Ashish Ranjan Jha
commited on
Commit
·
cc12d2c
0
Parent(s):
Initial commit
Browse files- .DS_Store +0 -0
- README.md +13 -0
- app.py +626 -0
- controlnet_flux.py +418 -0
- craft_mlt_25k.pth +3 -0
- english_g2.pth +3 -0
- fonts/Arial.ttf +0 -0
- fonts/Ldfcomicsansbold.ttf +0 -0
- fonts/Times New Roman.ttf +0 -0
- fonts/Verdana.ttf +0 -0
- fonts/app.py +575 -0
- fonts/calibri.ttf +0 -0
- fonts/georgia.ttf +0 -0
- fonts/helvetica.ttf +0 -0
- fonts/omniscript_bold.ttf +0 -0
- korean_g2.pth +3 -0
- latin_g2.pth +3 -0
- pipeline_flux_controlnet_inpaint.py +1049 -0
- requirements.txt +15 -0
- speech_bubble_model.pt +3 -0
- transformer_flux.py +525 -0
- zh_sim_g2.pth +3 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: NativDemo
|
3 |
+
emoji: 🏆
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: In place text localization
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import easyocr
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import base64
|
8 |
+
import torch
|
9 |
+
from shapely import Polygon
|
10 |
+
from ultralytics import YOLO
|
11 |
+
|
12 |
+
from io import BytesIO
|
13 |
+
from openai import OpenAI
|
14 |
+
from PIL import Image, ImageDraw, ImageFont
|
15 |
+
|
16 |
+
from diffusers.utils import load_image, check_min_version
|
17 |
+
from controlnet_flux import FluxControlNetModel
|
18 |
+
from transformer_flux import FluxTransformer2DModel
|
19 |
+
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
20 |
+
|
21 |
+
import huggingface_hub
|
22 |
+
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))
|
23 |
+
|
24 |
+
bubble_detection_model = YOLO("speech_bubble_model.pt")
|
25 |
+
|
26 |
+
language_to_ocr = {
|
27 |
+
'Simplified Chinese': 'ch_sim',
|
28 |
+
'Traditional Chinese': 'ch_tra',
|
29 |
+
'Korean': 'ko',
|
30 |
+
'Japanese': 'ja',
|
31 |
+
'English': 'en',
|
32 |
+
}
|
33 |
+
|
34 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
35 |
+
|
36 |
+
MARKDOWN = """
|
37 |
+
# Made by Nativ
|
38 |
+
"""
|
39 |
+
|
40 |
+
check_min_version("0.30.2")
|
41 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
42 |
+
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
|
43 |
+
)
|
44 |
+
|
45 |
+
cuda_device =torch.device("cuda")
|
46 |
+
# Build pipeline
|
47 |
+
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
|
48 |
+
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
49 |
+
"black-forest-labs/FLUX.1-dev",
|
50 |
+
controlnet=controlnet,
|
51 |
+
transformer=transformer,
|
52 |
+
torch_dtype=torch.bfloat16
|
53 |
+
).to(cuda_device)
|
54 |
+
pipe.transformer.to(torch.bfloat16)
|
55 |
+
pipe.controlnet.to(torch.bfloat16)
|
56 |
+
|
57 |
+
|
58 |
+
def hex_to_rgba(hex_color):
|
59 |
+
print(hex_color)
|
60 |
+
"""Convert hex color to RGBA tuple."""
|
61 |
+
hex_color = hex_color.lstrip('#') # Remove '#' if present
|
62 |
+
if len(hex_color) == 6: # Handle `#RRGGBB`
|
63 |
+
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
|
64 |
+
return r, g, b, 255 # Add full opacity (alpha = 255)
|
65 |
+
elif len(hex_color) == 8: # Handle `#RRGGBBAA` if alpha is included
|
66 |
+
r, g, b, a = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16), int(hex_color[6:8], 16)
|
67 |
+
return r, g, b, a
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Invalid hex color format: {hex_color}")
|
70 |
+
|
71 |
+
import re
|
72 |
+
|
73 |
+
def rgba_to_tuple(rgba_color):
|
74 |
+
"""Convert rgba(r, g, b, a) string to an (R, G, B, A) tuple."""
|
75 |
+
# Match the rgba format: rgba(r, g, b, a)
|
76 |
+
match = re.match(r'rgba\(([\d.]+),\s*([\d.]+),\s*([\d.]+),\s*([\d.]+)\)', rgba_color)
|
77 |
+
if not match:
|
78 |
+
raise ValueError(f"Invalid RGBA color format: {rgba_color}")
|
79 |
+
|
80 |
+
r, g, b, a = map(float, match.groups())
|
81 |
+
r, g, b = int(r), int(g), int(b)
|
82 |
+
a = int(a * 255) # Scale alpha from [0, 1] to [0, 255]
|
83 |
+
return r, g, b, a
|
84 |
+
|
85 |
+
|
86 |
+
def color_to_rgba(color):
|
87 |
+
"""Convert a color string (hex or rgba) to an RGBA tuple."""
|
88 |
+
if color.startswith("#"): # Hex format
|
89 |
+
return hex_to_rgba(color)
|
90 |
+
elif color.startswith("rgba"): # rgba(r, g, b, a) format
|
91 |
+
return rgba_to_tuple(color)
|
92 |
+
else:
|
93 |
+
raise ValueError(f"Unsupported color format: {color}")
|
94 |
+
|
95 |
+
|
96 |
+
def localize_boxes(merged_results, img_boxes, source_language, target_language):
|
97 |
+
# Convert image to base64
|
98 |
+
buffered = BytesIO()
|
99 |
+
img_boxes.save(buffered, format="PNG")
|
100 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
101 |
+
|
102 |
+
print(merged_results)
|
103 |
+
|
104 |
+
prompt = f"""You are an expert translator and localization specialist with deep understanding of both {source_language} and {target_language} cultures.
|
105 |
+
|
106 |
+
Task: Translate the detected text while preserving the cultural context and maintaining visual harmony. Make the results in capital letters.
|
107 |
+
|
108 |
+
Source Text and Coordinates:
|
109 |
+
{merged_results}
|
110 |
+
|
111 |
+
Requirements:
|
112 |
+
1. Maintain the original meaning and tone while adapting to {target_language} cultural context
|
113 |
+
2. Keep translations concise and visually balanced (similar character length when possible)
|
114 |
+
3. Preserve any:
|
115 |
+
- Brand names
|
116 |
+
- Product names
|
117 |
+
- Technical terms
|
118 |
+
- Numbers and units
|
119 |
+
4. Consider the visual context from the provided image
|
120 |
+
5. Use appropriate formality level for {target_language}
|
121 |
+
6. Maintain any special formatting (if present)
|
122 |
+
|
123 |
+
Format your response EXACTLY as a JSON-like list of dictionaries. Keep the box coordinates EXACTLY as they are, do not change them, only translate the text.
|
124 |
+
[{{'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]], 'text': 'translated_text'}}]
|
125 |
+
|
126 |
+
Important: Only output the JSON format above, no explanations or additional text."""
|
127 |
+
|
128 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
129 |
+
|
130 |
+
response = client.chat.completions.create(
|
131 |
+
model="gpt-4o",
|
132 |
+
messages=[
|
133 |
+
{
|
134 |
+
"role": "user",
|
135 |
+
"content": [
|
136 |
+
{"type": "text", "text": prompt},
|
137 |
+
{
|
138 |
+
"type": "image_url",
|
139 |
+
"image_url": {
|
140 |
+
"url": f"data:image/png;base64,{img_str}"
|
141 |
+
}
|
142 |
+
}
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
max_tokens=1000,
|
147 |
+
temperature=0
|
148 |
+
)
|
149 |
+
|
150 |
+
try:
|
151 |
+
translation_text = response.choices[0].message.content
|
152 |
+
translation_text = translation_text.replace("```json", "").replace("```", "").strip()
|
153 |
+
translated_results = eval(translation_text)
|
154 |
+
return translated_results
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error parsing GPT-4o response: {e}")
|
157 |
+
return merged_results
|
158 |
+
|
159 |
+
def merge_boxes(boxes, image_shape, distance_threshold=10):
|
160 |
+
"""Merge boxes that are close to each other and return their associated text"""
|
161 |
+
if not boxes:
|
162 |
+
return []
|
163 |
+
|
164 |
+
# Extract boxes and create mapping to original data
|
165 |
+
boxes_only = [box[0] for box in boxes]
|
166 |
+
texts = [box[1] for box in boxes] # Extract the text content
|
167 |
+
|
168 |
+
# Create a binary mask of all boxes
|
169 |
+
height, width = image_shape[:2]
|
170 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
171 |
+
|
172 |
+
# Draw all boxes on mask and create a mapping of pixel positions to box indices
|
173 |
+
box_indices_map = {} # Will store which original box each pixel belongs to
|
174 |
+
for idx, coords in enumerate(boxes_only):
|
175 |
+
pts = np.array(coords, dtype=np.int32)
|
176 |
+
cv2.fillPoly(mask, [pts], 255)
|
177 |
+
# Store the indices of boxes for each filled pixel
|
178 |
+
y_coords, x_coords = np.where(mask == 255)
|
179 |
+
for y, x in zip(y_coords, x_coords):
|
180 |
+
if (y, x) not in box_indices_map:
|
181 |
+
box_indices_map[(y, x)] = []
|
182 |
+
box_indices_map[(y, x)].append(idx)
|
183 |
+
|
184 |
+
# Dilate to connect nearby components
|
185 |
+
kernel = np.ones((distance_threshold, distance_threshold), np.uint8)
|
186 |
+
dilated = cv2.dilate(mask, kernel, iterations=1)
|
187 |
+
|
188 |
+
# Find connected components
|
189 |
+
num_labels, labels = cv2.connectedComponents(dilated)
|
190 |
+
|
191 |
+
# Create new merged boxes with their associated text
|
192 |
+
merged_results = []
|
193 |
+
for label in range(1, num_labels): # Skip background (0)
|
194 |
+
points = np.where(labels == label)
|
195 |
+
if len(points[0]): # If component is not empty
|
196 |
+
y0, x0 = points[0].min(), points[1].min()
|
197 |
+
y1, x1 = points[0].max(), points[1].max()
|
198 |
+
# Add small padding
|
199 |
+
x0 = max(0, x0 - 2)
|
200 |
+
y0 = max(0, y0 - 2)
|
201 |
+
x1 = min(width, x1 + 2)
|
202 |
+
y1 = min(height, y1 + 2)
|
203 |
+
|
204 |
+
# Find all original boxes that overlap with this merged box
|
205 |
+
box_indices = set()
|
206 |
+
for y in range(y0, y1+1):
|
207 |
+
for x in range(x0, x1+1):
|
208 |
+
if (y, x) in box_indices_map:
|
209 |
+
box_indices.update(box_indices_map[(y, x)])
|
210 |
+
|
211 |
+
# Combine text from all overlapping boxes
|
212 |
+
combined_text = ' '.join([texts[idx] for idx in box_indices])
|
213 |
+
|
214 |
+
merged_results.append({
|
215 |
+
'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]],
|
216 |
+
'text': combined_text
|
217 |
+
})
|
218 |
+
return merged_results
|
219 |
+
|
220 |
+
def is_box_inside_yolo(box, yolo_boxes, overlap_threshold=0.5):
|
221 |
+
"""
|
222 |
+
Check if a text box is inside any of the YOLO-detected speech bubbles.
|
223 |
+
box: [[x0,y0], [x1,y0], [x1,y1], [x0,y1]]
|
224 |
+
yolo_boxes: list of YOLO boxes in xywh format
|
225 |
+
overlap_threshold: minimum overlap ratio required to consider the text inside bubble
|
226 |
+
"""
|
227 |
+
text_poly = Polygon(box)
|
228 |
+
text_area = text_poly.area
|
229 |
+
|
230 |
+
for yolo_box in yolo_boxes:
|
231 |
+
x_center, y_center, width, height = yolo_box
|
232 |
+
x1, y1 = x_center - width / 2, y_center - height / 2
|
233 |
+
x2, y2 = x_center + width / 2, y_center + height / 2
|
234 |
+
bubble_box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
|
235 |
+
bubble_poly = Polygon(bubble_box)
|
236 |
+
|
237 |
+
# Calculate intersection
|
238 |
+
if text_poly.intersects(bubble_poly):
|
239 |
+
intersection = text_poly.intersection(bubble_poly)
|
240 |
+
overlap_ratio = intersection.area / text_area
|
241 |
+
if overlap_ratio >= overlap_threshold:
|
242 |
+
return True
|
243 |
+
|
244 |
+
return False
|
245 |
+
|
246 |
+
def remove_text_regions(image, boxes, yolo_boxes):
|
247 |
+
"""Fill detected text regions with white"""
|
248 |
+
img_removed = image.copy()
|
249 |
+
mask = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
250 |
+
|
251 |
+
# Fill all detected boxes with white
|
252 |
+
for box in boxes:
|
253 |
+
pts = np.array(box[0], dtype=np.int32)
|
254 |
+
if is_box_inside_yolo(box[0], yolo_boxes):
|
255 |
+
cv2.fillPoly(img_removed, [pts], (255, 255, 255, 255))
|
256 |
+
cv2.fillPoly(mask, [pts], (255, 255, 255, 255))
|
257 |
+
|
258 |
+
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
259 |
+
|
260 |
+
return img_removed_rgb, mask
|
261 |
+
|
262 |
+
def fit_text_to_box(text, merged_coordinates, font_path, font_color, angle=0):
|
263 |
+
"""
|
264 |
+
Adjusts the text to fit optimally inside the given box dimensions.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
text (str): The text to fit.
|
268 |
+
box_size (tuple): A tuple (width, height) specifying the box dimensions.
|
269 |
+
font_path (str): Path to the font file to be used.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
PIL.Image: An image with the text fitted inside the box.
|
273 |
+
"""
|
274 |
+
width, height = merged_coordinates[1][0] - merged_coordinates[0][0], merged_coordinates[2][1] - merged_coordinates[1][1]
|
275 |
+
font_size = 1
|
276 |
+
|
277 |
+
# Create a dummy image to measure text size
|
278 |
+
dummy_image = Image.new('RGB', (width, height))
|
279 |
+
draw = ImageDraw.Draw(dummy_image)
|
280 |
+
|
281 |
+
# Load a small font initially
|
282 |
+
font = ImageFont.truetype(font_path, font_size)
|
283 |
+
|
284 |
+
while True:
|
285 |
+
# Break text into lines that fit within the width
|
286 |
+
words = text.split()
|
287 |
+
lines = []
|
288 |
+
current_line = []
|
289 |
+
for word in words:
|
290 |
+
test_line = " ".join(current_line + [word])
|
291 |
+
test_width = draw.textlength(test_line, font=font)
|
292 |
+
if test_width <= width:
|
293 |
+
current_line.append(word)
|
294 |
+
else:
|
295 |
+
lines.append(" ".join(current_line))
|
296 |
+
current_line = [word]
|
297 |
+
if current_line:
|
298 |
+
lines.append(" ".join(current_line))
|
299 |
+
|
300 |
+
# Calculate total height required for the lines
|
301 |
+
line_height = font.getbbox('A')[3] + 5 # Add line spacing
|
302 |
+
total_height = len(lines) * line_height
|
303 |
+
|
304 |
+
# Check if text fits within the height
|
305 |
+
if total_height > height or any(draw.textlength(line, font=font) > width for line in lines):
|
306 |
+
break
|
307 |
+
|
308 |
+
# Increment font size
|
309 |
+
font_size += 1
|
310 |
+
font = ImageFont.truetype(font_path, font_size)
|
311 |
+
|
312 |
+
# Use the last fitting font
|
313 |
+
font_size -= 1
|
314 |
+
font = ImageFont.truetype(font_path, font_size)
|
315 |
+
|
316 |
+
# Create the final image with a transparent background
|
317 |
+
image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
|
318 |
+
draw = ImageDraw.Draw(image)
|
319 |
+
|
320 |
+
# Center the text vertically and horizontally
|
321 |
+
lines = []
|
322 |
+
current_line = []
|
323 |
+
for word in text.split():
|
324 |
+
test_line = " ".join(current_line + [word])
|
325 |
+
if draw.textlength(test_line, font=font) <= width:
|
326 |
+
current_line.append(word)
|
327 |
+
else:
|
328 |
+
lines.append(" ".join(current_line))
|
329 |
+
current_line = [word]
|
330 |
+
if current_line:
|
331 |
+
lines.append(" ".join(current_line))
|
332 |
+
|
333 |
+
line_height = font.getbbox('A')[3] + 5
|
334 |
+
total_text_height = len(lines) * line_height
|
335 |
+
y_offset = (height - total_text_height) // 2
|
336 |
+
|
337 |
+
for line in lines:
|
338 |
+
text_width = draw.textlength(line, font=font)
|
339 |
+
x_offset = (width - text_width) // 2
|
340 |
+
draw.text((x_offset, y_offset), line, font=font, fill=font_color)
|
341 |
+
y_offset += line_height
|
342 |
+
|
343 |
+
rotated_image = image.rotate(0, expand=True)
|
344 |
+
|
345 |
+
return rotated_image
|
346 |
+
|
347 |
+
def shorten_box(merged_coordinates, pct=0):
|
348 |
+
# Calculate the center of the box
|
349 |
+
center_x = (merged_coordinates[0][0] + merged_coordinates[2][0]) / 2
|
350 |
+
center_y = (merged_coordinates[0][1] + merged_coordinates[2][1]) / 2
|
351 |
+
|
352 |
+
# Calculate the width and height of the box
|
353 |
+
width = merged_coordinates[1][0] - merged_coordinates[0][0]
|
354 |
+
height = merged_coordinates[2][1] - merged_coordinates[1][1]
|
355 |
+
|
356 |
+
# Shrink width and height by 10%
|
357 |
+
new_width = width * 1-pct/100.
