File size: 23,161 Bytes
2b98806
 
 
9576e83
2b98806
 
 
07462e7
 
2b98806
 
 
3f7fee9
e3b132f
3f7fee9
 
e3b132f
caaf478
 
 
 
 
 
 
 
 
9576e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7fee9
9576e83
 
 
 
 
8575416
 
604dab5
caaf478
 
9576e83
69d2985
3f7fee9
 
 
9576e83
8575416
9576e83
 
caaf478
9576e83
caaf478
9576e83
 
 
 
 
 
 
 
1075d8a
9576e83
3f7fee9
9576e83
 
 
2b98806
 
3f7fee9
2b98806
 
 
3f7fee9
 
 
 
 
 
 
 
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7fee9
2b98806
 
 
 
 
 
604dab5
caaf478
 
2b98806
69d2985
3f7fee9
 
 
2b98806
 
 
caaf478
2b98806
caaf478
2b98806
 
 
 
 
 
 
 
1075d8a
2b98806
3f7fee9
 
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7fee9
2b98806
caaf478
604dab5
caaf478
 
2b98806
69d2985
3f7fee9
 
 
2b98806
caaf478
2b98806
caaf478
2b98806
caaf478
2b98806
 
 
 
 
 
 
 
1075d8a
2b98806
 
3f7fee9
2b98806
 
 
 
 
 
 
 
 
 
 
 
e3b132f
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c320745
 
2b98806
 
 
 
 
c320745
2b98806
 
 
 
 
 
 
 
c320745
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7fee9
2b98806
 
caaf478
2b98806
604dab5
caaf478
 
2b98806
69d2985
3f7fee9
 
 
2b98806
caaf478
2b98806
caaf478
2b98806
caaf478
2b98806
 
 
 
 
 
 
 
1075d8a
2b98806
3f7fee9
2b98806
 
 
e9f5121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caaf478
3f7fee9
 
 
 
 
 
caaf478
3f7fee9
caaf478
3f7fee9
caaf478
3f7fee9
caaf478
3f7fee9
 
 
 
 
fda4350
caaf478
fda4350
 
 
 
caaf478
 
 
e9f5121
 
 
 
 
 
 
 
caaf478
2b98806
e9f5121
 
 
 
2b98806
 
 
 
 
 
 
 
c320745
2b98806
 
c320745
 
1075d8a
c320745
2b98806
07462e7
2b98806
 
 
1075d8a
2b98806
 
 
db6540f
07462e7
 
c320745
04649b1
c320745
 
 
 
db6540f
c320745
 
 
 
 
 
 
db6540f
c320745
 
9576e83
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c320745
2b98806
 
 
 
 
a48bd1b
2b98806
 
 
c320745
2b98806
 
 
c320745
 
2b98806
 
 
 
 
 
 
07462e7
 
2b98806
 
 
3f7fee9
07462e7
2b98806
 
 
 
 
 
 
 
c320745
2b98806
c320745
 
2b98806
 
 
 
a48bd1b
 
2b98806
 
 
 
 
b368f4d
2b98806
 
 
 
 
a48bd1b
 
e7b08b0
 
04649b1
e7b08b0
 
 
 
 
2b98806
 
 
9b0549b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
from typing import Optional, Tuple
from einops import rearrange
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
import numpy as np
import os
import time

import gradio as gr

import spaces

USE_CUDA = torch.cuda.is_available()
print("CUDA is available:", USE_CUDA)

def transform_images(images, resolution=(1024, 1024)):
    images = [image.convert("RGB").resize(resolution) for image in images]
    # Convert to torch tensor
    images = [torch.tensor(np.array(image).transpose(2, 0, 1)).float() / 255 for image in images]
    # Normalize
    images = [(image - 0.5) / 0.5 for image in images]
    images = torch.stack(images)
    return images

class MobileSAM(nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        from mobile_sam import sam_model_registry

        url = 'https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt'
        model_type = "vit_t"
        sam_checkpoint = "mobile_sam.pt"
        if not os.path.exists(sam_checkpoint):
            import requests
            r = requests.get(url)
            with open(sam_checkpoint, 'wb') as f:
                f.write(r.content)

        mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

        def new_forward_fn(self, x):
            shortcut = x

            x = self.conv1(x)
            x = self.act1(x)

            x = self.conv2(x)
            x = self.act2(x)
            
            self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.conv3(x)
            
            self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.drop_path(x)

            x += shortcut
            x = self.act3(x)
            
