481f6 187b547 bb7f792 187b547 bb7f792 7a481f6 187b547 ff14337 cbd996a ff14337 87e9ad0 ff14337 789fd51 ff14337 395d676 ff14337 33b1b5b 53eb88c 187b547 33b1b5b ca7ae8f 335e90e 33b1b5b 187b547 30dbd25 c8e54ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
import classify
from whisper.model import Whisper
from whisper.tokenizer import get_tokenizer
from speechbrain.pretrained.interfaces import foreign_class
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model
model_cache = {}
# Building prediction function for gradio
emo_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'neu': 'Neutral'
}
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
class_options = {
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racially diminutive", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
"LGBTQ+ hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"],
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexually demeaning", "sexual violence", "victim blaming"],
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
}
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, classify_anxiety):
# Transcribe the audio file using Whisper ASR
if audio_file != None:
transcribed_text = pipe(audio_file)["text"]
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
else:
transcribed_text = text_input
if classify_anxiety != "misophonia":
#### Toxicity Classifier ####
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
toxicity_score = toxicity_results["toxicity"][0]
print(toxicity_score)
#### Text classification #####
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
sequence_to_classify = transcribed_text
print(classify_anxiety, class_options)
candidate_labels = class_options.get(classify_anxiety, [])
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
print(classification_output)
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
return toxicity_score, classification_output, emo_dict[text_lab[0]], transcribed_text
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
else:
# model = model_cache[model_name]
# class_names = classify_anxiety.split(",")
class_names_list = class_options.get(classify_anxiety, [])
class_str = ""
for elm in class_names_list:
class_str += elm + ","
#class_names = class_names_temp.split(",")
class_names = class_str.split(",")
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
# tokenizer = get_tokenizer(multilingual=".en" not in model_name)
tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
model = "whisper-large"
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=Whisper,
class_names=class_names,
# class_names=classify_anxiety,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_path, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
return {class_name: score for class_name, score in zip(class_names, scores)}
return classify_anxiety
with gr.Blocks() as iface:
with gr.Column():
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
submit_btn = gr.Button(label="Run")
with gr.Column():
out_text = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class], outputs=out_text)
iface.launch() |