|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
|
from diffusers.models.attention import FeedForward
|
|
from diffusers.models.attention_processor import (
|
|
Attention,
|
|
FluxAttnProcessor2_0,
|
|
FluxSingleAttnProcessor2_0,
|
|
)
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import (
|
|
AdaLayerNormContinuous,
|
|
AdaLayerNormZero,
|
|
AdaLayerNormZeroSingle,
|
|
)
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
is_torch_version,
|
|
logging,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
from diffusers.models.embeddings import (
|
|
CombinedTimestepGuidanceTextProjEmbeddings,
|
|
CombinedTimestepTextProjEmbeddings,
|
|
)
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
|
assert dim % 2 == 0, "The dimension must be even."
|
|
|
|
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
|
|
omega = 1.0 / (theta**scale)
|
|
|
|
batch_size, seq_length = pos.shape
|
|
out = torch.einsum("...n,d->...nd", pos, omega)
|
|
cos_out = torch.cos(out)
|
|
sin_out = torch.sin(out)
|
|
|
|
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
|
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
|
return out.float()
|
|
|
|
|
|
|
|
class EmbedND(nn.Module):
|
|
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
self.axes_dim = axes_dim
|
|
|
|
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
|
n_axes = ids.shape[-1]
|
|
emb = torch.cat(
|
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
|
dim=-3,
|
|
)
|
|
return emb.unsqueeze(1)
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
class FluxSingleTransformerBlock(nn.Module):
|
|
r"""
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
processing of `context` conditions.
|
|
"""
|
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
|
super().__init__()
|
|
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
self.norm = AdaLayerNormZeroSingle(dim)
|
|
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
|
self.act_mlp = nn.GELU(approximate="tanh")
|
|
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
|
|
|
processor = FluxSingleAttnProcessor2_0()
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
bias=True,
|
|
processor=processor,
|
|
qk_norm="rms_norm",
|
|
eps=1e-6,
|
|
pre_only=True,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
):
|
|
residual = hidden_states
|
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
|
|
|
attn_output = self.attn(
|
|
hidden_states=norm_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
|
gate = gate.unsqueeze(1)
|
|
hidden_states = gate * self.proj_out(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
if hidden_states.dtype == torch.float16:
|
|
hidden_states = hidden_states.clip(-65504, 65504)
|
|
|
|
return hidden_states
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
class FluxTransformerBlock(nn.Module):
|
|
r"""
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
processing of `context` conditions.
|
|
"""
|
|
|
|
def __init__(
|
|
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
|
):
|
|
super().__init__()
|
|
|
|
self.norm1 = AdaLayerNormZero(dim)
|
|
|
|
self.norm1_context = AdaLayerNormZero(dim)
|
|
|
|
if hasattr(F, "scaled_dot_product_attention"):
|
|
processor = FluxAttnProcessor2_0()
|
|
else:
|
|
raise ValueError(
|
|
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
|
)
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None,
|
|
added_kv_proj_dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
context_pre_only=False,
|
|
bias=True,
|
|
processor=processor,
|
|
qk_norm=qk_norm,
|
|
eps=eps,
|
|
)
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_context = FeedForward(
|
|
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
|
)
|
|
|
|
|
|
self._chunk_size = None
|
|
self._chunk_dim = 0
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
):
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
|
hidden_states, emb=temb
|
|
)
|
|
|
|
(
|
|
norm_encoder_hidden_states,
|
|
c_gate_msa,
|
|
c_shift_mlp,
|
|
c_scale_mlp,
|
|
c_gate_mlp,
|
|
) = self.norm1_context(encoder_hidden_states, emb=temb)
|
|
|
|
|
|
attn_output, context_attn_output = self.attn(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
hidden_states = hidden_states + attn_output
|
|
|
|
norm_hidden_states = self.norm2(hidden_states)
|
|
norm_hidden_states = (
|
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
)
|
|
|
|
ff_output = self.ff(norm_hidden_states)
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
hidden_states = hidden_states + ff_output
|
|
|
|
|
|
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
|
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
|
norm_encoder_hidden_states = (
|
|
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
|
+ c_shift_mlp[:, None]
|
|
)
|
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
|
encoder_hidden_states = (
|
|
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
|
)
|
|
if encoder_hidden_states.dtype == torch.float16:
|
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
class FluxTransformer2DModel(
|
|
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
|
):
|
|
"""
|
|
The Transformer model introduced in Flux.