            self.block_output = rearrange(x.clone(), "b c h w -> b h w c")

            return x

        setattr(mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn)

        def new_forward_fn2(self, x):
            H, W = self.input_resolution
            B, L, C = x.shape
            assert L == H * W, "input feature has wrong size"
            res_x = x
            if H == self.window_size and W == self.window_size:
                x = self.attn(x)
            else:
                x = x.view(B, H, W, C)
                pad_b = (self.window_size - H %
                            self.window_size) % self.window_size
                pad_r = (self.window_size - W %
                            self.window_size) % self.window_size
                padding = pad_b > 0 or pad_r > 0

                if padding:
                    x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))

                pH, pW = H + pad_b, W + pad_r
                nH = pH // self.window_size
                nW = pW // self.window_size
                # window partition
                x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
                    B * nH * nW, self.window_size * self.window_size, C)
                x = self.attn(x)
                # window reverse
                x = x.view(B, nH, nW, self.window_size, self.window_size,
                            C).transpose(2, 3).reshape(B, pH, pW, C)

                if padding:
                    x = x[:, :H, :W].contiguous()

                x = x.view(B, L, C)

            hw = np.sqrt(x.shape[1]).astype(int)
            self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
            
            x = res_x + self.drop_path(x)

            x = x.transpose(1, 2).reshape(B, C, H, W)
            x = self.local_conv(x)
            x = x.view(B, C, L).transpose(1, 2)

            mlp_output = self.mlp(x)
            self.mlp_output = rearrange(mlp_output.clone(), "b (h w) c -> b h w c", h=hw)
            
            x = x + self.drop_path(mlp_output)
            self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
            return x

        setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)


        mobile_sam.eval()
        self.image_encoder = mobile_sam.image_encoder
        
    
    @torch.no_grad()
    def forward(self, x):
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i_layer in range(len(self.image_encoder.layers)):
            for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
                blk = self.image_encoder.layers[i_layer].blocks[i_block]
                attn_outputs.append(blk.attn_output)
                mlp_outputs.append(blk.mlp_output)
                block_outputs.append(blk.block_output)
        return attn_outputs, mlp_outputs, block_outputs

mobilesam = MobileSAM()

def image_mobilesam_feature(
    images,
    node_type="block",
    layer=-1,
):  
    print("Running MobileSAM")
    global USE_CUDA
    if USE_CUDA:
        images = images.cuda()

    global mobilesam
    feat_extractor = mobilesam
    if USE_CUDA:
        feat_extractor = feat_extractor.cuda()

    print("images shape:", images.shape)
    # attn_outputs, mlp_outputs, block_outputs = [], [], []
    outputs = []
    for i in range(images.shape[0]):
        attn_output, mlp_output, block_output = feat_extractor(
            images[i].unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out)
    outputs = torch.cat(outputs, dim=0)
    
    return outputs



class SAM(torch.nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        from segment_anything import sam_model_registry, SamPredictor
        from segment_anything.modeling.sam import Sam
        
        checkpoint = "sam_vit_b_01ec64.pth"
        if not os.path.exists(checkpoint):
            checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
            import requests
            r = requests.get(checkpoint_url)
            with open(checkpoint, 'wb') as f:
                f.write(r.content)

        sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)

        from segment_anything.modeling.image_encoder import (
            window_partition,
            window_unpartition,
        )

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x
            x = self.norm1(x)
            # Window partition
            if self.window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, self.window_size)

            x = self.attn(x)
            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, self.window_size, pad_hw, (H, W))
            self.attn_output = x.clone()

            x = shortcut + x
            mlp_outout = self.mlp(self.norm2(x))
            self.mlp_output = mlp_outout.clone()
            x = x + mlp_outout
            self.block_output = x.clone()

            return x

        setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)

        self.image_encoder = sam.image_encoder
        self.image_encoder.eval()

    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.image_encoder.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)
        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs

sam = SAM()

def image_sam_feature(
    images,
    node_type="block",
    layer=-1,
):
    global USE_CUDA
    if USE_CUDA:
        images = images.cuda()

    global sam
    feat_extractor = sam
    if USE_CUDA:
        feat_extractor = feat_extractor.cuda()

    # attn_outputs, mlp_outputs, block_outputs = [], [], []
    outputs = []
    for i in range(images.shape[0]):
        attn_output, mlp_output, block_output = feat_extractor(
            images[i].unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out)
    outputs = torch.cat(outputs, dim=0)
    
    
    return outputs


class DiNOv2(torch.nn.Module):
    def __init__(self, ver="dinov2_vitb14_reg"):
        super().__init__()
        self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
        self.dinov2.requires_grad_(False)
        self.dinov2.eval()

