huzey commited on
Commit
9b0549b
1 Parent(s): 226b4fb

update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -62
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # %%
2
  from typing import Optional, Tuple
3
  from einops import rearrange
4
  import torch
@@ -385,9 +384,8 @@ def main_fn(
385
  rgb = dont_use_too_much_green(rgb)
386
  return to_pil_images(rgb)
387
 
388
-
389
- default_images = ['/workspace/output/gradio/image_0.jpg', '/workspace/output/gradio/image_1.jpg', '/workspace/output/gradio/image_2.jpg', '/workspace/output/gradio/image_3.jpg', '/workspace/output/gradio/image_4.jpg', '/workspace/output/gradio/image_5.jpg']
390
- default_outputs = ['/workspace/output/gradio/ncut_0.jpg', '/workspace/output/gradio/ncut_1.jpg', '/workspace/output/gradio/ncut_2.jpg', '/workspace/output/gradio/ncut_3.jpg', '/workspace/output/gradio/ncut_4.jpg', '/workspace/output/gradio/ncut_5.jpg']
391
 
392
  demo = gr.Interface(
393
  main_fn,
@@ -410,61 +408,4 @@ demo = gr.Interface(
410
  ]
411
  )
412
 
413
- demo.launch(share=True)
414
-
415
- # %%
416
-
417
-
418
- # # %%
419
- # from ncut_pytorch import NCUT, rgb_from_tsne_3d
420
-
421
- # i_layer = -1
422
- # inp = block_outputs[i_layer]
423
- # eigvecs, eigvals = NCUT(
424
- # num_eig=1000, num_sample=10000, device="cuda:0", affinity_focal_gamma=0.3, knn=10
425
- # ).fit_transform(inp.reshape(-1, inp.shape[-1]))
426
- # print(eigvecs.shape, eigvals.shape)
427
- # # %%
428
- # X_3d, rgb = rgb_from_tsne_3d(
429
- # eigvecs[:, :100], num_sample=1000, perplexity=500, knn=10, seed=42
430
- # )
431
- # # %%
432
- # image_rgb = rgb.reshape(*inp.shape[:-1], 3)
433
- # # make sure the foval 20% of the image is red leading
434
- # x1, x2 = int(image_rgb.shape[1] * 0.4), int(image_rgb.shape[1] * 0.6)
435
- # y1, y2 = int(image_rgb.shape[2] * 0.4), int(image_rgb.shape[2] * 0.6)
436
- # sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
437
- # sorted_indices = sum_values.argsort(descending=True)
438
- # image_rgb = image_rgb[:, :, :, sorted_indices]
439
-
440
- # import matplotlib.pyplot as plt
441
-
442
- # fig, axes = plt.subplots(2, 3, figsize=(15, 10))
443
- # for i, ax in enumerate(axes.flat):
444
- # ax.imshow(image_rgb[i])
445
- # ax.axis("off")
446
-
447
- # %%
448
- save_dir = "/workspace/output/gradio"
449
- import os
450
-
451
- os.makedirs(save_dir, exist_ok=True)
452
-
453
- images = ['/workspace/guitars/lespual1.png', '/workspace/guitars/lespual2.png', '/workspace/guitars/lespual3.png', '/workspace/guitars/lespual4.png', '/workspace/guitars/lespual5.png', '/workspace/guitars/acoustic1.png']
454
- images = [Image.open(image).convert("RGB") for image in images]
455
- for i, image in enumerate(images):
456
- image = image.resize((512, 512))
457
- image.save(os.path.join(save_dir, f"image_{i}.jpg"), "JPEG", quality=70)
458
- # %%
459
- images = [(image, '') for image in images]
460
- image_rbg = main_fn(images)
461
- # %%
462
- for i, rgb in enumerate(image_rbg):
463
- rgb = rgb.resize((512, 512), Image.NEAREST)
464
- rgb.save(os.path.join(save_dir, f"ncut_{i}.jpg"), "JPEG", quality=70)
465
- # %%
466
- for i, rgb in enumerate(image_rgb):
467
- rgb = Image.fromarray((rgb * 255).cpu().numpy().astype(np.uint8))
468
- rgb.save(os.path.join(save_dir, f"ncut_{i}.png"))
469
- # %%
470
- %%
 
 
1
  from typing import Optional, Tuple
2
  from einops import rearrange
3
  import torch
 
384
  rgb = dont_use_too_much_green(rgb)
385
  return to_pil_images(rgb)
386
 
387
+ default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_4.jpg', './images/image_5.jpg']
388
+ default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_4.jpg', './images/ncut_5.jpg']
 
389
 
390
  demo = gr.Interface(
391
  main_fn,
 
408
  ]
409
  )
410
 
411
+ demo.launch()