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
|
|
|
Parameters:
|
|
patch_size (`int`): Patch size to turn the input data into small patches.
|
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
|
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
|
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
|
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 1,
|
|
in_channels: int = 64,
|
|
num_layers: int = 19,
|
|
num_single_layers: int = 38,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
joint_attention_dim: int = 4096,
|
|
pooled_projection_dim: int = 768,
|
|
guidance_embeds: bool = False,
|
|
axes_dims_rope: List[int] = [16, 56, 56],
|
|
):
|
|
super().__init__()
|
|
self.out_channels = in_channels
|
|
self.inner_dim = (
|
|
self.config.num_attention_heads * self.config.attention_head_dim
|
|
)
|
|
|
|
self.pos_embed = EmbedND(
|
|
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
|
)
|
|
text_time_guidance_cls = (
|
|
CombinedTimestepGuidanceTextProjEmbeddings
|
|
if guidance_embeds
|
|
else CombinedTimestepTextProjEmbeddings
|
|
)
|
|
self.time_text_embed = text_time_guidance_cls(
|
|
embedding_dim=self.inner_dim,
|
|
pooled_projection_dim=self.config.pooled_projection_dim,
|
|
)
|
|
|
|
self.context_embedder = nn.Linear(
|
|
self.config.joint_attention_dim, self.inner_dim
|
|
)
|
|
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
)
|
|
for i in range(self.config.num_layers)
|
|
]
|
|
)
|
|
|
|
self.single_transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxSingleTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
)
|
|
for i in range(self.config.num_single_layers)
|
|
]
|
|
)
|
|
|
|
self.norm_out = AdaLayerNormContinuous(
|
|
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
|
)
|
|
self.proj_out = nn.Linear(
|
|
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
pooled_projections: torch.Tensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
img_ids: torch.Tensor = None,
|
|
txt_ids: torch.Tensor = None,
|
|
guidance: torch.Tensor = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_block_samples=None,
|
|
controlnet_single_block_samples=None,
|
|
return_dict: bool = True,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`FluxTransformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
else:
|
|
if (
|
|
joint_attention_kwargs is not None
|
|
and joint_attention_kwargs.get("scale", None) is not None
|
|
):
|
|
logger.warning(
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
)
|
|
hidden_states = self.x_embedder(hidden_states)
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
|
if guidance is not None:
|
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
|
else:
|
|
guidance = None
|
|
temb = (
|
|
self.time_text_embed(timestep, pooled_projections)
|
|
if guidance is None
|
|
else self.time_text_embed(timestep, guidance, pooled_projections)
|
|
)
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
image_rotary_emb = self.pos_embed(ids)
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
(
|
|
encoder_hidden_states,
|
|
hidden_states,
|
|
) = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
|
|
if controlnet_block_samples is not None:
|
|
interval_control = len(self.transformer_blocks) / len(
|
|
controlnet_block_samples
|
|
)
|
|
interval_control = int(np.ceil(interval_control))
|
|
hidden_states = (
|
|
hidden_states
|
|
+ controlnet_block_samples[index_block // interval_control]
|
|
)
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
|
|
if controlnet_single_block_samples is not None:
|
|
interval_control = len(self.single_transformer_blocks) / len(
|
|
controlnet_single_block_samples
|
|
)
|
|
interval_control = int(np.ceil(interval_control))
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
+ controlnet_single_block_samples[index_block // interval_control]
|
|
)
|
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
output = self.proj_out(hidden_states)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|
|
|