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            def attn_residual_func(x):
                return self.ls1(self.attn(self.norm1(x)))

            def ffn_residual_func(x):
                return self.ls2(self.mlp(self.norm2(x)))

            attn_output = attn_residual_func(x)
            self.attn_output = attn_output.clone()
            x = x + attn_output
            mlp_output = ffn_residual_func(x)
            self.mlp_output = mlp_output.clone()
            x = x + mlp_output
            block_output = x
            self.block_output = block_output.clone()
            return x

        setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)

    @torch.no_grad()
    def forward(self, x):

        out = self.dinov2(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.dinov2.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs

dinov2 = DiNOv2()

def image_dino_feature(images, node_type="block", layer=-1):
    global USE_CUDA
    if USE_CUDA:
        images = images.cuda()

    global dinov2
    feat_extractor = dinov2
    if USE_CUDA:
        feat_extractor = feat_extractor.cuda()

    # attn_outputs, mlp_outputs, block_outputs = [], [], []
    outputs = []
    for i in range(images.shape[0]):
        attn_output, mlp_output, block_output = feat_extractor(
            images[i].unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out)
    outputs = torch.cat(outputs, dim=0)
    outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32)
    
    return outputs


class CLIP(torch.nn.Module):
    def __init__(self):
        super().__init__()

        from transformers import CLIPProcessor, CLIPModel

        model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
        # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
        self.model = model.eval()

        def new_forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: torch.Tensor,
            causal_attention_mask: torch.Tensor,
            output_attentions: Optional[bool] = False,
        ) -> Tuple[torch.FloatTensor]:

            residual = hidden_states

            hidden_states = self.layer_norm1(hidden_states)
            hidden_states, attn_weights = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                causal_attention_mask=causal_attention_mask,
                output_attentions=output_attentions,
            )
            hw = np.sqrt(hidden_states.shape[1]-1).astype(int)
            self.attn_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
            hidden_states = residual + hidden_states

            residual = hidden_states
            hidden_states = self.layer_norm2(hidden_states)
            hidden_states = self.mlp(hidden_states)
            self.mlp_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
            
            hidden_states = residual + hidden_states

            outputs = (hidden_states,)

            if output_attentions:
                outputs += (attn_weights,)

            self.block_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
            return outputs
        
        setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward)

    @torch.no_grad()
    def forward(self, x): 

        out = self.model.vision_model(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.model.vision_model.encoder.layers):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs

clip = CLIP()

def image_clip_feature(
    images, node_type="block", layer=-1
):
    global USE_CUDA
    if USE_CUDA:
        images = images.cuda()

    global clip
    feat_extractor = clip
    if USE_CUDA:
        feat_extractor = feat_extractor.cuda()

    # attn_outputs, mlp_outputs, block_outputs = [], [], []
    outputs = []
    for i in range(images.shape[0]):
        attn_output, mlp_output, block_output = feat_extractor(
            images[i].unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out)
    outputs = torch.cat(outputs, dim=0)
    
    return outputs



import hashlib
import pickle
import sys
from collections import OrderedDict

# Cache dictionary with limited size
class LimitedSizeCache(OrderedDict):
    def __init__(self, max_size_bytes):
        self.max_size_bytes = max_size_bytes
        self.current_size_bytes = 0
        super().__init__()

    def __setitem__(self, key, value):
        item_size = self.get_item_size(value)
        # Evict items until there is enough space
        while self.current_size_bytes + item_size > self.max_size_bytes:
            self.popitem(last=False)
        super().__setitem__(key, value)
        self.current_size_bytes += item_size

    def __delitem__(self, key):
        value = self[key]
        super().__delitem__(key)
        self.current_size_bytes -= self.get_item_size(value)

    def get_item_size(self, value):
        """Estimate the size of the value in bytes."""
        return sys.getsizeof(value)

