Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,269 Bytes
2b98806 9576e83 2b98806 07462e7 2b98806 3f7fee9 e3b132f 3f7fee9 e3b132f caaf478 9576e83 3f7fee9 9576e83 8575416 604dab5 caaf478 9576e83 69d2985 3f7fee9 9576e83 8575416 9576e83 caaf478 9576e83 caaf478 9576e83 1075d8a 9576e83 3f7fee9 9576e83 2b98806 3f7fee9 2b98806 3f7fee9 2b98806 3f7fee9 2b98806 604dab5 caaf478 2b98806 69d2985 3f7fee9 2b98806 caaf478 2b98806 caaf478 2b98806 1075d8a 2b98806 3f7fee9 2b98806 3f7fee9 2b98806 caaf478 604dab5 caaf478 2b98806 69d2985 3f7fee9 2b98806 caaf478 2b98806 caaf478 2b98806 caaf478 2b98806 1075d8a 2b98806 3f7fee9 2b98806 e3b132f 2b98806 c320745 2b98806 c320745 2b98806 c320745 2b98806 3f7fee9 2b98806 caaf478 2b98806 604dab5 caaf478 2b98806 69d2985 3f7fee9 2b98806 caaf478 2b98806 caaf478 2b98806 caaf478 2b98806 1075d8a 2b98806 3f7fee9 2b98806 e9f5121 caaf478 3f7fee9 caaf478 3f7fee9 caaf478 3f7fee9 caaf478 3f7fee9 caaf478 3f7fee9 fda4350 caaf478 fda4350 caaf478 e9f5121 caaf478 2b98806 e9f5121 2b98806 c320745 2b98806 c320745 1075d8a c320745 2b98806 07462e7 2b98806 1075d8a 2b98806 3f7fee9 07462e7 c320745 9576e83 2b98806 c320745 2b98806 a48bd1b 2b98806 c320745 2b98806 c320745 2b98806 07462e7 2b98806 3f7fee9 07462e7 2b98806 c320745 2b98806 c320745 2b98806 a48bd1b 2b98806 9576e83 2b98806 a48bd1b 55dc840 2b98806 c320745 2b98806 9b0549b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
from typing import Optional, Tuple
from einops import rearrange
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
import numpy as np
import os
import time
import gradio as gr
import spaces
USE_CUDA = torch.cuda.is_available()
print("CUDA is available:", USE_CUDA)
def transform_images(images, resolution=(1024, 1024)):
images = [image.convert("RGB").resize(resolution) for image in images]
# Convert to torch tensor
images = [torch.tensor(np.array(image).transpose(2, 0, 1)).float() / 255 for image in images]
# Normalize
images = [(image - 0.5) / 0.5 for image in images]
images = torch.stack(images)
return images
class MobileSAM(nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from mobile_sam import sam_model_registry
url = 'https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt'
model_type = "vit_t"
sam_checkpoint = "mobile_sam.pt"
if not os.path.exists(sam_checkpoint):
import requests
r = requests.get(url)
with open(sam_checkpoint, 'wb') as f:
f.write(r.content)
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
def new_forward_fn(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.conv3(x)
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
return x
setattr(mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn)
def new_forward_fn2(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H %
self.window_size) % self.window_size
pad_r = (self.window_size - W %
self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
B * nH * nW, self.window_size * self.window_size, C)
x = self.attn(x)
# window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size,
C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
hw = np.sqrt(x.shape[1]).astype(int)
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
mlp_output = self.mlp(x)
self.mlp_output = rearrange(mlp_output.clone(), "b (h w) c -> b h w c", h=hw)
x = x + self.drop_path(mlp_output)
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
return x
setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)
mobile_sam.eval()
self.image_encoder = mobile_sam.image_encoder
@torch.no_grad()
def forward(self, x):
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i_layer in range(len(self.image_encoder.layers)):
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
blk = self.image_encoder.layers[i_layer].blocks[i_block]
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
return attn_outputs, mlp_outputs, block_outputs
mobilesam = MobileSAM()
def image_mobilesam_feature(
images,
node_type="block",
layer=-1,
):
print("Running MobileSAM")
global USE_CUDA
if USE_CUDA:
images = images.cuda()
global mobilesam
feat_extractor = mobilesam
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
print("images shape:", images.shape)
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
return outputs
class SAM(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.modeling.sam import Sam
checkpoint = "sam_vit_b_01ec64.pth"
if not os.path.exists(checkpoint):
checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
import requests
r = requests.get(checkpoint_url)
with open(checkpoint, 'wb') as f:
f.write(r.content)
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
from segment_anything.modeling.image_encoder import (
window_partition,
window_unpartition,
)
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + x
mlp_outout = self.mlp(self.norm2(x))
self.mlp_output = mlp_outout.clone()
x = x + mlp_outout
self.block_output = x.clone()
return x
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
self.image_encoder = sam.image_encoder
self.image_encoder.eval()
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.image_encoder.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
sam = SAM()
def image_sam_feature(
images,
node_type="block",
layer=-1,
):
global USE_CUDA
if USE_CUDA:
images = images.cuda()
global sam
feat_extractor = sam
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
return outputs
class DiNOv2(torch.nn.Module):
def __init__(self, ver="dinov2_vitb14_reg"):
super().__init__()
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
self.dinov2.requires_grad_(False)
self.dinov2.eval()
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
def attn_residual_func(x):
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x):
return self.ls2(self.mlp(self.norm2(x)))
attn_output = attn_residual_func(x)
self.attn_output = attn_output.clone()
x = x + attn_output
mlp_output = ffn_residual_func(x)
self.mlp_output = mlp_output.clone()
x = x + mlp_output
block_output = x
self.block_output = block_output.clone()
return x
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)
@torch.no_grad()
def forward(self, x):
out = self.dinov2(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.dinov2.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
dinov2 = DiNOv2()
def image_dino_feature(images, node_type="block", layer=-1):
global USE_CUDA
if USE_CUDA:
images = images.cuda()
global dinov2
feat_extractor = dinov2
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32)
return outputs
class CLIP(torch.nn.Module):
def __init__(self):
super().__init__()
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
self.model = model.eval()
def new_forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hw = np.sqrt(hidden_states.shape[1]-1).astype(int)
self.attn_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
self.mlp_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
self.block_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw)
return outputs
setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward)
@torch.no_grad()
def forward(self, x):
out = self.model.vision_model(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.model.vision_model.encoder.layers):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
clip = CLIP()
def image_clip_feature(
images, node_type="block", layer=-1
):
global USE_CUDA
if USE_CUDA:
images = images.cuda()
global clip
feat_extractor = clip
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
return outputs
import hashlib
import pickle
import sys
from collections import OrderedDict
# Cache dictionary with limited size
class LimitedSizeCache(OrderedDict):
def __init__(self, max_size_bytes):
self.max_size_bytes = max_size_bytes
self.current_size_bytes = 0
super().__init__()
def __setitem__(self, key, value):
item_size = self.get_item_size(value)
# Evict items until there is enough space
while self.current_size_bytes + item_size > self.max_size_bytes:
self.popitem(last=False)
super().__setitem__(key, value)
self.current_size_bytes += item_size
def __delitem__(self, key):
value = self[key]
super().__delitem__(key)
self.current_size_bytes -= self.get_item_size(value)
def get_item_size(self, value):
"""Estimate the size of the value in bytes."""
return sys.getsizeof(value)
# Initialize the cache with a 4GB limit
cache = LimitedSizeCache(max_size_bytes=4 * 1024 * 1024 * 1024) # 4GB
def compute_hash(*args, **kwargs):
"""Compute a unique hash based on the function arguments."""
hasher = hashlib.sha256()
pickled_args = pickle.dumps((args, kwargs))
hasher.update(pickled_args)
return hasher.hexdigest()
def run_model_on_image(images, model_name="sam", node_type="block", layer=-1):
global USE_CUDA
USE_CUDA = True
if model_name == "SAM(sam_vit_b)":
if not USE_CUDA:
gr.warning("GPU not detected. Running SAM on CPU, ~30s/image.")