|
358 |
+
new_height = height * 1-pct/100.
|
359 |
+
|
360 |
+
# Calculate the new coordinates
|
361 |
+
merged_coordinates_new = np.array([
|
362 |
+
[center_x - new_width / 2, center_y - new_height / 2], # Top-left
|
363 |
+
[center_x + new_width / 2, center_y - new_height / 2], # Top-right
|
364 |
+
[center_x + new_width / 2, center_y + new_height / 2], # Bottom-right
|
365 |
+
[center_x - new_width / 2, center_y + new_height / 2] # Bottom-left
|
366 |
+
], dtype=int)
|
367 |
+
|
368 |
+
return merged_coordinates_new
|
369 |
+
|
370 |
+
|
371 |
+
def detect_and_show_text(reader, image):
|
372 |
+
"""Detect text and show bounding boxes"""
|
373 |
+
if isinstance(image, Image.Image):
|
374 |
+
img_array = np.array(image)
|
375 |
+
else:
|
376 |
+
img_array = image
|
377 |
+
|
378 |
+
# Get YOLO results first
|
379 |
+
yolo_results = bubble_detection_model(img_array, conf=0.7)[0]
|
380 |
+
yolo_boxes = yolo_results.boxes.xywh.cpu().numpy() # Get YOLO boxes in xywh format
|
381 |
+
|
382 |
+
# Detect text
|
383 |
+
results = reader.readtext(img_array, text_threshold=0.6)
|
384 |
+
|
385 |
+
# Create visualization
|
386 |
+
img_boxes = img_array.copy()
|
387 |
+
|
388 |
+
# Ensure we're working with RGB
|
389 |
+
if len(img_array.shape) == 3:
|
390 |
+
if img_array.shape[2] == 3: # If it's a 3-channel image
|
391 |
+
img_boxes = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
392 |
+
|
393 |
+
# Draw original EasyOCR boxes on img_boxes
|
394 |
+
for result in results:
|
395 |
+
pts = np.array(result[0], dtype=np.int32)
|
396 |
+
cv2.polylines(img_boxes, [pts], isClosed=True, color=(0, 255, 0), thickness=2) # Draw original boxes in green
|
397 |
+
|
398 |
+
# Remove text and merge boxes for visualization
|
399 |
+
img_removed, mask = remove_text_regions(img_array, results, yolo_boxes)
|
400 |
+
merged_results = merge_boxes(results, img_array.shape)
|
401 |
+
|
402 |
+
# Draw merged detection boxes and text (if needed)
|
403 |
+
for merged_result in merged_results:
|
404 |
+
pts = np.array(merged_result['box'], dtype=np.int32)
|
405 |
+
# Color the box red if inside bubble, blue if outside
|
406 |
+
color = (0, 0, 255) if is_box_inside_yolo(merged_result['box'], yolo_boxes) else (255, 0, 0)
|
407 |
+
cv2.polylines(img_boxes, [pts], True, color, 2) # Draw merged boxes in red or blue
|
408 |
+
|
409 |
+
# Convert to RGB
|
410 |
+
img_boxes_rgb = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
411 |
+
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
412 |
+
mask_rgba = cv2.cvtColor(mask, cv2.COLOR_RGB2RGBA)
|
413 |
+
|
414 |
+
# Get YOLO visualization without labels
|
415 |
+
bubbles_img = yolo_results.plot(labels=False)
|
416 |
+
|
417 |
+
# Convert to PIL Images
|
418 |
+
img_boxes_pil = Image.fromarray(img_boxes_rgb)
|
419 |
+
img_removed_pil = Image.fromarray(img_removed_rgb)
|
420 |
+
bubbles_img_pil = Image.fromarray(bubbles_img)
|
421 |
+
mask_pil = Image.fromarray(mask_rgba)
|
422 |
+
|
423 |
+
return img_boxes_pil, bubbles_img_pil, img_removed_pil, merged_results, mask_pil
|
424 |
+
|
425 |
+
|
426 |
+
def position_text_back(text, merged_coordinates, inpainted_image, font_path, font_color):
|
427 |
+
coords = shorten_box(merged_coordinates)
|
428 |
+
top_left_coords = coords[0]
|
429 |
+
text_image = fit_text_to_box(text, coords, font_path, font_color)
|
430 |
+
|
431 |
+
# Create a transparent layer to blend
|
432 |
+
layer = Image.new("RGBA", inpainted_image.size, (0, 0, 0, 0))
|
433 |
+
|
434 |
+
# Paste the text image onto the transparent layer at the specified position
|
435 |
+
layer.paste(text_image, tuple(top_left_coords), mask=text_image)
|
436 |
+
|
437 |
+
# Ensure both images are in "RGBA" mode
|
438 |
+
if inpainted_image.mode != "RGBA":
|
439 |
+
inpainted_image = inpainted_image.convert("RGBA")
|
440 |
+
if layer.mode != "RGBA":
|
441 |
+
layer = layer.convert("RGBA")
|
442 |
+
|
443 |
+
# Blend the transparent layer with the inpainted image
|
444 |
+
blended_image = Image.alpha_composite(inpainted_image, layer)
|
445 |
+
|
446 |
+
return blended_image
|
447 |
+
|
448 |
+
@spaces.GPU()
|
449 |
+
def process(image, mask,
|
450 |
+
prompt="background",
|
451 |
+
negative_prompt="text",
|
452 |
+
num_inference_steps=10,
|
453 |
+
controlnet_conditioning_scale=0.9,
|
454 |
+
guidance_scale=3.5,
|
455 |
+
seed=124,
|
456 |
+
true_guidance_scale=3.5
|
457 |
+
):
|
458 |
+
size = (768, 768)
|
459 |
+
image_pil = Image.fromarray(image)
|
460 |
+
image_or = image_pil.copy()
|
461 |
+
|
462 |
+
image_pil = image_pil.convert("RGB").resize(size)
|
463 |
+
mask = mask.convert("RGB").resize(size)
|
464 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
465 |
+
result = pipe(
|
466 |
+
prompt=prompt,
|
467 |
+
height=size[1],
|
468 |
+
width=size[0],
|
469 |
+
control_image=image_pil,
|
470 |
+
control_mask=mask,
|
471 |
+
num_inference_steps=num_inference_steps,
|
472 |
+
generator=generator,
|
473 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
474 |
+
guidance_scale=guidance_scale,
|
475 |
+
negative_prompt=negative_prompt,
|
476 |
+
true_guidance_scale=true_guidance_scale
|
477 |
+
).images[0]
|
478 |
+
|
479 |
+
return result.resize((image_or.size[:2]))
|
480 |
+
|
481 |
+
|
482 |
+
@spaces.GPU()
|
483 |
+
def process_image(image, source_language, target_language, mode, font, font_color, num_inference_steps):
|
484 |
+
"""Main processing function for Gradio"""
|
485 |
+
if image is None:
|
486 |
+
return None, None, None, []
|
487 |
+
|
488 |
+
# Initialize reader (equivalent to what handle_localization did)
|
489 |
+
easy_ocr_lan = language_to_ocr.get(source_language, 'en')
|
490 |
+
reader = easyocr.Reader([easy_ocr_lan], model_storage_directory='.', gpu=False)
|
491 |
+
|
492 |
+
# Detect text and get results
|
493 |
+
img_with_boxes, img_bubbles, img_removed_text, merged_results, mask = detect_and_show_text(reader, image)
|
494 |
+
|
495 |
+
if mode == "Basic":
|
496 |
+
img_inpainted = img_removed_text
|
497 |
+
else:
|
498 |
+
img_inpainted = process(image, mask, num_inference_steps=num_inference_steps)
|
499 |
+
|
500 |
+
font_rgba = color_to_rgba(font_color) # Convert hex to RGBA
|
501 |
+
|
502 |
+
# Get translations
|
503 |
+
translations = localize_boxes(
|
504 |
+
merged_results,
|
505 |
+
img_with_boxes,
|
506 |
+
source_language,
|
507 |
+
target_language
|
508 |
+
)
|
509 |
+
|
510 |
+
# Create initial result with translations
|
511 |
+
final_result = img_inpainted.copy()
|
512 |
+
for translation in translations:
|
513 |
+
box = translation['box']
|
514 |
+
text = translation['text']
|
515 |
+
final_result = position_text_back(text, box, final_result, font_path=f"fonts/{font}.ttf", font_color=font_rgba)
|
516 |
+
|
517 |
+
# Return all results directly (no need to store in session state)
|
518 |
+
return img_with_boxes, img_bubbles, img_inpainted, final_result, translations, np.array(mask)
|
519 |
+
|
520 |
+
|
521 |
+
def update_translations(image, edited_texts, translations_list, img_removed_text, font, font_color):
|
522 |
+
"""Update the image with edited translations"""
|
523 |
+
if image is None or img_removed_text is None:
|
524 |
+
return None
|
525 |
+
|
526 |
+
# Convert numpy array back to PIL Image
|
527 |
+
img_removed = Image.fromarray(img_removed_text)
|
528 |
+
final_result = img_removed.copy()
|
529 |
+
|
530 |
+
font_rgba = color_to_rgba(font_color) # Convert hex to RGBA
|
531 |
+
|
532 |
+
# Update the translations with edited texts
|
533 |
+
for trans, new_text in zip(translations_list, edited_texts.split('\n')):
|
534 |
+
trans['text'] = new_text.strip()
|
535 |
+
box = trans['box']
|
536 |
+
final_result = position_text_back(new_text, box, final_result, font_path=f"fonts/{font}.ttf", font_color=font_rgba)
|
537 |
+
|
538 |
+
return np.array(final_result)
|
539 |
+
|
540 |
+
|
541 |
+
|
542 |
+
with gr.Blocks(title="Nativ - Demo") as demo:
|
543 |
+
# Store translations list in state
|
544 |
+
translations_state = gr.State([])
|
545 |
+
|
546 |
+
gr.Markdown("# Nativ - Demo")
|
547 |
+
|
548 |
+
with gr.Row():
|
549 |
+
with gr.Column():
|
550 |
+
# Input components
|
551 |
+
input_image = gr.Image(type="numpy", label="Upload Image")
|
552 |
+
source_language = gr.Dropdown(
|
553 |
+
choices=['Simplified Chinese', 'Traditional Chinese', 'Korean', 'Japanese', 'English'],
|
554 |
+
value='Simplified Chinese',
|
555 |
+
label="Source Language"
|
556 |
+
)
|
557 |
+
target_language = gr.Dropdown(
|
558 |
+
choices=['English', 'Spanish', 'Chinese', 'Korean', 'French', 'Japanese'],
|
559 |
+
value='English',
|
560 |
+
label="Target Language"
|
561 |
+
)
|
562 |
+
# Toggle for mode selection
|
563 |
+
localization_mode = gr.Radio(
|
564 |
+
choices=["Basic", "Advanced"],
|
565 |
+
value="Basic",
|
566 |
+
label="Localization Mode"
|
567 |
+
)
|
568 |
+
font_selector_i = gr.Dropdown(
|
569 |
+
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
570 |
+
value='omniscript_bold',
|
571 |
+
label="Select Font"
|
572 |
+
)
|
573 |
+
num_inference_steps = gr.Slider(minimum=1, step=1, maximum=50, value=10, label="num_inference_steps")
|
574 |
+
font_color_picker_i = gr.ColorPicker(
|
575 |
+
value="#000000", # Default color: black
|
576 |
+
label="Select Font Color"
|
577 |
+
)
|
578 |
+
process_btn = gr.Button("Localize")
|
579 |
+
|
580 |
+
with gr.Column():
|
581 |
+
# Output components
|
582 |
+
speech_bubbles = gr.Image(type="numpy", label="Detected Speech Bubbles", interactive=False)
|
583 |
+
detected_boxes = gr.Image(type="numpy", label="Detected Text Regions", interactive=False)
|
584 |
+
removed_text = gr.Image(type="numpy", label="Removed Text", interactive=False)
|
585 |
+
final_output = gr.Image(type="numpy", label="Final Result", interactive=False)
|
586 |
+
|
587 |
+
# Translation editing section
|
588 |
+
with gr.Row():
|
589 |
+
translations_text = gr.Textbox(
|
590 |
+
label="Edit Translations (one per line)",
|
591 |
+
lines=5,
|
592 |
+
placeholder="Edit translations here..."