# Initialize the cache with a 4GB limit
cache = LimitedSizeCache(max_size_bytes=4 * 1024 * 1024 * 1024)  # 4GB

def compute_hash(*args, **kwargs):
    """Compute a unique hash based on the function arguments."""
    hasher = hashlib.sha256()
    pickled_args = pickle.dumps((args, kwargs))
    hasher.update(pickled_args)
    return hasher.hexdigest()


def run_model_on_image(images, model_name="sam", node_type="block", layer=-1):
    global USE_CUDA
    USE_CUDA = True
    
    if model_name == "SAM(sam_vit_b)":
        if not USE_CUDA:
            gr.warning("GPU not detected. Running SAM on CPU, ~30s/image.")
        result = image_sam_feature(images, node_type=node_type, layer=layer)
    elif model_name == 'MobileSAM':
        result = image_mobilesam_feature(images, node_type=node_type, layer=layer)
    elif model_name == "DiNO(dinov2_vitb14_reg)":
        result = image_dino_feature(images, node_type=node_type, layer=layer)
    elif model_name == "CLIP(openai/clip-vit-base-patch16)":
        result = image_clip_feature(images, node_type=node_type, layer=layer)
    else:
        raise ValueError(f"Model {model_name} not supported.")
    
    return result

def extract_features(images, model_name="MobileSAM", node_type="block", layer=-1):
    resolution_dict = {
        "MobileSAM": (1024, 1024),
        "SAM(sam_vit_b)": (1024, 1024),
        "DiNO(dinov2_vitb14_reg)": (448, 448),
        "CLIP(openai/clip-vit-base-patch16)": (224, 224),
    }
    images = transform_images(images, resolution=resolution_dict[model_name])
    
    # Compute the cache key
    cache_key = compute_hash(images, model_name, node_type, layer)

    # Check if the result is already in the cache
    if cache_key in cache:
        print("Cache hit!")
        return cache[cache_key]
    
    result = run_model_on_image(images, model_name=model_name, node_type=node_type, layer=layer)

    # Store the result in the cache
    cache[cache_key] = result
    
    return result

def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
):        
    from ncut_pytorch import NCUT, rgb_from_tsne_3d, rgb_from_umap_3d

    start = time.time()
    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if USE_CUDA else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    print(f"NCUT time: {time.time() - start:.2f}s")
    
    start = time.time()
    if embedding_method == "UMAP":
        X_3d, rgb = rgb_from_umap_3d(
            eigvecs,
            n_neighbors=n_neighbors,
            min_dist=min_dist,
        )
        print(f"UMAP time: {time.time() - start:.2f}s")
    elif embedding_method == "t-SNE":    
        X_3d, rgb = rgb_from_tsne_3d(
            eigvecs,
            num_sample=num_sample_tsne,
            perplexity=perplexity,
            knn=knn_tsne,
        )
        print(f"t-SNE time: {time.time() - start:.2f}s")
    else:
        raise ValueError(f"Embedding method {embedding_method} not supported.")
    
    rgb = rgb.reshape(features.shape[:3] + (3,))
    return rgb


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images):
    return [
        Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
        for image in images
    ]

@spaces.GPU(duration=30)
def main_fn(
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
):
    if perplexity >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.")
        perplexity = num_sample_tsne - 1
    
    images = [image[0] for image in images]
    
    start = time.time()
    features = extract_features(
        images, model_name=model_name, node_type=node_type, layer=layer
    )
    print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
    
    rgb = compute_ncut(
        features,
        num_eig=num_eig,
        num_sample_ncut=num_sample_ncut,
        affinity_focal_gamma=affinity_focal_gamma,
        knn_ncut=knn_ncut,
        knn_tsne=knn_tsne,
        num_sample_tsne=num_sample_tsne,
        embedding_method=embedding_method,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
    )
    rgb = dont_use_too_much_green(rgb)
    return to_pil_images(rgb)

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']

demo = gr.Interface(
    main_fn,
    [
        gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
        gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name"),
        gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
        gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
    ],
    gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
    additional_inputs=[
        gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
        gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
        gr.Slider(100, 50000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="Nyström approximation"),
        gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="Nyström approximation"),
        gr.Dropdown(["t-SNE", "UMAP"], label="Embedding method", value="t-SNE", elem_id="embedding_method"),
        gr.Slider(100, 1000, step=100, label="num_sample (t-SNE/UMAP)", value=300, elem_id="num_sample_tsne", info="Nyström approximation"),
        gr.Slider(1, 100, step=1, label="KNN (t-SNE/UMAP)", value=10, elem_id="knn_tsne", info="Nyström approximation"),
        gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=150, elem_id="perplexity"),
        gr.Slider(10, 500, step=10, label="n_neighbors (UMAP)", value=150, elem_id="n_neighbors"),
        gr.Slider(0.1, 1, step=0.1, label="min_dist (UMAP)", value=0.1, elem_id="min_dist"),
    ]
)

demo.launch()