result = image_sam_feature(images, node_type=node_type, layer=layer)
elif model_name == 'MobileSAM':
result = image_mobilesam_feature(images, node_type=node_type, layer=layer)
elif model_name == "DiNO(dinov2_vitb14_reg)":
result = image_dino_feature(images, node_type=node_type, layer=layer)
elif model_name == "CLIP(openai/clip-vit-base-patch16)":
result = image_clip_feature(images, node_type=node_type, layer=layer)
else:
raise ValueError(f"Model {model_name} not supported.")
return result
def extract_features(images, model_name="MobileSAM", node_type="block", layer=-1):
resolution_dict = {
"MobileSAM": (1024, 1024),
"SAM(sam_vit_b)": (1024, 1024),
"DiNO(dinov2_vitb14_reg)": (448, 448),
"CLIP(openai/clip-vit-base-patch16)": (224, 224),
}
images = transform_images(images, resolution=resolution_dict[model_name])
# Compute the cache key
cache_key = compute_hash(images, model_name, node_type, layer)
# Check if the result is already in the cache
if cache_key in cache:
print("Cache hit!")
return cache[cache_key]
result = run_model_on_image(images, model_name=model_name, node_type=node_type, layer=layer)
# Store the result in the cache
cache[cache_key] = result
return result
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
num_sample_tsne=1000,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
):
from ncut_pytorch import NCUT, rgb_from_tsne_3d, rgb_from_umap_3d
start = time.time()
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if USE_CUDA else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
).fit_transform(features.reshape(-1, features.shape[-1]))
print(f"NCUT time (cpu): {time.time() - start:.2f}s")
start = time.time()
if embedding_method == "UMAP":
rgb = rgb_from_umap_3d(
eigvecs,
n_neighbors=n_neighbors,
min_dist=min_dist,
)
print(f"UMAP time (cpu): {time.time() - start:.2f}s")
elif embedding_method == "t-SNE":
X_3d, rgb = rgb_from_tsne_3d(
eigvecs,
num_sample=num_sample_tsne,
perplexity=perplexity,
knn=knn_tsne,
)
print(f"t-SNE time (cpu): {time.time() - start:.2f}s")
else:
raise ValueError(f"Embedding method {embedding_method} not supported.")
rgb = rgb.reshape(features.shape[:3] + (3,))
return rgb
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images):
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
for image in images
]
@spaces.GPU(duration=30)
def main_fn(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
):
if perplexity >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.")
perplexity = num_sample_tsne - 1
images = [image[0] for image in images]
start = time.time()
features = extract_features(
images, model_name=model_name, node_type=node_type, layer=layer
)
print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
rgb = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
)
rgb = dont_use_too_much_green(rgb)
return to_pil_images(rgb)
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
demo = gr.Interface(
main_fn,
[
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
gr.Dropdown(["MobileSAM", "SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="MobileSAM", elem_id="model_name"),
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
],
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
additional_inputs=[
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
gr.Slider(100, 10000, step=100, label="num_sample (NCUT)", value=5000, elem_id="num_sample_ncut", info="for Nyström approximation"),
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
gr.Dropdown(["t-SNE", "UMAP"], label="Embedding method", value="UMAP", elem_id="embedding_method"),
gr.Slider(100, 1000, step=100, label="num_sample (t-SNE/UMAP)", value=300, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down quite a lot"),
gr.Slider(1, 100, step=1, label="KNN (t-SNE/UMAP)", value=10, elem_id="knn_tsne", info="for Nyström approximation"),
gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=150, elem_id="perplexity", info="for t-SNE"),
gr.Slider(10, 500, step=10, label="n_neighbors (UMAP)", value=150, elem_id="n_neighbors", info="for UMAP"),
gr.Slider(0.1, 1, step=0.1, label="min_dist (UMAP)", value=0.1, elem_id="min_dist", info="for UMAP"),
]
)
demo.launch()
|