|
593 |
+
)
|
594 |
+
font_selector_f = gr.Dropdown(
|
595 |
+
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
596 |
+
value='omniscript_bold',
|
597 |
+
label="Select Font"
|
598 |
+
)
|
599 |
+
font_color_picker_f = gr.ColorPicker(
|
600 |
+
value="#000000", # Default color: black
|
601 |
+
label="Select Font Color"
|
602 |
+
)
|
603 |
+
update_btn = gr.Button("Apply Changes")
|
604 |
+
|
605 |
+
def process_and_show_translations(image, source_lang, target_lang, mode, font, font_color, num_inference_steps):
|
606 |
+
boxes, bubbles, removed, final, translations, mask = process_image(image, source_lang, target_lang, mode, font, font_color, num_inference_steps)
|
607 |
+
# Extract just the texts and join with newlines
|
608 |
+
texts = '\n'.join(t['text'] for t in translations)
|
609 |
+
return boxes, bubbles, removed, final, texts, translations
|
610 |
+
|
611 |
+
# Process button click
|
612 |
+
process_btn.click(
|
613 |
+
fn=process_and_show_translations,
|
614 |
+
inputs=[input_image, source_language, target_language, localization_mode, font_selector_i, font_color_picker_i, num_inference_steps],
|
615 |
+
outputs=[detected_boxes, speech_bubbles, removed_text, final_output, translations_text, translations_state]
|
616 |
+
)
|
617 |
+
|
618 |
+
# Update translations button click
|
619 |
+
update_btn.click(
|
620 |
+
fn=update_translations,
|
621 |
+
inputs=[input_image, translations_text, translations_state, removed_text, font_selector_f, font_color_picker_f],
|
622 |
+
outputs=final_output
|
623 |
+
)
|
624 |
+
|
625 |
+
|
626 |
+
demo.launch(debug=False, show_error=True,share=True)
|
controlnet_flux.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.loaders import PeftAdapterMixin
|
9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
10 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
11 |
+
from diffusers.utils import (
|
12 |
+
USE_PEFT_BACKEND,
|
13 |
+
is_torch_version,
|
14 |
+
logging,
|
15 |
+
scale_lora_layers,
|
16 |
+
unscale_lora_layers,
|
17 |
+
)
|
18 |
+
from diffusers.models.controlnet import BaseOutput, zero_module
|
19 |
+
from diffusers.models.embeddings import (
|
20 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
21 |
+
CombinedTimestepTextProjEmbeddings,
|
22 |
+
)
|
23 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
24 |
+
from transformer_flux import (
|
25 |
+
EmbedND,
|
26 |
+
FluxSingleTransformerBlock,
|
27 |
+
FluxTransformerBlock,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class FluxControlNetOutput(BaseOutput):
|
36 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
37 |
+
controlnet_single_block_samples: Tuple[torch.Tensor]
|
38 |
+
|
39 |
+
|
40 |
+
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
41 |
+
_supports_gradient_checkpointing = True
|
42 |
+
|
43 |
+
@register_to_config
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
patch_size: int = 1,
|
47 |
+
in_channels: int = 64,
|
48 |
+
num_layers: int = 19,
|
49 |
+
num_single_layers: int = 38,
|
50 |
+
attention_head_dim: int = 128,
|
51 |
+
num_attention_heads: int = 24,
|
52 |
+
joint_attention_dim: int = 4096,
|
53 |
+
pooled_projection_dim: int = 768,
|
54 |
+
guidance_embeds: bool = False,
|
55 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
56 |
+
extra_condition_channels: int = 1 * 4,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
self.out_channels = in_channels
|
60 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
61 |
+
|
62 |
+
self.pos_embed = EmbedND(
|
63 |
+
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
64 |
+
)
|
65 |
+
text_time_guidance_cls = (
|
66 |
+
CombinedTimestepGuidanceTextProjEmbeddings
|
67 |
+
if guidance_embeds
|
68 |
+
else CombinedTimestepTextProjEmbeddings
|
69 |
+
)
|
70 |
+
self.time_text_embed = text_time_guidance_cls(
|
71 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
72 |
+
)
|
73 |
+
|
74 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
75 |
+
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
76 |
+
|
77 |
+
self.transformer_blocks = nn.ModuleList(
|
78 |
+
[
|
79 |
+
FluxTransformerBlock(
|
80 |
+
dim=self.inner_dim,
|
81 |
+
num_attention_heads=num_attention_heads,
|
82 |
+
attention_head_dim=attention_head_dim,
|
83 |
+
)
|
84 |
+
for _ in range(num_layers)
|
85 |
+
]
|
86 |
+
)
|
87 |
+
|
88 |
+
self.single_transformer_blocks = nn.ModuleList(
|
89 |
+
[
|
90 |
+
FluxSingleTransformerBlock(
|
91 |
+
dim=self.inner_dim,
|
92 |
+
num_attention_heads=num_attention_heads,
|
93 |
+
attention_head_dim=attention_head_dim,
|
94 |
+
)
|
95 |
+
for _ in range(num_single_layers)
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
# controlnet_blocks
|
100 |
+
self.controlnet_blocks = nn.ModuleList([])
|
101 |
+
for _ in range(len(self.transformer_blocks)):
|
102 |
+
self.controlnet_blocks.append(
|
103 |
+
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
104 |
+
)
|
105 |
+
|
106 |
+
self.controlnet_single_blocks = nn.ModuleList([])
|
107 |
+
for _ in range(len(self.single_transformer_blocks)):
|
108 |
+
self.controlnet_single_blocks.append(
|
109 |
+
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
110 |
+
)
|
111 |
+
|
112 |
+
self.controlnet_x_embedder = zero_module(
|
113 |
+
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
114 |
+
)
|
115 |
+
|
116 |
+
self.gradient_checkpointing = False
|
117 |
+
|
118 |
+
@property
|
119 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
120 |
+
def attn_processors(self):
|
121 |
+
r"""
|
122 |
+
Returns:
|
123 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
124 |
+
indexed by its weight name.
|
125 |
+
"""
|
126 |
+
# set recursively
|
127 |
+
processors = {}
|
128 |
+
|
129 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
130 |
+
if hasattr(module, "get_processor"):
|
131 |
+
processors[f"{name}.processor"] = module.get_processor()
|
132 |
+
|
133 |
+
for sub_name, child in module.named_children():
|
134 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
135 |
+
|
136 |
+
return processors
|
137 |
+
|
138 |
+
for name, module in self.named_children():
|
139 |
+
fn_recursive_add_processors(name, module, processors)
|
140 |
+
|
141 |
+
return processors
|
142 |
+
|
143 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
144 |
+
def set_attn_processor(self, processor):
|
145 |
+
r"""
|
146 |
+
Sets the attention processor to use to compute attention.
|
147 |
+
|
148 |
+
Parameters:
|
149 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
150 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
151 |
+
for **all** `Attention` layers.
|
152 |
+
|
153 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
154 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
155 |
+
|
156 |
+
"""
|
157 |
+
count = len(self.attn_processors.keys())
|
158 |
+
|
159 |
+
if isinstance(processor, dict) and len(processor) != count:
|
160 |
+
raise ValueError(
|
161 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
162 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
163 |
+
)
|
164 |
+
|
165 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
166 |
+
if hasattr(module, "set_processor"):
|
167 |
+
if not isinstance(processor, dict):
|
168 |
+
module.set_processor(processor)
|
169 |
+
else:
|
170 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
171 |
+
|
172 |
+
for sub_name, child in module.named_children():
|
173 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
174 |
+
|
175 |
+
for name, module in self.named_children():
|
176 |
+
fn_recursive_attn_processor(name, module, processor)
|
177 |
+
|
178 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
179 |
+
if hasattr(module, "gradient_checkpointing"):
|
180 |
+
module.gradient_checkpointing = value
|
181 |
+
|
182 |
+
@classmethod
|
183 |
+
def from_transformer(
|
184 |
+
cls,
|
185 |
+
transformer,
|
186 |
+
num_layers: int = 4,
|
187 |
+
num_single_layers: int = 10,
|
188 |
+
attention_head_dim: int = 128,
|
189 |
+
num_attention_heads: int = 24,
|
190 |
+
load_weights_from_transformer=True,
|
191 |
+
):
|
192 |
+
config = transformer.config
|
193 |
+
config["num_layers"] = num_layers
|
194 |
+
config["num_single_layers"] = num_single_layers
|
195 |
+
config["attention_head_dim"] = attention_head_dim
|
196 |
+
config["num_attention_heads"] = num_attention_heads
|
197 |
+
|
198 |
+
controlnet = cls(**config)
|
199 |
+
|
200 |
+
if load_weights_from_transformer:
|
201 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
202 |
+
controlnet.time_text_embed.load_state_dict(
|
203 |
+
transformer.time_text_embed.state_dict()
|
204 |
+
)
|
205 |
+
controlnet.context_embedder.load_state_dict(
|
206 |
+
transformer.context_embedder.state_dict()
|
207 |
+
)
|
208 |
+
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
209 |
+
controlnet.transformer_blocks.load_state_dict(
|
210 |
+
transformer.transformer_blocks.state_dict(), strict=False
|
211 |
+
)
|
212 |
+
controlnet.single_transformer_blocks.load_state_dict(
|
213 |
+
transformer.single_transformer_blocks.state_dict(), strict=False
|
214 |
+
)
|
215 |
+
|
216 |
+
controlnet.controlnet_x_embedder = zero_module(
|
217 |
+
controlnet.controlnet_x_embedder
|
218 |
+
)
|
219 |
+
|
220 |
+
return controlnet
|
221 |
+
|
222 |
+
def forward(
|
223 |
+
self,
|
224 |
+
hidden_states: torch.Tensor,
|
225 |
+
controlnet_cond: torch.Tensor,
|
226 |
+
conditioning_scale: float = 1.0,
|
227 |
+
encoder_hidden_states: torch.Tensor = None,
|
228 |
+
pooled_projections: torch.Tensor = None,
|
229 |
+
timestep: torch.LongTensor = None,
|
230 |
+
img_ids: torch.Tensor = None,
|
231 |
+
txt_ids: torch.Tensor = None,
|
232 |
+
guidance: torch.Tensor = None,
|
233 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
234 |
+
return_dict: bool = True,
|
235 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
236 |
+
"""
|
237 |
+
The [`FluxTransformer2DModel`] forward method.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
241 |
+
Input `hidden_states`.
|
242 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
243 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
244 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
245 |
+
from the embeddings of input conditions.
|
246 |
+
timestep ( `torch.LongTensor`):
|
247 |
+
Used to indicate denoising step.
|
248 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
249 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
250 |
+
joint_attention_kwargs (`dict`, *optional*):
|
251 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
252 |
+
`self.processor` in
|
253 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
254 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
255 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
256 |
+
tuple.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
260 |
+
`tuple` where the first element is the sample tensor.
|
261 |
+
"""
|
262 |
+
if joint_attention_kwargs is not None:
|
263 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
264 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
265 |
+
else:
|
266 |
+
lora_scale = 1.0
|
267 |
+
|
268 |
+
if USE_PEFT_BACKEND:
|
269 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
270 |
+
scale_lora_layers(self, lora_scale)
|
271 |
+
else:
|
272 |
+
if (
|
273 |
+
joint_attention_kwargs is not None
|
274 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
275 |
+
):
|
276 |
+
logger.warning(
|
277 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
278 |
+
)
|
279 |
+
hidden_states = self.x_embedder(hidden_states)
|
280 |
+
|
281 |
+
# add condition
|
282 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
283 |
+
|
284 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
285 |
+
if guidance is not None:
|
286 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
287 |
+
else:
|
288 |
+
guidance = None
|
289 |
+
temb = (
|
290 |
+
self.time_text_embed(timestep, pooled_projections)
|
291 |
+
if guidance is None
|
292 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
293 |
+
)
|
294 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
295 |
+
|
296 |
+
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
297 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
298 |
+
image_rotary_emb = self.pos_embed(ids)
|
299 |
+
|
300 |
+
block_samples = ()
|
301 |
+
for _, block in enumerate(self.transformer_blocks):
|
302 |
+
if self.training and self.gradient_checkpointing:
|
303 |
+
|
304 |
+
def create_custom_forward(module, return_dict=None):
|
305 |
+
def custom_forward(*inputs):
|
306 |
+
if return_dict is not None:
|
307 |
+
return module(*inputs, return_dict=return_dict)
|
308 |
+
else:
|
309 |
+
return module(*inputs)
|
310 |
+
|
311 |
+
return custom_forward
|
312 |
+
|
313 |
+
ckpt_kwargs: Dict[str, Any] = (
|
314 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
315 |
+
)
|
316 |
+
(
|
317 |
+
encoder_hidden_states,
|
318 |
+
hidden_states,
|
319 |
+
) = torch.utils.checkpoint.checkpoint(
|
320 |
+
create_custom_forward(block),
|
321 |
+
hidden_states,
|
322 |
+
encoder_hidden_states,
|
323 |
+
temb,
|
324 |
+
image_rotary_emb,
|
325 |
+
**ckpt_kwargs,
|
326 |
+
)
|
327 |
+
|
328 |
+
else:
|
329 |
+
encoder_hidden_states, hidden_states = block(
|
330 |
+
hidden_states=hidden_states,
|
331 |
+
encoder_hidden_states=encoder_hidden_states,
|
332 |
+
temb=temb,
|
333 |
+
image_rotary_emb=image_rotary_emb,
|
334 |
+
)
|
335 |
+
block_samples = block_samples + (hidden_states,)
|
336 |
+
|
337 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
338 |
+
|
339 |
+
single_block_samples = ()
|
340 |
+
for _, block in enumerate(self.single_transformer_blocks):
|
341 |
+
if self.training and self.gradient_checkpointing:
|
342 |
+
|
343 |
+
def create_custom_forward(module, return_dict=None):
|
344 |
+
def custom_forward(*inputs):
|
345 |
+
if return_dict is not None:
|
346 |
+
return module(*inputs, return_dict=return_dict)
|
347 |
+
else:
|
348 |
+
return module(*inputs)
|
349 |
+
|
350 |
+
return custom_forward
|
351 |
+
|
352 |
+
ckpt_kwargs: Dict[str, Any] = (
|
353 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
354 |
+
)
|
355 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
356 |
+
create_custom_forward(block),
|
357 |
+
hidden_states,
|
358 |
+
temb,
|
359 |
+
image_rotary_emb,
|
360 |
+
**ckpt_kwargs,
|
361 |
+
)
|
362 |
+
|
363 |
+
else:
|
364 |
+
hidden_states = block(
|
365 |
+
hidden_states=hidden_states,
|
366 |
+
temb=temb,
|
367 |
+
image_rotary_emb=image_rotary_emb,
|
368 |
+
)
|
369 |
+
single_block_samples = single_block_samples + (
|
370 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
371 |
+
)
|
372 |
+
|
373 |
+
# controlnet block
|
374 |
+
controlnet_block_samples = ()
|
375 |
+
for block_sample, controlnet_block in zip(
|
376 |
+
block_samples, self.controlnet_blocks
|
377 |
+
):
|
378 |
+
block_sample = controlnet_block(block_sample)
|
379 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
380 |
+
|
381 |
+
controlnet_single_block_samples = ()
|
382 |
+
for single_block_sample, controlnet_block in zip(
|
383 |
+
single_block_samples, self.controlnet_single_blocks
|
384 |
+
):
|
385 |
+
single_block_sample = controlnet_block(single_block_sample)
|
386 |
+
controlnet_single_block_samples = controlnet_single_block_samples + (
|
387 |
+
single_block_sample,
|
388 |
+
)
|
389 |
+
|
390 |
+
# scaling
|
391 |
+
controlnet_block_samples = [
|
392 |
+
sample * conditioning_scale for sample in controlnet_block_samples
|
393 |
+
]
|
394 |
+
controlnet_single_block_samples = [
|
395 |
+
sample * conditioning_scale for sample in controlnet_single_block_samples
|
396 |
+
]
|
397 |
+
|
398 |
+
#
|
399 |
+
controlnet_block_samples = (
|
400 |
+
None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
401 |
+
)
|
402 |
+
controlnet_single_block_samples = (
|
403 |
+
None
|
404 |
+
if len(controlnet_single_block_samples) == 0
|
405 |
+
else controlnet_single_block_samples
|
406 |
+
)
|
407 |
+
|
408 |
+
if USE_PEFT_BACKEND:
|
409 |
+
# remove `lora_scale` from each PEFT layer
|
410 |
+
unscale_lora_layers(self, lora_scale)
|
411 |
+
|
412 |
+
if not return_dict:
|
413 |
+
return (controlnet_block_samples, controlnet_single_block_samples)
|
414 |
+
|
415 |
+
return FluxControlNetOutput(
|
416 |
+
controlnet_block_samples=controlnet_block_samples,
|
417 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
418 |
+
)
|
craft_mlt_25k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a5efbfb48b4081100544e75e1e2b57f8de3d84f213004b14b85fd4b3748db17
|
3 |
+
size 83152330
|
english_g2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2272681d9d67a04e2dff396b6e95077bc19001f8f6d3593c307b9852e1c29e8
|
3 |
+
size 15143997
|
fonts/Arial.ttf
ADDED
Binary file (276 kB). View file
|
|
fonts/Ldfcomicsansbold.ttf
ADDED
Binary file (18.6 kB). View file
|
|
fonts/Times New Roman.ttf
ADDED
Binary file (834 kB). View file
|
|
fonts/Verdana.ttf
ADDED
Binary file (140 kB). View file
|
|
fonts/app.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import easyocr
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import base64
|
8 |
+
import torch
|
9 |
+
from shapely import Polygon
|
10 |
+
from ultralytics import YOLO
|
11 |
+
|
12 |
+
from io import BytesIO
|
13 |
+
from openai import OpenAI
|
14 |
+
from PIL import Image, ImageDraw, ImageFont
|
15 |
+
|
16 |
+
from diffusers.utils import load_image, check_min_version
|
17 |
+
from controlnet_flux import FluxControlNetModel
|
18 |
+
from transformer_flux import FluxTransformer2DModel
|
19 |
+
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
20 |
+
|
21 |
+
import huggingface_hub
|
22 |
+
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))
|
23 |
+
|
24 |
+
bubble_detection_model = YOLO("speech_bubble_model.pt")
|
25 |
+
|
26 |
+
language_to_ocr = {
|
27 |
+
'Simplified Chinese': 'ch_sim',
|
28 |
+
'Traditional Chinese': 'ch_tra',
|
29 |
+
'Korean': 'ko',
|
30 |
+
'Japanese': 'ja',
|
31 |
+
'English': 'en',
|
32 |
+
}
|
33 |
+
|
34 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
35 |
+
|
36 |
+
MARKDOWN = """
|
37 |
+
# Made by Nativ
|
38 |
+
"""
|
39 |
+
|
40 |
+
check_min_version("0.30.2")
|
41 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
42 |
+
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
|
43 |
+
)
|
44 |
+
|
45 |
+
cuda_device =torch.device("cuda")
|
46 |
+
# Build pipeline
|
47 |
+
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
|
48 |
+
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
49 |
+
"black-forest-labs/FLUX.1-dev",
|
50 |
+
controlnet=controlnet,
|
51 |
+
transformer=transformer,
|
52 |
+
torch_dtype=torch.bfloat16
|
53 |
+
).to(cuda_device)
|
54 |
+
pipe.transformer.to(torch.bfloat16)
|
55 |
+
pipe.controlnet.to(torch.bfloat16)
|
56 |
+
|
57 |
+
|
58 |
+
def localize_boxes(merged_results, img_boxes, source_language, target_language):
|
59 |
+
# Convert image to base64
|
60 |
+
buffered = BytesIO()
|
61 |
+
img_boxes.save(buffered, format="PNG")
|
62 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
63 |
+
|
64 |
+
print(merged_results)
|
65 |
+
|
66 |
+
prompt = f"""You are an expert translator and localization specialist with deep understanding of both {source_language} and {target_language} cultures.
