huzey commited on
Commit
8575416
1 Parent(s): 604dab5

update gpu

Browse files
Files changed (1) hide show
  1. app.py +3 -10
app.py CHANGED
@@ -40,8 +40,6 @@ class MobileSAM(nn.Module):
40
  with open(sam_checkpoint, 'wb') as f:
41
  f.write(r.content)
42
 
43
- device = 'cuda' if USE_CUDA else 'cpu'
44
-
45
  mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
46
 
47
  def new_forward_fn(self, x):
@@ -123,7 +121,6 @@ class MobileSAM(nn.Module):
123
  setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)
124
 
125
 
126
- mobile_sam.to(device=device)
127
  mobile_sam.eval()
128
  self.image_encoder = mobile_sam.image_encoder
129
 
@@ -150,7 +147,8 @@ def image_mobilesam_feature(
150
  images,
151
  node_type="block",
152
  layer=-1,
153
- ):
 
154
  global USE_CUDA
155
  if USE_CUDA:
156
  images = images.cuda()
@@ -160,6 +158,7 @@ def image_mobilesam_feature(
160
  if USE_CUDA:
161
  feat_extractor = feat_extractor.cuda()
162
 
 
163
  # attn_outputs, mlp_outputs, block_outputs = [], [], []
164
  outputs = []
165
  for i in range(images.shape[0]):
@@ -228,8 +227,6 @@ class SAM(torch.nn.Module):
228
 
229
  self.image_encoder = sam.image_encoder
230
  self.image_encoder.eval()
231
- if USE_CUDA:
232
- self.image_encoder = self.image_encoder.cuda()
233
 
234
  @torch.no_grad()
235
  def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -291,8 +288,6 @@ class DiNOv2(torch.nn.Module):
291
  self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
292
  self.dinov2.requires_grad_(False)
293
  self.dinov2.eval()
294
- if USE_CUDA:
295
- self.dinov2 = self.dinov2.cuda()
296
 
297
  def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
298
  def attn_residual_func(x):
@@ -372,8 +367,6 @@ class CLIP(torch.nn.Module):
372
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
373
  # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
374
  self.model = model.eval()
375
- if USE_CUDA:
376
- self.model = self.model.cuda()
377
 
378
  def new_forward(
379
  self,
 
40
  with open(sam_checkpoint, 'wb') as f:
41
  f.write(r.content)
42
 
 
 
43
  mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
44
 
45
  def new_forward_fn(self, x):
 
121
  setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)
122
 
123
 
 
124
  mobile_sam.eval()
125
  self.image_encoder = mobile_sam.image_encoder
126
 
 
147
  images,
148
  node_type="block",
149
  layer=-1,
150
+ ):
151
+ print("Running MobileSAM")
152
  global USE_CUDA
153
  if USE_CUDA:
154
  images = images.cuda()
 
158
  if USE_CUDA:
159
  feat_extractor = feat_extractor.cuda()
160
 
161
+ print("images shape:", images.shape)
162
  # attn_outputs, mlp_outputs, block_outputs = [], [], []
163
  outputs = []
164
  for i in range(images.shape[0]):
 
227
 
228
  self.image_encoder = sam.image_encoder
229
  self.image_encoder.eval()
 
 
230
 
231
  @torch.no_grad()
232
  def forward(self, x: torch.Tensor) -> torch.Tensor:
 
288
  self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
289
  self.dinov2.requires_grad_(False)
290
  self.dinov2.eval()
 
 
291
 
292
  def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
293
  def attn_residual_func(x):
 
367
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
368
  # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
369
  self.model = model.eval()
 
 
370
 
371
  def new_forward(
372
  self,