|
67 |
+
|
68 |
+
Task: Translate the detected text while preserving the cultural context and maintaining visual harmony. Make the results in capital letters.
|
69 |
+
|
70 |
+
Source Text and Coordinates:
|
71 |
+
{merged_results}
|
72 |
+
|
73 |
+
Requirements:
|
74 |
+
1. Maintain the original meaning and tone while adapting to {target_language} cultural context
|
75 |
+
2. Keep translations concise and visually balanced (similar character length when possible)
|
76 |
+
3. Preserve any:
|
77 |
+
- Brand names
|
78 |
+
- Product names
|
79 |
+
- Technical terms
|
80 |
+
- Numbers and units
|
81 |
+
4. Consider the visual context from the provided image
|
82 |
+
5. Use appropriate formality level for {target_language}
|
83 |
+
6. Maintain any special formatting (if present)
|
84 |
+
|
85 |
+
Format your response EXACTLY as a JSON-like list of dictionaries. Keep the box coordinates EXACTLY as they are, do not change them, only translate the text.
|
86 |
+
[{{'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]], 'text': 'translated_text'}}]
|
87 |
+
|
88 |
+
Important: Only output the JSON format above, no explanations or additional text."""
|
89 |
+
|
90 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
91 |
+
|
92 |
+
response = client.chat.completions.create(
|
93 |
+
model="gpt-4o",
|
94 |
+
messages=[
|
95 |
+
{
|
96 |
+
"role": "user",
|
97 |
+
"content": [
|
98 |
+
{"type": "text", "text": prompt},
|
99 |
+
{
|
100 |
+
"type": "image_url",
|
101 |
+
"image_url": {
|
102 |
+
"url": f"data:image/png;base64,{img_str}"
|
103 |
+
}
|
104 |
+
}
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
max_tokens=1000,
|
109 |
+
temperature=0
|
110 |
+
)
|
111 |
+
|
112 |
+
try:
|
113 |
+
translation_text = response.choices[0].message.content
|
114 |
+
translation_text = translation_text.replace("```json", "").replace("```", "").strip()
|
115 |
+
translated_results = eval(translation_text)
|
116 |
+
return translated_results
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Error parsing GPT-4o response: {e}")
|
119 |
+
return merged_results
|
120 |
+
|
121 |
+
def merge_boxes(boxes, image_shape, distance_threshold=10):
|
122 |
+
"""Merge boxes that are close to each other and return their associated text"""
|
123 |
+
if not boxes:
|
124 |
+
return []
|
125 |
+
|
126 |
+
# Extract boxes and create mapping to original data
|
127 |
+
boxes_only = [box[0] for box in boxes]
|
128 |
+
texts = [box[1] for box in boxes] # Extract the text content
|
129 |
+
|
130 |
+
# Create a binary mask of all boxes
|
131 |
+
height, width = image_shape[:2]
|
132 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
133 |
+
|
134 |
+
# Draw all boxes on mask and create a mapping of pixel positions to box indices
|
135 |
+
box_indices_map = {} # Will store which original box each pixel belongs to
|
136 |
+
for idx, coords in enumerate(boxes_only):
|
137 |
+
pts = np.array(coords, dtype=np.int32)
|
138 |
+
cv2.fillPoly(mask, [pts], 255)
|
139 |
+
# Store the indices of boxes for each filled pixel
|
140 |
+
y_coords, x_coords = np.where(mask == 255)
|
141 |
+
for y, x in zip(y_coords, x_coords):
|
142 |
+
if (y, x) not in box_indices_map:
|
143 |
+
box_indices_map[(y, x)] = []
|
144 |
+
box_indices_map[(y, x)].append(idx)
|
145 |
+
|
146 |
+
# Dilate to connect nearby components
|
147 |
+
kernel = np.ones((distance_threshold, distance_threshold), np.uint8)
|
148 |
+
dilated = cv2.dilate(mask, kernel, iterations=1)
|
149 |
+
|
150 |
+
# Find connected components
|
151 |
+
num_labels, labels = cv2.connectedComponents(dilated)
|
152 |
+
|
153 |
+
# Create new merged boxes with their associated text
|
154 |
+
merged_results = []
|
155 |
+
for label in range(1, num_labels): # Skip background (0)
|
156 |
+
points = np.where(labels == label)
|
157 |
+
if len(points[0]): # If component is not empty
|
158 |
+
y0, x0 = points[0].min(), points[1].min()
|
159 |
+
y1, x1 = points[0].max(), points[1].max()
|
160 |
+
# Add small padding
|
161 |
+
x0 = max(0, x0 - 2)
|
162 |
+
y0 = max(0, y0 - 2)
|
163 |
+
x1 = min(width, x1 + 2)
|
164 |
+
y1 = min(height, y1 + 2)
|
165 |
+
|
166 |
+
# Find all original boxes that overlap with this merged box
|
167 |
+
box_indices = set()
|
168 |
+
for y in range(y0, y1+1):
|
169 |
+
for x in range(x0, x1+1):
|
170 |
+
if (y, x) in box_indices_map:
|
171 |
+
box_indices.update(box_indices_map[(y, x)])
|
172 |
+
|
173 |
+
# Combine text from all overlapping boxes
|
174 |
+
combined_text = ' '.join([texts[idx] for idx in box_indices])
|
175 |
+
|
176 |
+
merged_results.append({
|
177 |
+
'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]],
|
178 |
+
'text': combined_text
|
179 |
+
})
|
180 |
+
return merged_results
|
181 |
+
|
182 |
+
def is_box_inside_yolo(box, yolo_boxes, overlap_threshold=0.5):
|
183 |
+
"""
|
184 |
+
Check if a text box is inside any of the YOLO-detected speech bubbles.
|
185 |
+
box: [[x0,y0], [x1,y0], [x1,y1], [x0,y1]]
|
186 |
+
yolo_boxes: list of YOLO boxes in xywh format
|
187 |
+
overlap_threshold: minimum overlap ratio required to consider the text inside bubble
|
188 |
+
"""
|
189 |
+
text_poly = Polygon(box)
|
190 |
+
text_area = text_poly.area
|
191 |
+
|
192 |
+
for yolo_box in yolo_boxes:
|
193 |
+
x_center, y_center, width, height = yolo_box
|
194 |
+
x1, y1 = x_center - width / 2, y_center - height / 2
|
195 |
+
x2, y2 = x_center + width / 2, y_center + height / 2
|
196 |
+
bubble_box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
|
197 |
+
bubble_poly = Polygon(bubble_box)
|
198 |
+
|
199 |
+
# Calculate intersection
|
200 |
+
if text_poly.intersects(bubble_poly):
|
201 |
+
intersection = text_poly.intersection(bubble_poly)
|
202 |
+
overlap_ratio = intersection.area / text_area
|
203 |
+
if overlap_ratio >= overlap_threshold:
|
204 |
+
return True
|
205 |
+
|
206 |
+
return False
|
207 |
+
|
208 |
+
def remove_text_regions(image, boxes, yolo_boxes):
|
209 |
+
"""Fill detected text regions with white"""
|
210 |
+
img_removed = image.copy()
|
211 |
+
mask = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
212 |
+
|
213 |
+
# Fill all detected boxes with white
|
214 |
+
for box in boxes:
|
215 |
+
pts = np.array(box[0], dtype=np.int32)
|
216 |
+
if is_box_inside_yolo(box[0], yolo_boxes):
|
217 |
+
cv2.fillPoly(img_removed, [pts], (255, 255, 255, 255))
|
218 |
+
cv2.fillPoly(mask, [pts], (255, 255, 255, 255))
|
219 |
+
|
220 |
+
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
221 |
+
|
222 |
+
return img_removed_rgb, mask
|
223 |
+
|
224 |
+
def fit_text_to_box(text, merged_coordinates, angle=0, font_path):
|
225 |
+
"""
|
226 |
+
Adjusts the text to fit optimally inside the given box dimensions.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
text (str): The text to fit.
|
230 |
+
box_size (tuple): A tuple (width, height) specifying the box dimensions.
|
231 |
+
font_path (str): Path to the font file to be used.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
PIL.Image: An image with the text fitted inside the box.
|
235 |
+
"""
|
236 |
+
width, height = merged_coordinates[1][0] - merged_coordinates[0][0], merged_coordinates[2][1] - merged_coordinates[1][1]
|
237 |
+
font_size = 1
|
238 |
+
|
239 |
+
# Create a dummy image to measure text size
|
240 |
+
dummy_image = Image.new('RGB', (width, height))
|
241 |
+
draw = ImageDraw.Draw(dummy_image)
|
242 |
+
|
243 |
+
# Load a small font initially
|
244 |
+
font = ImageFont.truetype(font_path, font_size)
|
245 |
+
|
246 |
+
while True:
|
247 |
+
# Break text into lines that fit within the width
|
248 |
+
words = text.split()
|
249 |
+
lines = []
|
250 |
+
current_line = []
|
251 |
+
for word in words:
|
252 |
+
test_line = " ".join(current_line + [word])
|
253 |
+
test_width = draw.textlength(test_line, font=font)
|
254 |
+
if test_width <= width:
|
255 |
+
current_line.append(word)
|
256 |
+
else:
|
257 |
+
lines.append(" ".join(current_line))
|
258 |
+
current_line = [word]
|
259 |
+
if current_line:
|
260 |
+
lines.append(" ".join(current_line))
|
261 |
+
|
262 |
+
# Calculate total height required for the lines
|
263 |
+
line_height = font.getbbox('A')[3] + 5 # Add line spacing
|
264 |
+
total_height = len(lines) * line_height
|
265 |
+
|
266 |
+
# Check if text fits within the height
|
267 |
+
if total_height > height or any(draw.textlength(line, font=font) > width for line in lines):
|
268 |
+
break
|
269 |
+
|
270 |
+
# Increment font size
|
271 |
+
font_size += 1
|
272 |
+
font = ImageFont.truetype(font_path, font_size)
|
273 |
+
|
274 |
+
# Use the last fitting font
|
275 |
+
font_size -= 1
|
276 |
+
font = ImageFont.truetype(font_path, font_size)
|
277 |
+
|
278 |
+
# Create the final image with a transparent background
|
279 |
+
image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
|
280 |
+
draw = ImageDraw.Draw(image)
|
281 |
+
|
282 |
+
# Center the text vertically and horizontally
|
283 |
+
lines = []
|
284 |
+
current_line = []
|
285 |
+
for word in text.split():
|
286 |
+
test_line = " ".join(current_line + [word])
|
287 |
+
if draw.textlength(test_line, font=font) <= width:
|
288 |
+
current_line.append(word)
|
289 |
+
else:
|
290 |
+
lines.append(" ".join(current_line))
|
291 |
+
current_line = [word]
|
292 |
+
if current_line:
|
293 |
+
lines.append(" ".join(current_line))
|
294 |
+
|
295 |
+
line_height = font.getbbox('A')[3] + 5
|
296 |
+
total_text_height = len(lines) * line_height
|
297 |
+
y_offset = (height - total_text_height) // 2
|
298 |
+
|
299 |
+
for line in lines:
|
300 |
+
text_width = draw.textlength(line, font=font)
|
301 |
+
x_offset = (width - text_width) // 2
|
302 |
+
draw.text((x_offset, y_offset), line, font=font, fill="black")
|
303 |
+
y_offset += line_height
|
304 |
+
|
305 |
+
rotated_image = image.rotate(0, expand=True)
|
306 |
+
|
307 |
+
return rotated_image
|
308 |
+
|
309 |
+
def shorten_box(merged_coordinates, pct=0):
|
310 |
+
# Calculate the center of the box
|
311 |
+
center_x = (merged_coordinates[0][0] + merged_coordinates[2][0]) / 2
|
312 |
+
center_y = (merged_coordinates[0][1] + merged_coordinates[2][1]) / 2
|
313 |
+
|
314 |
+
# Calculate the width and height of the box
|
315 |
+
width = merged_coordinates[1][0] - merged_coordinates[0][0]
|
316 |
+
height = merged_coordinates[2][1] - merged_coordinates[1][1]
|
317 |
+
|
318 |
+
# Shrink width and height by 10%
|
319 |
+
new_width = width * 1-pct/100.
|
320 |
+
new_height = height * 1-pct/100.
|
321 |
+
|
322 |
+
# Calculate the new coordinates
|
323 |
+
merged_coordinates_new = np.array([
|
324 |
+
[center_x - new_width / 2, center_y - new_height / 2], # Top-left
|
325 |
+
[center_x + new_width / 2, center_y - new_height / 2], # Top-right
|
326 |
+
[center_x + new_width / 2, center_y + new_height / 2], # Bottom-right
|
327 |
+
[center_x - new_width / 2, center_y + new_height / 2] # Bottom-left
|
328 |
+
], dtype=int)
|
329 |
+
|
330 |
+
return merged_coordinates_new
|
331 |
+
|
332 |
+
|
333 |
+
def detect_and_show_text(reader, image):
|
334 |
+
"""Detect text and show bounding boxes"""
|
335 |
+
if isinstance(image, Image.Image):
|
336 |
+
img_array = np.array(image)
|
337 |
+
else:
|
338 |
+
img_array = image
|
339 |
+
|
340 |
+
# Get YOLO results first
|
341 |
+
yolo_results = bubble_detection_model(img_array, conf=7)[0]
|
342 |
+
yolo_boxes = yolo_results.boxes.xywh.cpu().numpy() # Get YOLO boxes in xywh format
|
343 |
+
|
344 |
+
# Detect text
|
345 |
+
results = reader.readtext(img_array, text_threshold=0.6)
|
346 |
+
|
347 |
+
# Create visualization
|
348 |
+
img_boxes = img_array.copy()
|
349 |
+
|
350 |
+
# Ensure we're working with RGB
|
351 |
+
if len(img_array.shape) == 3:
|
352 |
+
if img_array.shape[2] == 3: # If it's a 3-channel image
|
353 |
+
img_boxes = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
354 |
+
|
355 |
+
# Draw original EasyOCR boxes on img_boxes
|
356 |
+
for result in results:
|
357 |
+
pts = np.array(result[0], dtype=np.int32)
|
358 |
+
cv2.polylines(img_boxes, [pts], isClosed=True, color=(0, 255, 0), thickness=2) # Draw original boxes in green
|
359 |
+
|
360 |
+
# Remove text and merge boxes for visualization
|
361 |
+
img_removed, mask = remove_text_regions(img_array, results, yolo_boxes)
|
362 |
+
merged_results = merge_boxes(results, img_array.shape)
|
363 |
+
|
364 |
+
# Draw merged detection boxes and text (if needed)
|
365 |
+
for merged_result in merged_results:
|
366 |
+
pts = np.array(merged_result['box'], dtype=np.int32)
|
367 |
+
# Color the box red if inside bubble, blue if outside
|
368 |
+
color = (0, 0, 255) if is_box_inside_yolo(merged_result['box'], yolo_boxes) else (255, 0, 0)
|
369 |
+
cv2.polylines(img_boxes, [pts], True, color, 2) # Draw merged boxes in red or blue
|
370 |
+
|
371 |
+
# Convert to RGB
|
372 |
+
img_boxes_rgb = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
373 |
+
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
374 |
+
mask_rgba = cv2.cvtColor(mask, cv2.COLOR_RGB2RGBA)
|
375 |
+
|
376 |
+
# Get YOLO visualization without labels
|
377 |
+
bubbles_img = yolo_results.plot(labels=False)
|
378 |
+
|
379 |
+
# Convert to PIL Images
|
380 |
+
img_boxes_pil = Image.fromarray(img_boxes_rgb)
|
381 |
+
img_removed_pil = Image.fromarray(img_removed_rgb)
|
382 |
+
bubbles_img_pil = Image.fromarray(bubbles_img)
|
383 |
+
mask_pil = Image.fromarray(mask_rgba)
|
384 |
+
|
385 |
+
return img_boxes_pil, bubbles_img_pil, img_removed_pil, merged_results, mask_pil
|
386 |
+
|
387 |
+
|
388 |
+
def position_text_back(text, merged_coordinates, inpainted_image, font_path):
|
389 |
+
coords = shorten_box(merged_coordinates)
|
390 |
+
top_left_coords = coords[0]
|
391 |
+
text_image = fit_text_to_box(text, coords, font_path)
|
392 |
+
|
393 |
+
# Create a transparent layer to blend
|
394 |
+
layer = Image.new("RGBA", inpainted_image.size, (0, 0, 0, 0))
|
395 |
+
|
396 |
+
# Paste the text image onto the transparent layer at the specified position
|
397 |
+
layer.paste(text_image, tuple(top_left_coords), mask=text_image)
|
398 |
+
|
399 |
+
# Ensure both images are in "RGBA" mode
|
400 |
+
if inpainted_image.mode != "RGBA":
|
401 |
+
inpainted_image = inpainted_image.convert("RGBA")
|
402 |
+
if layer.mode != "RGBA":
|
403 |
+
layer = layer.convert("RGBA")
|
404 |
+
|
405 |
+
# Blend the transparent layer with the inpainted image
|
406 |
+
blended_image = Image.alpha_composite(inpainted_image, layer)
|
407 |
+
|
408 |
+
return blended_image
|
409 |
+
|
410 |
+
@spaces.GPU()
|
411 |
+
def process(image, mask,
|
412 |
+
prompt="background",
|
413 |
+
negative_prompt="text",
|
414 |
+
controlnet_conditioning_scale=0.9,
|
415 |
+
guidance_scale=3.5,
|
416 |
+
seed=124,
|
417 |
+
num_inference_steps=10,
|
418 |
+
true_guidance_scale=3.5
|
419 |
+
):
|
420 |
+
size = (768, 768)
|
421 |
+
image_pil = Image.fromarray(image)
|
422 |
+
image_or = image_pil.copy()
|
423 |
+
|
424 |
+
image_pil = image_pil.convert("RGB").resize(size)
|
425 |
+
mask = mask.convert("RGB").resize(size)
|
426 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
427 |
+
result = pipe(
|
428 |
+
prompt=prompt,
|
429 |
+
height=size[1],
|
430 |
+
width=size[0],
|
431 |
+
control_image=image_pil,
|
432 |
+
control_mask=mask,
|
433 |
+
num_inference_steps=num_inference_steps,
|
434 |
+
generator=generator,
|
435 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
436 |
+
guidance_scale=guidance_scale,
|
437 |
+
negative_prompt=negative_prompt,
|
438 |
+
true_guidance_scale=true_guidance_scale
|
439 |
+
).images[0]
|
440 |
+
|
441 |
+
return result.resize((image_or.size[:2]))
|
442 |
+
|
443 |
+
|
444 |
+
@spaces.GPU()
|
445 |
+
def process_image(image, source_language, target_language, mode, font):
|
446 |
+
"""Main processing function for Gradio"""
|
447 |
+
if image is None:
|
448 |
+
return None, None, None, []
|
449 |
+
|
450 |
+
# Initialize reader (equivalent to what handle_localization did)
|
451 |
+
easy_ocr_lan = language_to_ocr.get(source_language, 'en')
|
452 |
+
reader = easyocr.Reader([easy_ocr_lan], model_storage_directory='.', gpu=False)
|
453 |
+
|
454 |
+
# Detect text and get results
|
455 |
+
img_with_boxes, img_bubbles, img_removed_text, merged_results, mask = detect_and_show_text(reader, image)
|
456 |
+
|
457 |
+
if mode == "Basic":
|
458 |
+
img_inpainted = img_removed_text
|
459 |
+
else:
|
460 |
+
img_inpainted = process(image, mask)
|
461 |
+
|
462 |
+
# Get translations
|
463 |
+
translations = localize_boxes(
|
464 |
+
merged_results,
|
465 |
+
img_with_boxes,
|
466 |
+
source_language,
|
467 |
+
target_language
|
468 |
+
)
|
469 |
+
|
470 |
+
# Create initial result with translations
|
471 |
+
final_result = img_inpainted.copy()
|
472 |
+
for translation in translations:
|
473 |
+
box = translation['box']
|
474 |
+
text = translation['text']
|
475 |
+
final_result = position_text_back(text, box, final_result, font_path=f"fonts/{font}.ttf")
|
476 |
+
|
477 |
+
# Return all results directly (no need to store in session state)
|
478 |
+
return img_with_boxes, img_bubbles, img_inpainted, final_result, translations, np.array(mask)
|
479 |
+
|
480 |
+
|
481 |
+
def update_translations(image, edited_texts, translations_list, img_removed_text, font):
|
482 |
+
"""Update the image with edited translations"""
|
483 |
+
if image is None or img_removed_text is None:
|
484 |
+
return None
|
485 |
+
|
486 |
+
# Convert numpy array back to PIL Image
|
487 |
+
img_removed = Image.fromarray(img_removed_text)
|
488 |
+
final_result = img_removed.copy()
|
489 |
+
|
490 |
+
# Update the translations with edited texts
|
491 |
+
for trans, new_text in zip(translations_list, edited_texts.split('\n')):
|
492 |
+
trans['text'] = new_text.strip()
|
493 |
+
box = trans['box']
|
494 |
+
final_result = position_text_back(new_text, box, final_result, font_path=f"fonts/{font}.ttf")
|
495 |
+
|
496 |
+
return np.array(final_result)
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
with gr.Blocks(title="Nativ - Demo") as demo:
|
501 |
+
# Store translations list in state
|
502 |
+
translations_state = gr.State([])
|
503 |
+
|
504 |
+
gr.Markdown("# Nativ - Demo")
|
505 |
+
|
506 |
+
with gr.Row():
|
507 |
+
with gr.Column():
|
508 |
+
# Input components
|
509 |
+
input_image = gr.Image(type="numpy", label="Upload Image")
|
510 |
+
source_language = gr.Dropdown(
|
511 |
+
choices=['Simplified Chinese', 'Traditional Chinese', 'Korean', 'Japanese', 'English'],
|
512 |
+
value='Simplified Chinese',
|
513 |
+
label="Source Language"
|
514 |
+
)
|
515 |
+
target_language = gr.Dropdown(
|
516 |
+
choices=['English', 'Spanish', 'Chinese', 'Korean', 'French', 'Japanese'],
|
517 |
+
value='English',
|
518 |
+
label="Target Language"
|
519 |
+
)
|
520 |
+
# Toggle for mode selection
|
521 |
+
localization_mode = gr.Radio(
|
522 |
+
choices=["Basic", "Advanced"],
|
523 |
+
value="Basic",
|
524 |
+
label="Localization Mode"
|
525 |
+
)
|
526 |
+
font_selector_i = gr.Dropdown(
|
527 |
+
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
528 |
+
value='omniscript_bold',
|
529 |
+
label="Select Font"
|
530 |
+
)
|
531 |
+
process_btn = gr.Button("Localize")
|
532 |
+
|
533 |
+
with gr.Column():
|
534 |
+
# Output components
|
535 |
+
speech_bubbles = gr.Image(type="numpy", label="Detected Speech Bubbles", interactive=False)
|
536 |
+
detected_boxes = gr.Image(type="numpy", label="Detected Text Regions", interactive=False)
|
537 |
+
removed_text = gr.Image(type="numpy", label="Removed Text", interactive=False)
|
538 |
+
final_output = gr.Image(type="numpy", label="Final Result", interactive=False)
|
539 |
+
|
540 |
+
# Translation editing section
|
541 |
+
with gr.Row():
|
542 |
+
translations_text = gr.Textbox(
|
543 |
+
label="Edit Translations (one per line)",
|
544 |
+
lines=5,
|
545 |
+
placeholder="Edit translations here..."
|
546 |
+
)
|
547 |
+
font_selector_f = gr.Dropdown(
|
548 |
+
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
549 |
+
value='Arial',
|
550 |
+
label="Select Font"
|
551 |
+
)
|
552 |
+
update_btn = gr.Button("Apply Changes")
|
553 |
+
|
554 |
+
def process_and_show_translations(image, source_lang, target_lang, mode, font):
|
555 |
+
boxes, bubbles, removed, final, translations, mask = process_image(image, source_lang, target_lang, mode, font)
|
556 |
+
# Extract just the texts and join with newlines
|
557 |
+
texts = '\n'.join(t['text'] for t in translations)
|
558 |
+
return boxes, bubbles, removed, final, texts, translations
|
559 |
+
|
560 |
+
# Process button click
|
561 |
+
process_btn.click(
|
562 |
+
fn=process_and_show_translations,
|
563 |
+
inputs=[input_image, source_language, target_language, localization_mode, font_selector_i],
|
564 |
+
outputs=[detected_boxes, speech_bubbles, removed_text, final_output, translations_text, translations_state]
|
565 |
+
)
|
566 |
+
|
567 |
+
# Update translations button click
|
568 |
+
update_btn.click(
|
569 |
+
fn=update_translations,
|
570 |
+
inputs=[input_image, translations_text, translations_state, removed_text, font_selector_f],
|
571 |
+
outputs=final_output
|
572 |
+
)
|
573 |
+
|
574 |
+
|
575 |
+
demo.launch(debug=False, show_error=True,share=True)
|
fonts/calibri.ttf
ADDED
Binary file (353 kB). View file
|
|
fonts/georgia.ttf
ADDED
Binary file (143 kB). View file
|
|
fonts/helvetica.ttf
ADDED
Binary file (44 kB). View file
|
|
fonts/omniscript_bold.ttf
ADDED
Binary file (63.1 kB). View file
|
|
korean_g2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecdead53c909748aad74bc2f2beeab3e3ad751134db6335e97ea19f879ca407e
|
3 |
+
size 16081533
|
latin_g2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaa95be1c4a9cb3496879bed7c520886ce1164f89e026f0c54488394e74e8c55
|
3 |
+
size 15406141
|
pipeline_flux_controlnet_inpaint.py
ADDED
@@ -0,0 +1,1049 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from transformers import (
|
7 |
+
CLIPTextModel,
|
8 |
+
CLIPTokenizer,
|
9 |
+
T5EncoderModel,
|
10 |
+
T5TokenizerFast,
|
11 |
+
)
|
12 |
+
|
13 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
14 |
+
from diffusers.loaders import FluxLoraLoaderMixin
|
15 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
16 |
+
|
17 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
18 |
+
from diffusers.utils import (
|
19 |
+
USE_PEFT_BACKEND,
|
20 |
+
is_torch_xla_available,
|
21 |
+
logging,
|
22 |
+
replace_example_docstring,
|
23 |
+
scale_lora_layers,
|
24 |
+
unscale_lora_layers,
|
25 |
+
)
|
26 |
+
from diffusers.utils.torch_utils import randn_tensor
|
27 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
28 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
29 |
+
|
30 |
+
from transformer_flux import FluxTransformer2DModel
|
31 |
+
from controlnet_flux import FluxControlNetModel
|
32 |
+
|
33 |
+
if is_torch_xla_available():
|
34 |
+
import torch_xla.core.xla_model as xm
|
35 |
+
|
36 |
+
XLA_AVAILABLE = True
|
37 |
+
else:
|
38 |
+
XLA_AVAILABLE = False
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
42 |
+
|
43 |
+
EXAMPLE_DOC_STRING = """
|
44 |
+
Examples:
|
45 |
+
```py
|
46 |
+
>>> import torch
|
47 |
+
>>> from diffusers.utils import load_image
|
48 |
+
>>> from diffusers import FluxControlNetPipeline
|
49 |
+
>>> from diffusers import FluxControlNetModel
|
50 |
+
|
51 |
+
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"
|
52 |
+
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
53 |
+
>>> pipe = FluxControlNetPipeline.from_pretrained(
|
54 |
+
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
55 |
+
... )
|
56 |
+
>>> pipe.to("cuda")
|
57 |
+
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
58 |
+
>>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
59 |
+
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
|
60 |
+
>>> image = pipe(
|
61 |
+
... prompt,
|
62 |
+
... control_image=control_image,
|
63 |
+
... controlnet_conditioning_scale=0.6,
|
64 |
+
... num_inference_steps=28,
|
65 |
+
... guidance_scale=3.5,
|
66 |
+
... ).images[0]
|
67 |
+
>>> image.save("flux.png")
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
73 |
+
def calculate_shift(
|
74 |
+
image_seq_len,
|
75 |
+
base_seq_len: int = 256,
|
76 |
+
max_seq_len: int = 4096,
|
77 |
+
base_shift: float = 0.5,
|
78 |
+
max_shift: float = 1.16,
|
79 |
+
):
|
80 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
81 |
+
b = base_shift - m * base_seq_len
|
82 |
+
mu = image_seq_len * m + b
|
83 |
+
return mu
|
84 |
+
|
85 |
+
|
86 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
87 |
+
def retrieve_timesteps(
|
88 |
+
scheduler,
|
89 |
+
num_inference_steps: Optional[int] = None,
|
90 |
+
device: Optional[Union[str, torch.device]] = None,
|
91 |
+
timesteps: Optional[List[int]] = None,
|
92 |
+
sigmas: Optional[List[float]] = None,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
97 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
scheduler (`SchedulerMixin`):
|
101 |
+
The scheduler to get timesteps from.
|
102 |
+
num_inference_steps (`int`):
|
103 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
104 |
+
must be `None`.
|
105 |
+
device (`str` or `torch.device`, *optional*):
|
106 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
107 |
+
timesteps (`List[int]`, *optional*):
|
108 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
109 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
110 |
+
sigmas (`List[float]`, *optional*):
|
111 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
112 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
116 |
+
second element is the number of inference steps.
|
117 |
+
"""
|
118 |
+
if timesteps is not None and sigmas is not None:
|
119 |
+
raise ValueError(
|
120 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
121 |
+
)
|
122 |
+
if timesteps is not None:
|
123 |
+
accepts_timesteps = "timesteps" in set(
|
124 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
125 |
+
)
|
126 |
+
if not accepts_timesteps:
|
127 |
+
raise ValueError(
|
128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
130 |
+
)
|
131 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
132 |
+
timesteps = scheduler.timesteps
|
133 |
+
num_inference_steps = len(timesteps)
|
134 |
+
elif sigmas is not None:
|
135 |
+
accept_sigmas = "sigmas" in set(
|
136 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
137 |
+
)
|
138 |
+
if not accept_sigmas:
|
139 |
+
raise ValueError(
|
140 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
141 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
142 |
+
)
|
143 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
144 |
+
timesteps = scheduler.timesteps
|
145 |
+
num_inference_steps = len(timesteps)
|
146 |
+
else:
|
147 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
148 |
+
timesteps = scheduler.timesteps
|
149 |
+
return timesteps, num_inference_steps
|
150 |
+
|
151 |
+
|
152 |
+
class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
153 |
+
r"""
|
154 |
+
The Flux pipeline for text-to-image generation.
|
155 |
+
|
156 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
157 |
+
|
158 |
+
Args:
|
159 |
+
transformer ([`FluxTransformer2DModel`]):
|
160 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
161 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
162 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
163 |
+
vae ([`AutoencoderKL`]):
|
164 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
165 |
+
text_encoder ([`CLIPTextModel`]):
|
166 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
167 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
168 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
169 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
170 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
171 |
+
tokenizer (`CLIPTokenizer`):
|
172 |
+
Tokenizer of class
|
173 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
174 |
+
tokenizer_2 (`T5TokenizerFast`):
|
175 |
+
Second Tokenizer of class
|
176 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
177 |
+
"""
|
178 |
+
|
179 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
180 |
+
_optional_components = []
|
181 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
182 |
+
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
186 |
+
vae: AutoencoderKL,
|
187 |
+
text_encoder: CLIPTextModel,
|
188 |
+
tokenizer: CLIPTokenizer,
|
189 |
+
text_encoder_2: T5EncoderModel,
|
190 |
+
tokenizer_2: T5TokenizerFast,
|
191 |
+
transformer: FluxTransformer2DModel,
|
192 |
+
controlnet: FluxControlNetModel,
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
|
196 |
+
self.register_modules(
|
197 |
+
vae=vae,
|
198 |
+
text_encoder=text_encoder,
|
199 |
+
text_encoder_2=text_encoder_2,
|
200 |
+
tokenizer=tokenizer,
|
201 |
+
tokenizer_2=tokenizer_2,
|
202 |
+
transformer=transformer,
|
203 |
+
scheduler=scheduler,
|
204 |
+
controlnet=controlnet,
|
205 |
+
)
|
206 |
+
self.vae_scale_factor = (
|
207 |
+
2 ** (len(self.vae.config.block_out_channels))
|
208 |
+
if hasattr(self, "vae") and self.vae is not None
|
209 |
+
else 16
|
210 |
+
)
|
211 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True)
|
212 |
+
self.mask_processor = VaeImageProcessor(
|
213 |
+
vae_scale_factor=self.vae_scale_factor,
|
214 |
+
do_resize=True,
|
215 |
+
do_convert_grayscale=True,
|
216 |
+
do_normalize=False,
|
217 |
+
do_binarize=True,
|
218 |
+
)
|
219 |
+
self.tokenizer_max_length = (
|
220 |
+
self.tokenizer.model_max_length
|
221 |
+
if hasattr(self, "tokenizer") and self.tokenizer is not None
|
222 |
+
else 77
|
223 |
+
)
|
224 |
+
self.default_sample_size = 64
|
225 |
+
|
226 |
+
@property
|
227 |
+
def do_classifier_free_guidance(self):
|
228 |
+
return self._guidance_scale > 1
|
229 |
+
|
230 |
+
def _get_t5_prompt_embeds(
|
231 |
+
self,
|
232 |
+
prompt: Union[str, List[str]] = None,
|
233 |
+
num_images_per_prompt: int = 1,
|
234 |
+
max_sequence_length: int = 512,
|
235 |
+
device: Optional[torch.device] = None,
|
236 |
+
dtype: Optional[torch.dtype] = None,
|
237 |
+
):
|
238 |
+
device = device or self._execution_device
|
239 |
+
dtype = dtype or self.text_encoder.dtype
|
240 |
+
|
241 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
242 |
+
batch_size = len(prompt)
|
243 |
+
|
244 |
+
text_inputs = self.tokenizer_2(
|
245 |
+
prompt,
|
246 |
+
padding="max_length",
|
247 |
+
max_length=max_sequence_length,
|
248 |
+
truncation=True,
|
249 |
+
return_length=False,
|
250 |
+
return_overflowing_tokens=False,
|
251 |
+
return_tensors="pt",
|
252 |
+
)
|
253 |
+
text_input_ids = text_inputs.input_ids
|
254 |
+
untruncated_ids = self.tokenizer_2(
|
255 |
+
prompt, padding="longest", return_tensors="pt"
|
256 |
+
).input_ids
|
257 |
+
|
258 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
259 |
+
text_input_ids, untruncated_ids
|
260 |
+
):
|
261 |
+
removed_text = self.tokenizer_2.batch_decode(
|
262 |
+
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
263 |
+
)
|
264 |
+
logger.warning(
|
265 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
266 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
267 |
+
)
|
268 |
+
|
269 |
+
prompt_embeds = self.text_encoder_2(
|
270 |
+
text_input_ids.to(device), output_hidden_states=False
|
271 |
+
)[0]
|
272 |
+
|
273 |
+
dtype = self.text_encoder_2.dtype
|
274 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
275 |
+
|
276 |
+
_, seq_len, _ = prompt_embeds.shape
|
277 |
+
|
278 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
279 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
280 |
+
prompt_embeds = prompt_embeds.view(
|
281 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
282 |
+
)
|
283 |
+
|
284 |
+
return prompt_embeds
|
285 |
+
|
286 |
+
def _get_clip_prompt_embeds(
|
287 |
+
self,
|
288 |
+
prompt: Union[str, List[str]],
|
289 |
+
num_images_per_prompt: int = 1,
|
290 |
+
device: Optional[torch.device] = None,
|
291 |
+
):
|
292 |
+
device = device or self._execution_device
|
293 |
+
|
294 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
295 |
+
batch_size = len(prompt)
|
296 |
+
|
297 |
+
text_inputs = self.tokenizer(
|
298 |
+
prompt,
|
299 |
+
padding="max_length",
|
300 |
+
max_length=self.tokenizer_max_length,
|
301 |
+
truncation=True,
|
302 |
+
return_overflowing_tokens=False,
|
303 |
+
return_length=False,
|
304 |
+
return_tensors="pt",
|
305 |
+
)
|
306 |
+
|
307 |
+
text_input_ids = text_inputs.input_ids
|
308 |
+
untruncated_ids = self.tokenizer(
|
309 |
+
prompt, padding="longest", return_tensors="pt"
|
310 |
+
).input_ids
|
311 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
312 |
+
text_input_ids, untruncated_ids
|
313 |
+
):
|
314 |
+
removed_text = self.tokenizer.batch_decode(
|
315 |
+
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
316 |
+
)
|
317 |
+
logger.warning(
|
318 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
319 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
320 |
+
)
|
321 |
+
prompt_embeds = self.text_encoder(
|
322 |
+
text_input_ids.to(device), output_hidden_states=False
|
323 |
+
)
|
324 |
+
|
325 |
+
# Use pooled output of CLIPTextModel
|
326 |
+
prompt_embeds = prompt_embeds.pooler_output
|
327 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
328 |
+
|
329 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
330 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
331 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
332 |
+
|
333 |
+
return prompt_embeds
|
334 |
+
|
335 |
+
def encode_prompt(
|
336 |
+
self,
|
337 |
+
prompt: Union[str, List[str]],
|
338 |
+
prompt_2: Union[str, List[str]],
|
339 |
+
device: Optional[torch.device] = None,
|
340 |
+
num_images_per_prompt: int = 1,
|
341 |
+
do_classifier_free_guidance: bool = True,
|
342 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
343 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
344 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
345 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
max_sequence_length: int = 512,
|
347 |
+
lora_scale: Optional[float] = None,
|
348 |
+
):
|
349 |
+
r"""
|
350 |
+
|
351 |
+
Args:
|
352 |
+
prompt (`str` or `List[str]`, *optional*):
|
353 |
+
prompt to be encoded
|
354 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
355 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
356 |
+
used in all text-encoders
|
357 |
+
device: (`torch.device`):
|
358 |
+
torch device
|
359 |
+
num_images_per_prompt (`int`):
|
360 |
+
number of images that should be generated per prompt
|
361 |
+
do_classifier_free_guidance (`bool`):
|
362 |
+
whether to use classifier-free guidance or not
|
363 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
364 |
+
negative prompt to be encoded
|
365 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
366 |
+
negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is
|
367 |
+
used in all text-encoders
|
368 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
369 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
370 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
371 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
372 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
373 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
374 |
+
clip_skip (`int`, *optional*):
|
375 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
376 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
377 |
+
lora_scale (`float`, *optional*):
|
378 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
379 |
+
"""
|
380 |
+
device = device or self._execution_device
|
381 |
+
|
382 |
+
# set lora scale so that monkey patched LoRA
|
383 |
+
# function of text encoder can correctly access it
|
384 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
385 |
+
self._lora_scale = lora_scale
|
386 |
+
|
387 |
+
# dynamically adjust the LoRA scale
|
388 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
389 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
390 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
391 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
392 |
+
|
393 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
394 |
+
if prompt is not None:
|
395 |
+
batch_size = len(prompt)
|
396 |
+
else:
|
397 |
+
batch_size = prompt_embeds.shape[0]
|
398 |
+
|
399 |
+
if prompt_embeds is None:
|
400 |
+
prompt_2 = prompt_2 or prompt
|
401 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
402 |
+
|
403 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
404 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
405 |
+
prompt=prompt,
|
406 |
+
device=device,
|
407 |
+
num_images_per_prompt=num_images_per_prompt,
|
408 |
+
)
|
409 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
410 |
+
prompt=prompt_2,
|
411 |
+
num_images_per_prompt=num_images_per_prompt,
|
412 |
+
max_sequence_length=max_sequence_length,
|
413 |
+
device=device,
|
414 |
+
)
|
415 |
+
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
# 处理 negative prompt
|
418 |
+
negative_prompt = negative_prompt or ""
|
419 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
420 |
+
|
421 |
+
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
422 |
+
negative_prompt,
|
423 |
+
device=device,
|
424 |
+
num_images_per_prompt=num_images_per_prompt,
|
425 |
+
)
|
426 |
+
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
427 |
+
negative_prompt_2,
|
428 |
+
num_images_per_prompt=num_images_per_prompt,
|
429 |
+
max_sequence_length=max_sequence_length,
|
430 |
+
device=device,
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
negative_pooled_prompt_embeds = None
|
434 |
+
negative_prompt_embeds = None
|
435 |
+
|
436 |
+
if self.text_encoder is not None:
|
437 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
438 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
439 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
440 |
+
|
441 |
+
if self.text_encoder_2 is not None:
|
442 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
443 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
444 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
445 |
+
|
446 |
+
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
|
447 |
+
device=device, dtype=self.text_encoder.dtype
|
448 |
+
)
|
449 |
+
|
450 |
+
return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids
|
451 |
+
|
452 |
+
def check_inputs(
|
453 |
+
self,
|
454 |
+
prompt,
|
455 |
+
prompt_2,
|
456 |
+
height,
|
457 |
+
width,
|
458 |
+
prompt_embeds=None,
|
459 |
+
pooled_prompt_embeds=None,
|
460 |
+
callback_on_step_end_tensor_inputs=None,
|
461 |
+
max_sequence_length=None,
|
462 |
+
):
|
463 |
+
if height % 8 != 0 or width % 8 != 0:
|
464 |
+
raise ValueError(
|
465 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
466 |
+
)
|
467 |
+
|
468 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
469 |
+
k in self._callback_tensor_inputs
|
470 |
+
for k in callback_on_step_end_tensor_inputs
|
471 |
+
):
|
472 |
+
raise ValueError(
|
473 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
474 |
+
)
|
475 |
+
|
476 |
+
if prompt is not None and prompt_embeds is not None:
|
477 |
+
raise ValueError(
|
478 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
479 |
+
" only forward one of the two."
|
480 |
+
)
|
481 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
482 |
+
raise ValueError(
|
483 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
484 |
+
" only forward one of the two."
|
485 |
+
)
|
486 |
+
elif prompt is None and prompt_embeds is None:
|
487 |
+
raise ValueError(
|
488 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
489 |
+
)
|
490 |
+
elif prompt is not None and (
|
491 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
492 |
+
):
|
493 |
+
raise ValueError(
|
494 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
495 |
+
)
|
496 |
+
elif prompt_2 is not None and (
|
497 |
+
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
498 |
+
):
|
499 |
+
raise ValueError(
|
500 |
+
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
501 |
+
)
|
502 |
+
|
503 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
504 |
+
raise ValueError(
|
505 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
506 |
+
)
|
507 |
+
|
508 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
509 |
+
raise ValueError(
|
510 |
+
f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
|
511 |
+
)
|
512 |
+
|
513 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids
|
514 |
+
@staticmethod
|
515 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
516 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
517 |
+
latent_image_ids[..., 1] = (
|
518 |
+
latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
519 |
+
)
|
520 |
+
latent_image_ids[..., 2] = (
|
521 |
+
latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
522 |
+
)
|
523 |
+
|
524 |
+
(
|
525 |
+
latent_image_id_height,
|
526 |
+
latent_image_id_width,
|
527 |
+
latent_image_id_channels,
|
528 |
+
) = latent_image_ids.shape
|
529 |
+
|
530 |
+
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
531 |
+
latent_image_ids = latent_image_ids.reshape(
|
532 |
+
batch_size,
|
533 |
+
latent_image_id_height * latent_image_id_width,
|
534 |
+
latent_image_id_channels,
|
535 |
+
)
|
536 |
+
|
537 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
538 |
+
|
539 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents
|
540 |
+
@staticmethod
|
541 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
542 |
+
latents = latents.view(
|
543 |
+
batch_size, num_channels_latents, height // 2, 2, width // 2, 2
|
544 |
+
)
|
545 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
546 |
+
latents = latents.reshape(
|
547 |
+
batch_size, (height // 2) * (width // 2), num_channels_latents * 4
|
548 |
+
)
|
549 |
+
|
550 |
+
return latents
|
551 |
+
|
552 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents
|
553 |
+
@staticmethod
|
554 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
555 |
+
batch_size, num_patches, channels = latents.shape
|
556 |
+
|
557 |
+
height = height // vae_scale_factor
|
558 |
+
width = width // vae_scale_factor
|
559 |
+
|
560 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
561 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
562 |
+
|
563 |
+
latents = latents.reshape(
|
564 |
+
batch_size, channels // (2 * 2), height * 2, width * 2
|
565 |
+
)
|
566 |
+
|
567 |
+
return latents
|
568 |
+
|
569 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents
|
570 |
+
def prepare_latents(
|
571 |
+
self,
|
572 |
+
batch_size,
|
573 |
+
num_channels_latents,
|
574 |
+
height,
|
575 |
+
width,
|
576 |
+
dtype,
|
577 |
+
device,
|
578 |
+
generator,
|
579 |
+
latents=None,
|
580 |
+
):
|
581 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
582 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
583 |
+
|
584 |
+
shape = (batch_size, num_channels_latents, height, width)
|
585 |
+
|
586 |
+
if latents is not None:
|
587 |
+
latent_image_ids = self._prepare_latent_image_ids(
|
588 |
+
batch_size, height, width, device, dtype
|
589 |
+
)
|
590 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
591 |
+
|
592 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
593 |
+
raise ValueError(
|
594 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
595 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
596 |
+
)
|
597 |
+
|
598 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
599 |
+
latents = self._pack_latents(
|
600 |
+
latents, batch_size, num_channels_latents, height, width
|
601 |
+
)
|
602 |
+
|
603 |
+
latent_image_ids = self._prepare_latent_image_ids(
|
604 |
+
batch_size, height, width, device, dtype
|
605 |
+
)
|
606 |
+
|
607 |
+
return latents, latent_image_ids
|
608 |
+
|
609 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
610 |
+
def prepare_image(
|
611 |
+
self,
|
612 |
+
image,
|
613 |
+
width,
|
614 |
+
height,
|
615 |
+
batch_size,
|
616 |
+
num_images_per_prompt,
|
617 |
+
device,
|
618 |
+
dtype,
|
619 |
+
):
|
620 |
+
if isinstance(image, torch.Tensor):
|
621 |
+
pass
|
622 |
+
else:
|
623 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
624 |
+
|
625 |
+
image_batch_size = image.shape[0]
|
626 |
+
|
627 |
+
if image_batch_size == 1:
|
628 |
+
repeat_by = batch_size
|
629 |
+
else:
|
630 |
+
# image batch size is the same as prompt batch size
|
631 |
+
repeat_by = num_images_per_prompt
|
632 |
+
|
633 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
634 |
+
|
635 |
+
image = image.to(device=device, dtype=dtype)
|
636 |
+
|
637 |
+
return image
|
638 |
+
|
639 |
+
def prepare_image_with_mask(
|
640 |
+
self,
|
641 |
+
image,
|
642 |
+
mask,
|
643 |
+
width,
|
644 |
+
height,
|
645 |
+
batch_size,
|
646 |
+
num_images_per_prompt,
|
647 |
+
device,
|
648 |
+
dtype,
|
649 |
+
do_classifier_free_guidance = False,
|
650 |
+
):
|
651 |
+
# Prepare image
|
652 |
+
if isinstance(image, torch.Tensor):
|
653 |
+
pass
|
654 |
+
else:
|
655 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
656 |
+
|
657 |
+
image_batch_size = image.shape[0]
|
658 |
+
if image_batch_size == 1:
|
659 |
+
repeat_by = batch_size
|
660 |
+
else:
|
661 |
+
# image batch size is the same as prompt batch size
|
662 |
+
repeat_by = num_images_per_prompt
|
663 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
664 |
+
image = image.to(device=device, dtype=dtype)
|
665 |
+
|
666 |
+
# Prepare mask
|
667 |
+
if isinstance(mask, torch.Tensor):
|
668 |
+
pass
|
669 |
+
else:
|
670 |
+
mask = self.mask_processor.preprocess(mask, height=height, width=width)
|
671 |
+
mask = mask.repeat_interleave(repeat_by, dim=0)
|
672 |
+
mask = mask.to(device=device, dtype=dtype)
|
673 |
+
|
674 |
+
# Get masked image
|
675 |
+
masked_image = image.clone()
|
676 |
+
masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
|
677 |
+
|
678 |
+
# Encode to latents
|
679 |
+
image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample()
|
680 |
+
image_latents = (
|
681 |
+
image_latents - self.vae.config.shift_factor
|
682 |
+
) * self.vae.config.scaling_factor
|
683 |
+
image_latents = image_latents.to(dtype)
|
684 |
+
|
685 |
+
mask = torch.nn.functional.interpolate(
|
686 |
+
mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2)
|
687 |
+
)
|
688 |
+
mask = 1 - mask
|
689 |
+
|
690 |
+
control_image = torch.cat([image_latents, mask], dim=1)
|
691 |
+
|
692 |
+
# Pack cond latents
|
693 |
+
packed_control_image = self._pack_latents(
|
694 |
+
control_image,
|
695 |
+
batch_size * num_images_per_prompt,
|
696 |
+
control_image.shape[1],
|
697 |
+
control_image.shape[2],
|
698 |
+
control_image.shape[3],
|
699 |
+
)
|
700 |
+
|
701 |
+
if do_classifier_free_guidance:
|
702 |
+
packed_control_image = torch.cat([packed_control_image] * 2)
|
703 |
+
|
704 |
+
return packed_control_image, height, width
|
705 |
+
|
706 |
+
@property
|
707 |
+
def guidance_scale(self):
|
708 |
+
return self._guidance_scale
|
709 |
+
|
710 |
+
@property
|
711 |
+
def joint_attention_kwargs(self):
|
712 |
+
return self._joint_attention_kwargs
|
713 |
+
|
714 |
+
@property
|
715 |
+
def num_timesteps(self):
|
716 |
+
return self._num_timesteps
|
717 |
+
|
718 |
+
@property
|
719 |
+
def interrupt(self):
|
720 |
+
return self._interrupt
|
721 |
+
|
722 |
+
@torch.no_grad()
|
723 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
724 |
+
def __call__(
|
725 |
+
self,
|
726 |
+
prompt: Union[str, List[str]] = None,
|
727 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
728 |
+
height: Optional[int] = None,
|
729 |
+
width: Optional[int] = None,
|
730 |
+
num_inference_steps: int = 28,
|
731 |
+
timesteps: List[int] = None,
|
732 |
+
guidance_scale: float = 7.0,
|
733 |
+
true_guidance_scale: float = 3.5 ,
|
734 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
735 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
736 |
+
control_image: PipelineImageInput = None,
|
737 |
+
control_mask: PipelineImageInput = None,
|
738 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
739 |
+
num_images_per_prompt: Optional[int] = 1,
|
740 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
741 |
+
latents: Optional[torch.FloatTensor] = None,
|
742 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
743 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
744 |
+
output_type: Optional[str] = "pil",
|
745 |
+
return_dict: bool = True,
|
746 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
747 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
748 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
749 |
+
max_sequence_length: int = 512,
|
750 |
+
):
|
751 |
+
r"""
|
752 |
+
Function invoked when calling the pipeline for generation.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
prompt (`str` or `List[str]`, *optional*):
|
756 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
757 |
+
instead.
|
758 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
759 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
760 |
+
will be used instead
|
761 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
762 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
763 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
764 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
765 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
766 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
767 |
+
expense of slower inference.
|
768 |
+
timesteps (`List[int]`, *optional*):
|
769 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
770 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
771 |
+
passed will be used. Must be in descending order.
|
772 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
773 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
774 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
775 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
776 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
777 |
+
usually at the expense of lower image quality.
|
778 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
779 |
+
The number of images to generate per prompt.
|
780 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
781 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
782 |
+
to make generation deterministic.
|
783 |
+
latents (`torch.FloatTensor`, *optional*):
|
784 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
785 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
786 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
787 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
788 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
789 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
790 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
791 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
792 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
793 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
794 |
+
The output format of the generate image. Choose between
|
795 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
796 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
797 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
798 |
+
joint_attention_kwargs (`dict`, *optional*):
|
799 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
800 |
+
`self.processor` in
|
801 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
802 |
+
callback_on_step_end (`Callable`, *optional*):
|
803 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
804 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
805 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
806 |
+
`callback_on_step_end_tensor_inputs`.
|
807 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
808 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
809 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
810 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
811 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
812 |
+
|
813 |
+
Examples:
|
814 |
+
|
815 |
+
Returns:
|
816 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
817 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
818 |
+
images.
|
819 |
+
"""
|
820 |
+
|
821 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
822 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
823 |
+
|
824 |
+
# 1. Check inputs. Raise error if not correct
|
825 |
+
self.check_inputs(
|
826 |
+
prompt,
|
827 |
+
prompt_2,
|
828 |
+
height,
|
829 |
+
width,
|
830 |
+
prompt_embeds=prompt_embeds,
|
831 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
832 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
833 |
+
max_sequence_length=max_sequence_length,
|
834 |
+
)
|
835 |
+
|
836 |
+
self._guidance_scale = true_guidance_scale
|
837 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
838 |
+
self._interrupt = False
|
839 |
+
|
840 |
+
# 2. Define call parameters
|
841 |
+
if prompt is not None and isinstance(prompt, str):
|
842 |
+
batch_size = 1
|
843 |
+
elif prompt is not None and isinstance(prompt, list):
|
844 |
+
batch_size = len(prompt)
|
845 |
+
else:
|
846 |
+
batch_size = prompt_embeds.shape[0]
|
847 |
+
|
848 |
+
device = self._execution_device
|
849 |
+
dtype = self.transformer.dtype
|
850 |
+
|
851 |
+
lora_scale = (
|
852 |
+
self.joint_attention_kwargs.get("scale", None)
|
853 |
+
if self.joint_attention_kwargs is not None
|
854 |
+
else None
|
855 |
+
)
|
856 |
+
(
|
857 |
+
prompt_embeds,
|
858 |
+
pooled_prompt_embeds,
|
859 |
+
negative_prompt_embeds,
|
860 |
+
negative_pooled_prompt_embeds,
|
861 |
+
text_ids
|
862 |
+
) = self.encode_prompt(
|
863 |
+
prompt=prompt,
|
864 |
+
prompt_2=prompt_2,
|
865 |
+
prompt_embeds=prompt_embeds,
|
866 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
867 |
+
do_classifier_free_guidance = self.do_classifier_free_guidance,
|
868 |
+
negative_prompt = negative_prompt,
|
869 |
+
negative_prompt_2 = negative_prompt_2,
|
870 |
+
device=device,
|
871 |
+
num_images_per_prompt=num_images_per_prompt,
|
872 |
+
max_sequence_length=max_sequence_length,
|
873 |
+
lora_scale=lora_scale,
|
874 |
+
)
|
875 |
+
|
876 |
+
# 在 encode_prompt 之后
|
877 |
+
if self.do_classifier_free_guidance:
|
878 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0)
|
879 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0)
|
880 |
+
text_ids = torch.cat([text_ids, text_ids], dim = 0)
|
881 |
+
|
882 |
+
# 3. Prepare control image
|
883 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
884 |
+
if isinstance(self.controlnet, FluxControlNetModel):
|
885 |
+
control_image, height, width = self.prepare_image_with_mask(
|
886 |
+
image=control_image,
|
887 |
+
mask=control_mask,
|
888 |
+
width=width,
|
889 |
+
height=height,
|
890 |
+
batch_size=batch_size * num_images_per_prompt,
|
891 |
+
num_images_per_prompt=num_images_per_prompt,
|
892 |
+
device=device,
|
893 |
+
dtype=dtype,
|
894 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
895 |
+
)
|
896 |
+
|
897 |
+
# 4. Prepare latent variables
|
898 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
899 |
+
latents, latent_image_ids = self.prepare_latents(
|
900 |
+
batch_size * num_images_per_prompt,
|
901 |
+
num_channels_latents,
|
902 |
+
height,
|
903 |
+
width,
|
904 |
+
prompt_embeds.dtype,
|
905 |
+
device,
|
906 |
+
generator,
|
907 |
+
latents,
|
908 |
+
)
|
909 |
+
|
910 |
+
if self.do_classifier_free_guidance:
|
911 |
+
latent_image_ids = torch.cat([latent_image_ids] * 2)
|
912 |
+
|
913 |
+
# 5. Prepare timesteps
|
914 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
915 |
+
image_seq_len = latents.shape[1]
|
916 |
+
mu = calculate_shift(
|
917 |
+
image_seq_len,
|
918 |
+
self.scheduler.config.base_image_seq_len,
|
919 |
+
self.scheduler.config.max_image_seq_len,
|
920 |
+
self.scheduler.config.base_shift,
|
921 |
+
self.scheduler.config.max_shift,
|
922 |
+
)
|
923 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
924 |
+
self.scheduler,
|
925 |
+
num_inference_steps,
|
926 |
+
device,
|
927 |
+
timesteps,
|
928 |
+
sigmas,
|
929 |
+
mu=mu,
|
930 |
+
)
|
931 |
+
|
932 |
+
num_warmup_steps = max(
|
933 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
934 |
+
)
|
935 |
+
self._num_timesteps = len(timesteps)
|
936 |
+
|
937 |
+
# 6. Denoising loop
|
938 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
939 |
+
for i, t in enumerate(timesteps):
|
940 |
+
if self.interrupt:
|
941 |
+
continue
|
942 |
+
|
943 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
944 |
+
|
945 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
946 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
947 |
+
|
948 |
+
# handle guidance
|
949 |
+
if self.transformer.config.guidance_embeds:
|
950 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
951 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
952 |
+
else:
|
953 |
+
guidance = None
|
954 |
+
|
955 |
+
# controlnet
|
956 |
+
(
|
957 |
+
controlnet_block_samples,
|
958 |
+
controlnet_single_block_samples,
|
959 |
+
) = self.controlnet(
|
960 |
+
hidden_states=latent_model_input,
|
961 |
+
controlnet_cond=control_image,
|
962 |
+
conditioning_scale=controlnet_conditioning_scale,
|
963 |
+
timestep=timestep / 1000,
|
964 |
+
guidance=guidance,
|
965 |
+
pooled_projections=pooled_prompt_embeds,
|
966 |
+
encoder_hidden_states=prompt_embeds,
|
967 |
+
txt_ids=text_ids,
|
968 |
+
img_ids=latent_image_ids,
|
969 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
970 |
+
return_dict=False,
|
971 |
+
)
|
972 |
+
|
973 |
+
noise_pred = self.transformer(
|
974 |
+
hidden_states=latent_model_input,
|
975 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
976 |
+
timestep=timestep / 1000,
|
977 |
+
guidance=guidance,
|
978 |
+
pooled_projections=pooled_prompt_embeds,
|
979 |
+
encoder_hidden_states=prompt_embeds,
|
980 |
+
controlnet_block_samples=[
|
981 |
+
sample.to(dtype=self.transformer.dtype)
|
982 |
+
for sample in controlnet_block_samples
|
983 |
+
],
|
984 |
+
controlnet_single_block_samples=[
|
985 |
+
sample.to(dtype=self.transformer.dtype)
|
986 |
+
for sample in controlnet_single_block_samples
|
987 |
+
] if controlnet_single_block_samples is not None else controlnet_single_block_samples,
|
988 |
+
txt_ids=text_ids,
|
989 |
+
img_ids=latent_image_ids,
|
990 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
991 |
+
return_dict=False,
|
992 |
+
)[0]
|
993 |
+
|
994 |
+
# 在生成循环中
|
995 |
+
if self.do_classifier_free_guidance:
|
996 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
997 |
+
noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
998 |
+
|
999 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1000 |
+
latents_dtype = latents.dtype
|
1001 |
+
latents = self.scheduler.step(
|
1002 |
+
noise_pred, t, latents, return_dict=False
|
1003 |
+
)[0]
|
1004 |
+
|
1005 |
+
if latents.dtype != latents_dtype:
|
1006 |
+
if torch.backends.mps.is_available():
|
1007 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1008 |
+
latents = latents.to(latents_dtype)
|
1009 |
+
|
1010 |
+
if callback_on_step_end is not None:
|
1011 |
+
callback_kwargs = {}
|
1012 |
+
for k in callback_on_step_end_tensor_inputs:
|
1013 |
+
callback_kwargs[k] = locals()[k]
|
1014 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1015 |
+
|
1016 |
+
latents = callback_outputs.pop("latents", latents)
|
1017 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1018 |
+
|
1019 |
+
# call the callback, if provided
|
1020 |
+
if i == len(timesteps) - 1 or (
|
1021 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1022 |
+
):
|
1023 |
+
progress_bar.update()
|
1024 |
+
|
1025 |
+
if XLA_AVAILABLE:
|
1026 |
+
xm.mark_step()
|
1027 |
+
|
1028 |
+
if output_type == "latent":
|
1029 |
+
image = latents
|
1030 |
+
|
1031 |
+
else:
|
1032 |
+
latents = self._unpack_latents(
|
1033 |
+
latents, height, width, self.vae_scale_factor
|
1034 |
+
)
|
1035 |
+
latents = (
|
1036 |
+
latents / self.vae.config.scaling_factor
|
1037 |
+
) + self.vae.config.shift_factor
|
1038 |
+
latents = latents.to(self.vae.dtype)
|
1039 |
+
|
1040 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1041 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1042 |
+
|
1043 |
+
# Offload all models
|
1044 |
+
self.maybe_free_model_hooks()
|
1045 |
+
|
1046 |
+
if not return_dict:
|
1047 |
+
return (image,)
|
1048 |
+
|
1049 |
+
return FluxPipelineOutput(images=image)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
easyocr==1.7.2
|
2 |
+
openai==1.51.2
|
3 |
+
pillow==10.4.0
|
4 |
+
opencv-contrib-python==4.10.0.84
|
5 |
+
opencv-python==4.10.0.84
|
6 |
+
opencv-python-headless==4.10.0.84
|
7 |
+
diffusers==0.30.2
|
8 |
+
torch
|
9 |
+
transformers
|
10 |
+
accelerate
|
11 |
+
huggingface_hub
|
12 |
+
sentencepiece
|
13 |
+
ultralytics==8.3.27
|
14 |
+
ultralytics-thop==2.0.10
|
15 |
+
shapely==2.0.6
|
speech_bubble_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200141c44d4153662050531905ec3354d1d6302c28939dbbb019c037250ed610
|
3 |
+
size 54809749
|
transformer_flux.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
10 |
+
from diffusers.models.attention import FeedForward
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
Attention,
|
13 |
+
FluxAttnProcessor2_0,
|
14 |
+
FluxSingleAttnProcessor2_0,
|
15 |
+
)
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers.models.normalization import (
|
18 |
+
AdaLayerNormContinuous,
|
19 |
+
AdaLayerNormZero,
|
20 |
+
AdaLayerNormZeroSingle,
|
21 |
+
)
|
22 |
+
from diffusers.utils import (
|
23 |
+
USE_PEFT_BACKEND,
|
24 |
+
is_torch_version,
|
25 |
+
logging,
|
26 |
+
scale_lora_layers,
|
27 |
+
unscale_lora_layers,
|
28 |
+
)
|
29 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
30 |
+
from diffusers.models.embeddings import (
|
31 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
32 |
+
CombinedTimestepTextProjEmbeddings,
|
33 |
+
)
|
34 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
# YiYi to-do: refactor rope related functions/classes
|
41 |
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
42 |
+
assert dim % 2 == 0, "The dimension must be even."
|
43 |
+
|
44 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
|
45 |
+
omega = 1.0 / (theta**scale)
|
46 |
+
|
47 |
+
batch_size, seq_length = pos.shape
|
48 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
49 |
+
cos_out = torch.cos(out)
|
50 |
+
sin_out = torch.sin(out)
|
51 |
+
|
52 |
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
53 |
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
54 |
+
return out.float()
|
55 |
+
|
56 |
+
|
57 |
+
# YiYi to-do: refactor rope related functions/classes
|
58 |
+
class EmbedND(nn.Module):
|
59 |
+
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
|
60 |
+
super().__init__()
|
61 |
+
self.dim = dim
|
62 |
+
self.theta = theta
|
63 |
+
self.axes_dim = axes_dim
|
64 |
+
|
65 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
66 |
+
n_axes = ids.shape[-1]
|
67 |
+
emb = torch.cat(
|
68 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
69 |
+
dim=-3,
|
70 |
+
)
|
71 |
+
return emb.unsqueeze(1)
|
72 |
+
|
73 |
+
|
74 |
+
@maybe_allow_in_graph
|
75 |
+
class FluxSingleTransformerBlock(nn.Module):
|
76 |
+
r"""
|
77 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
78 |
+
|
79 |
+
Reference: https://arxiv.org/abs/2403.03206
|
80 |
+
|
81 |
+
Parameters:
|
82 |
+
dim (`int`): The number of channels in the input and output.
|
83 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
84 |
+
attention_head_dim (`int`): The number of channels in each head.
|
85 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
86 |
+
processing of `context` conditions.
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
90 |
+
super().__init__()
|
91 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
92 |
+
|
93 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
94 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
95 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
96 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
97 |
+
|
98 |
+
processor = FluxSingleAttnProcessor2_0()
|
99 |
+
self.attn = Attention(
|
100 |
+
query_dim=dim,
|
101 |
+
cross_attention_dim=None,
|
102 |
+
dim_head=attention_head_dim,
|
103 |
+
heads=num_attention_heads,
|
104 |
+
out_dim=dim,
|
105 |
+
bias=True,
|
106 |
+
processor=processor,
|
107 |
+
qk_norm="rms_norm",
|
108 |
+
eps=1e-6,
|
109 |
+
pre_only=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(
|
113 |
+
self,
|
114 |
+
hidden_states: torch.FloatTensor,
|
115 |
+
temb: torch.FloatTensor,
|
116 |
+
image_rotary_emb=None,
|
117 |
+
):
|
118 |
+
residual = hidden_states
|
119 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
120 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
121 |
+
|
122 |
+
attn_output = self.attn(
|
123 |
+
hidden_states=norm_hidden_states,
|
124 |
+
image_rotary_emb=image_rotary_emb,
|
125 |
+
)
|
126 |
+
|
127 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
128 |
+
gate = gate.unsqueeze(1)
|
129 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
130 |
+
hidden_states = residual + hidden_states
|
131 |
+
if hidden_states.dtype == torch.float16:
|
132 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
133 |
+
|
134 |
+
return hidden_states
|
135 |
+
|
136 |
+
|
137 |
+
@maybe_allow_in_graph
|
138 |
+
class FluxTransformerBlock(nn.Module):
|
139 |
+
r"""
|
140 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
141 |
+
|
142 |
+
Reference: https://arxiv.org/abs/2403.03206
|
143 |
+
|
144 |
+
Parameters:
|
145 |
+
dim (`int`): The number of channels in the input and output.
|
146 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
147 |
+
attention_head_dim (`int`): The number of channels in each head.
|
148 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
149 |
+
processing of `context` conditions.
|
150 |
+
"""
|
151 |
+
|
152 |
+
def __init__(
|
153 |
+
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
self.norm1 = AdaLayerNormZero(dim)
|
158 |
+
|
159 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
160 |
+
|
161 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
162 |
+
processor = FluxAttnProcessor2_0()
|
163 |
+
else:
|
164 |
+
raise ValueError(
|
165 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
166 |
+
)
|
167 |
+
self.attn = Attention(
|
168 |
+
query_dim=dim,
|
169 |
+
cross_attention_dim=None,
|
170 |
+
added_kv_proj_dim=dim,
|
171 |
+
dim_head=attention_head_dim,
|
172 |
+
heads=num_attention_heads,
|
173 |
+
out_dim=dim,
|
174 |
+
context_pre_only=False,
|
175 |
+
bias=True,
|
176 |
+
processor=processor,
|
177 |
+
qk_norm=qk_norm,
|
178 |
+
eps=eps,
|
179 |
+
)
|
180 |
+
|
181 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
182 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
183 |
+
|
184 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
185 |
+
self.ff_context = FeedForward(
|
186 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
187 |
+
)
|
188 |
+
|
189 |
+
# let chunk size default to None
|
190 |
+
self._chunk_size = None
|
191 |
+
self._chunk_dim = 0
|
192 |
+
|
193 |
+
def forward(
|
194 |
+
self,
|
195 |
+
hidden_states: torch.FloatTensor,
|
196 |
+
encoder_hidden_states: torch.FloatTensor,
|
197 |
+
temb: torch.FloatTensor,
|
198 |
+
image_rotary_emb=None,
|
199 |
+
):
|
200 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
201 |
+
hidden_states, emb=temb
|
202 |
+
)
|
203 |
+
|
204 |
+
(
|
205 |
+
norm_encoder_hidden_states,
|
206 |
+
c_gate_msa,
|
207 |
+
c_shift_mlp,
|
208 |
+
c_scale_mlp,
|
209 |
+
c_gate_mlp,
|
210 |
+
) = self.norm1_context(encoder_hidden_states, emb=temb)
|
211 |
+
|
212 |
+
# Attention.
|
213 |
+
attn_output, context_attn_output = self.attn(
|
214 |
+
hidden_states=norm_hidden_states,
|
215 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
216 |
+
image_rotary_emb=image_rotary_emb,
|
217 |
+
)
|
218 |
+
|
219 |
+
# Process attention outputs for the `hidden_states`.
|
220 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
221 |
+
hidden_states = hidden_states + attn_output
|
222 |
+
|
223 |
+
norm_hidden_states = self.norm2(hidden_states)
|
224 |
+
norm_hidden_states = (
|
225 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
226 |
+
)
|
227 |
+
|
228 |
+
ff_output = self.ff(norm_hidden_states)
|
229 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
230 |
+
|
231 |
+
hidden_states = hidden_states + ff_output
|
232 |
+
|
233 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
234 |
+
|
235 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
236 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
237 |
+
|
238 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
239 |
+
norm_encoder_hidden_states = (
|
240 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
241 |
+
+ c_shift_mlp[:, None]
|
242 |
+
)
|
243 |
+
|
244 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
245 |
+
encoder_hidden_states = (
|
246 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
247 |
+
)
|
248 |
+
if encoder_hidden_states.dtype == torch.float16:
|
249 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
250 |
+
|
251 |
+
return encoder_hidden_states, hidden_states
|
252 |
+
|
253 |
+
|
254 |
+
class FluxTransformer2DModel(
|
255 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
The Transformer model introduced in Flux.
|
259 |
+
|
260 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
261 |
+
|
262 |
+
Parameters:
|
263 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
264 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
265 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
266 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
267 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
268 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
269 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
270 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
271 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
272 |
+
"""
|
273 |
+
|
274 |
+
_supports_gradient_checkpointing = True
|
275 |
+
|
276 |
+
@register_to_config
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
patch_size: int = 1,
|
280 |
+
in_channels: int = 64,
|
281 |
+
num_layers: int = 19,
|
282 |
+
num_single_layers: int = 38,
|
283 |
+
attention_head_dim: int = 128,
|
284 |
+
num_attention_heads: int = 24,
|
285 |
+
joint_attention_dim: int = 4096,
|
286 |
+
pooled_projection_dim: int = 768,
|
287 |
+
guidance_embeds: bool = False,
|
288 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
289 |
+
):
|
290 |
+
super().__init__()
|
291 |
+
self.out_channels = in_channels
|
292 |
+
self.inner_dim = (
|
293 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
294 |
+
)
|
295 |
+
|
296 |
+
self.pos_embed = EmbedND(
|
297 |
+
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
298 |
+
)
|
299 |
+
text_time_guidance_cls = (
|
300 |
+
CombinedTimestepGuidanceTextProjEmbeddings
|
301 |
+
if guidance_embeds
|
302 |
+
else CombinedTimestepTextProjEmbeddings
|
303 |
+
)
|
304 |
+
self.time_text_embed = text_time_guidance_cls(
|
305 |
+
embedding_dim=self.inner_dim,
|
306 |
+
pooled_projection_dim=self.config.pooled_projection_dim,
|
307 |
+
)
|
308 |
+
|
309 |
+
self.context_embedder = nn.Linear(
|
310 |
+
self.config.joint_attention_dim, self.inner_dim
|
311 |
+
)
|
312 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
313 |
+
|
314 |
+
self.transformer_blocks = nn.ModuleList(
|
315 |
+
[
|
316 |
+
FluxTransformerBlock(
|
317 |
+
dim=self.inner_dim,
|
318 |
+
num_attention_heads=self.config.num_attention_heads,
|
319 |
+
attention_head_dim=self.config.attention_head_dim,
|
320 |
+
)
|
321 |
+
for i in range(self.config.num_layers)
|
322 |
+
]
|
323 |
+
)
|
324 |
+
|
325 |
+
self.single_transformer_blocks = nn.ModuleList(
|
326 |
+
[
|
327 |
+
FluxSingleTransformerBlock(
|
328 |
+
dim=self.inner_dim,
|
329 |
+
num_attention_heads=self.config.num_attention_heads,
|
330 |
+
attention_head_dim=self.config.attention_head_dim,
|
331 |
+
)
|
332 |
+
for i in range(self.config.num_single_layers)
|
333 |
+
]
|
334 |
+
)
|
335 |
+
|
336 |
+
self.norm_out = AdaLayerNormContinuous(
|
337 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
338 |
+
)
|
339 |
+
self.proj_out = nn.Linear(
|
340 |
+
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
341 |
+
)
|
342 |
+
|
343 |
+
self.gradient_checkpointing = False
|
344 |
+
|
345 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
346 |
+
if hasattr(module, "gradient_checkpointing"):
|
347 |
+
module.gradient_checkpointing = value
|
348 |
+
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
hidden_states: torch.Tensor,
|
352 |
+
encoder_hidden_states: torch.Tensor = None,
|
353 |
+
pooled_projections: torch.Tensor = None,
|
354 |
+
timestep: torch.LongTensor = None,
|
355 |
+
img_ids: torch.Tensor = None,
|
356 |
+
txt_ids: torch.Tensor = None,
|
357 |
+
guidance: torch.Tensor = None,
|
358 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
359 |
+
controlnet_block_samples=None,
|
360 |
+
controlnet_single_block_samples=None,
|
361 |
+
return_dict: bool = True,
|
362 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
363 |
+
"""
|
364 |
+
The [`FluxTransformer2DModel`] forward method.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
368 |
+
Input `hidden_states`.
|
369 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
370 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
371 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
372 |
+
from the embeddings of input conditions.
|
373 |
+
timestep ( `torch.LongTensor`):
|
374 |
+
Used to indicate denoising step.
|
375 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
376 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
377 |
+
joint_attention_kwargs (`dict`, *optional*):
|
378 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
379 |
+
`self.processor` in
|
380 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
381 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
382 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
383 |
+
tuple.
|
384 |
+
|
385 |
+
Returns:
|
386 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
387 |
+
`tuple` where the first element is the sample tensor.
|
388 |
+
"""
|
389 |
+
if joint_attention_kwargs is not None:
|
390 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
391 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
392 |
+
else:
|
393 |
+
lora_scale = 1.0
|
394 |
+
|
395 |
+
if USE_PEFT_BACKEND:
|
396 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
397 |
+
scale_lora_layers(self, lora_scale)
|
398 |
+
else:
|
399 |
+
if (
|
400 |
+
joint_attention_kwargs is not None
|
401 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
402 |
+
):
|
403 |
+
logger.warning(
|
404 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
405 |
+
)
|
406 |
+
hidden_states = self.x_embedder(hidden_states)
|
407 |
+
|
408 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
409 |
+
if guidance is not None:
|
410 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
411 |
+
else:
|
412 |
+
guidance = None
|
413 |
+
temb = (
|
414 |
+
self.time_text_embed(timestep, pooled_projections)
|
415 |
+
if guidance is None
|
416 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
417 |
+
)
|
418 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
419 |
+
|
420 |
+
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
421 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
422 |
+
image_rotary_emb = self.pos_embed(ids)
|
423 |
+
|
424 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
425 |
+
if self.training and self.gradient_checkpointing:
|
426 |
+
|
427 |
+
def create_custom_forward(module, return_dict=None):
|
428 |
+
def custom_forward(*inputs):
|
429 |
+
if return_dict is not None:
|
430 |
+
return module(*inputs, return_dict=return_dict)
|
431 |
+
else:
|
432 |
+
return module(*inputs)
|
433 |
+
|
434 |
+
return custom_forward
|
435 |
+
|
436 |
+
ckpt_kwargs: Dict[str, Any] = (
|
437 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
438 |
+
)
|
439 |
+
(
|
440 |
+
encoder_hidden_states,
|
441 |
+
hidden_states,
|
442 |
+
) = torch.utils.checkpoint.checkpoint(
|
443 |
+
create_custom_forward(block),
|
444 |
+
hidden_states,
|
445 |
+
encoder_hidden_states,
|
446 |
+
temb,
|
447 |
+
image_rotary_emb,
|
448 |
+
**ckpt_kwargs,
|
449 |
+
)
|
450 |
+
|
451 |
+
else:
|
452 |
+
encoder_hidden_states, hidden_states = block(
|
453 |
+
hidden_states=hidden_states,
|
454 |
+
encoder_hidden_states=encoder_hidden_states,
|
455 |
+
temb=temb,
|
456 |
+
image_rotary_emb=image_rotary_emb,
|
457 |
+
)
|
458 |
+
|
459 |
+
# controlnet residual
|
460 |
+
if controlnet_block_samples is not None:
|
461 |
+
interval_control = len(self.transformer_blocks) / len(
|
462 |
+
controlnet_block_samples
|
463 |
+
)
|
464 |
+
interval_control = int(np.ceil(interval_control))
|
465 |
+
hidden_states = (
|
466 |
+
hidden_states
|
467 |
+
+ controlnet_block_samples[index_block // interval_control]
|
468 |
+
)
|
469 |
+
|
470 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
471 |
+
|
472 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
473 |
+
if self.training and self.gradient_checkpointing:
|
474 |
+
|
475 |
+
def create_custom_forward(module, return_dict=None):
|
476 |
+
def custom_forward(*inputs):
|
477 |
+
if return_dict is not None:
|
478 |
+
return module(*inputs, return_dict=return_dict)
|
479 |
+
else:
|
480 |
+
return module(*inputs)
|
481 |
+
|
482 |
+
return custom_forward
|
483 |
+
|
484 |
+
ckpt_kwargs: Dict[str, Any] = (
|
485 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
486 |
+
)
|
487 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
488 |
+
create_custom_forward(block),
|
489 |
+
hidden_states,
|
490 |
+
temb,
|
491 |
+
image_rotary_emb,
|
492 |
+
**ckpt_kwargs,
|
493 |
+
)
|
494 |
+
|
495 |
+
else:
|
496 |
+
hidden_states = block(
|
497 |
+
hidden_states=hidden_states,
|
498 |
+
temb=temb,
|
499 |
+
image_rotary_emb=image_rotary_emb,
|
500 |
+
)
|
501 |
+
|
502 |
+
# controlnet residual
|
503 |
+
if controlnet_single_block_samples is not None:
|
504 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
505 |
+
controlnet_single_block_samples
|
506 |
+
)
|
507 |
+
interval_control = int(np.ceil(interval_control))
|
508 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
509 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
510 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
511 |
+
)
|
512 |
+
|
513 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
514 |
+
|
515 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
516 |
+
output = self.proj_out(hidden_states)
|
517 |
+
|
518 |
+
if USE_PEFT_BACKEND:
|
519 |
+
# remove `lora_scale` from each PEFT layer
|
520 |
+
unscale_lora_layers(self, lora_scale)
|
521 |
+
|
522 |
+
if not return_dict:
|
523 |
+
return (output,)
|
524 |
+
|
525 |
+
return Transformer2DModelOutput(sample=output)
|
zh_sim_g2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb678fdef09d651e7763ca551ad790dc89f0b2e3d2a640484330e338fb574c7a
|
3 |
+
size 21951421
|